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To work cooperatively with humans by using language, robots must not only acquire a
mapping between language and their behavior but also autonomously utilize the mapping
in appropriate contexts of interactive tasks online. To this end, we propose a novel learning
method linking language to robot behavior by means of a recurrent neural network.
In this method, the network learns from correct examples of the imposed task that
are given not as explicitly separated sets of language and behavior but as sequential
data constructed from the actual temporal flow of the task. By doing this, the internal
dynamics of the network models both language–behavior relationships and the temporal
patterns of interaction. Here, “internal dynamics” refers to the time development of the
system defined on the fixed-dimensional space of the internal states of the context
layer. Thus, in the execution phase, by constantly representing where in the interaction
context it is as its current state, the network autonomously switches between recognition
and generation phases without any explicit signs and utilizes the acquired mapping in
appropriate contexts. To evaluate our method, we conducted an experiment in which
a robot generates appropriate behavior responding to a human’s linguistic instruction.
After learning, the network actually formed the attractor structure representing both
language–behavior relationships and the task’s temporal pattern in its internal dynamics.
In the dynamics, language–behavior mapping was achieved by the branching structure.
Repetition of human’s instruction and robot’s behavioral response was represented as
the cyclic structure, and besides, waiting to a subsequent instruction was represented
as the fixed-point attractor. Thanks to this structure, the robot was able to interact online
with a human concerning the given task by autonomously switching phases.

Keywords: symbol grounding problem, language learning, human–robot interaction, recurrent neural networks,
sequence to sequence learning, dynamical system approach

1. INTRODUCTION

In recent years, the idea of robots that work flexibly in a human’s living environment has been
attracting great attention. An understanding of language is indispensable for them to communicate
and work with humans efficiently. In a dynamically changing environment, robots must work
autonomously in an online manner while understanding the language shared with humans, in
other words, mapping the language to meaning in their situation, such as objects, events, or their
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intentional behavior. This mapping is not one-to-one but con-
sists of many-to-many relationships characterized by ambiguity
and context dependency. This difficulty is known as the “sym-
bol grounding problem” (Harnad, 1990). In order to continue
open-ended interaction in the real world, in which events never
happen again in exactly the same way, robots must acquire lan-
guage–meaning relationships by learning from a limited number
of experiences and must behave appropriately even in novel situa-
tions by generalizing the acquired relationship, as a human does.

To date, especially in the field of developmental robotics (Asada
et al., 2009; Cangelosi et al., 2010), there have been some studies
that attempted to understand human language and its develop-
mental aspects by constructive means, such as learning robot
experiments (Ogata and Okuno, 2013; Hinaut et al., 2014; Zhong
et al., 2014). They have investigated integrative learning between
language and robot behavior mainly by means of neural network
models and have achieved integration with a certain degree of
generalization ability in experiments (Sugita andTani, 2005;Ogata
et al., 2007; Tuci et al., 2011; Chuang et al., 2012; Stramandinoli
et al., 2012; Heinrich and Wermter, 2014; Yamada et al., 2015).
One the other hand, in the field of symbol emergence robotics cen-
tered on Japan (Taniguchi et al., 2016), researchers have also dealt
with language acquisition and its grounding in meaning for con-
structive understanding and engineering applications (Roy and
Pentland, 2002; Iwahashi, 2003). They mainly build probabilistic
models, such as hidden Markov models, latent Dirichlet allo-
cation models, and non-parametric Bayesian models, and train
these models in an unsupervised manner, in which the symbol
system emerges from exposure to raw data of utterances, motions,
and video (Inamura et al., 2004; Iwahashi, 2008; Takano and
Nakamura, 2009; Nakamura et al., 2011; Araki et al., 2012). These
fields share the notion of “embodied” intelligence, which argues
that intelligence, including language use, emerges only from inter-
actions between the internal cognitive system and the external
environmentmediated by the sensorimotor systems specific to the
subject’s body (Pfeifer and Scheier, 1999). Therefore, they often
refer to cognitive linguistics perspectives on language, such as
usage-based model or thematic role assignment (Sugita and Tani,
2008; Hinaut and Dominey, 2013; Hinaut and Wermter, 2014),
about cognitive linguistics, for instance, see Tomasello (2003). The
problems discussed by these works include grounding of primitive
verbs (nouns) and motions (objects), acquisition of higher level
concepts from the primitives, and learning of syntactic structure.

Some models in these researches are able to translate sentences
to a corresponding meaning, such as motions, and vice versa,
by utilizing an acquired mapping (Ogata et al., 2007; Takano
and Nakamura, 2009; Hinaut et al., 2014). Translation algorithm
usually consists of phases distinguished in advance as follows: first,
a whole sentence is given and recognized, then the translation
is conducted, and finally a response is generated. However, in
real situations involving collaborative work with other agents, the
signs for phase-switching are not always given externally but are,
rather, embedded implicitly in the interaction context. Therefore,
robots must find these timings autonomously from the inter-
action context. As one example, consider a simple cooperative
interaction task in which a robot is required to respond to a
human’s instruction by behaving appropriately. First, the robot
receives an instruction. At the end of the instruction, the robot

must notice that the instruction has finished, then translate the
sentence on a corresponding behavior, move into its own gener-
ation phase, and eventually behave appropriately. Moreover, after
its own behavior phase, the robot must be able to wait for a subse-
quent instruction in order to continue the interaction. The robot
should acquire the functions for dealing with all of these require-
ments online in real situations.When the task is changed, different
requirements could become important. In brief, for applications
to human–robot interaction, robots are required in the learning
phase to internally model language–behavior relationships and
the temporal patterns of the interaction. Furthermore, during the
execution phase, they must retain and process contextual infor-
mation constantly in order to identify where in the interaction
context they are and must utilize the acquired language–behavior
relationships in appropriate contexts in an online manner. When
learning and grounding methods that satisfy these requirements
are established, they will lead to the possibility that we can teach
robots to execute collaborative tasks requiring language use, just
by giving a certain number of examples of interactions as raw
sequential data without any preprocessing to construct explicit
sets of language and corresponding behavior.We aim to tackle this
problem and propose a novel linking1 structure between language
and robot behavior that can be used by robots autonomously in
appropriate contexts.

To this end, we propose a method that employs a recurrent
neural network (RNN), which has recently attractedmuch interest
in the field of natural language processing (NLP) (Mikolov et al.,
2010; Bahdanau et al., 2015; Vinyals and Le, 2015; Li et al., 2016).
RNNs can extract temporal patterns from sequential data and
approximately learn the non-linear function that predicts future
states from the input history up to the current state (Elman,
1990). In particular, we take our cue from the method referred
to as “sequence to sequence learning” (Sutskever et al., 2014),
in which the RNN learns to map a sequence to a corresponding
sequence in its forward propagation. Therefore, the trained RNN
can deal with tasks, such as translation or a troubleshooting chat,
interactively (Vinyals and Le, 2015). To solve the aforementioned
problems, we propose an extension of the method so that it trains
the RNN to learn both the mapping from a linguistic sequence
to a behavioral sequence, and the temporal patterns of the inter-
active task in its forward propagation. To evaluate our method,
we designed an experiment in which a robot must respond to
a human’s instructions by behaving appropriately. After train-
ing with datasets constructed as a series of temporal flows of
human–robot interaction, the robot successfully interacted with
a human by autonomously switching recognition, generation, and
waiting phases and by utilizing the systematically acquired rela-
tionships in appropriate contexts using only forward calculation of
the RNN.

This paper is organized as follows. In Section 2, we review
the existing studies of learning experiments with the sequence to

1Actually, the symbol grounding problem in Harnad’s definition imposes forming
categorical representations from the continuous undifferentiated world, on an
agent. In this study, we artificially designed the evaluation experiment in a way that
the task has categorical structure as described in Section 4, although our model, in
fact, can deal with robot behavior in rawmotion sequence level. So, we use the term
“linking” instead of “grounding,” so that we do not lead the misunderstanding that
we have solved the symbol grounding problem in Harnads definition.
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sequence method and other relevant studies that investigated the
characteristic of the dynamical system of RNNs. In Section 3, we
propose our method in which the dynamical representations of
both language–behavior relationships and human–robot interac-
tion are self-organized onRNN’s dynamical system, and introduce
a technique to get a desired representation. We also consider
functional hierarchization by introducing a multiple timescale
RNN (MTRNN) (Yamashita and Tani, 2008). In Section 4, we
explain the task design for the robot experiment that evaluates the
effectiveness of our proposed method. In Section 5, we give the
experimental results and analyze the internal representations that
are formed on the RNN by learning. In Section 6, we compare
our method and results with those of other studies, discuss our
findings, and present our conclusions.

2. RELATED WORKS

Many studies have conducted learning experiments related to
language (Elman, 1990;Hinoshita et al., 2011;Mikolov et al., 2013)
or the integration of language and othermodalities, which include
not only robot motions but also images (Karpathy and Fei-Fei,
2015; Vinyals and Le, 2015), by means of NN models. Among
them, the method that has recently attracted much interest is the
method referred to as sequence to sequence learning, in which
the RNN model recognizes temporal sequences and generates
corresponding sequences in a continuous series of forward calcu-
lations without resetting (Sutskever et al., 2014). Here, the forward
calculation or forward propagation is the non-linear mapping
from input sequences to output sequences optimized by learning.
Vinyals and Le (2015) trained an RNN model with long short-
term memory (LSTM) units using a large conversational corpus
given to the model as sequential data. After learning, the model
responded to a human’s questions and had a chat just using its
forward calculation. Sutskever et al. (2014) also utilized a similar
model for English-to-French translation. Vinyals et al. (2015)
combined a convolutional neural network (CNN) and an RNN
with LSTM units to generate sentence captions from images in
its forward calculation, although their model is not sequence to
sequence. This method, which integrates recognition, translation,
and generation in successive forward calculations, seems to have
an advantage from the perspective of application to practical
human–robot interaction because networks trained in this man-
ner can work in an interactive manner by the forward calculation
requiring the low calculation cost.

So far, the method of sequence to sequence learning has been
hardly imported into robotics. Because of problems, such as
phase-switching, that exist in actual human–robot interactions,
themethod cannot be applied directly. For example, in the study of
Vinyals and Le (2015), a human’s turn (question) and a machine’s
turn (answer) were separated explicitly by the end of sequence
symbol to solve the phase-switching problem. Although this solu-
tion would be no problem as long as the application is limited to
human–machine conversation, this artificial strategy is not suit-
able for online human–robot interaction in the real world. Instead,
it is desirable that the robot autonomously switches between the
phases without any explicit signals. To our knowledge, only Park
and Tani (2015) have applied the sequence to sequence method

in robotics and conducted experiments in which a robot learned
to respond to a human’s imperative gesture with a corresponding
gesture in accordance with a semantic rule by means of forward
calculation in an RNN. Their model dealt with interaction in a
single modality, gesture. In contrast, we deal with the integration
of language as a symbolic modality and behavior as a continuous
modality. Moreover, in their task, the imperative gestures were
mapped into response gestures one-to-one. In contrast, we explic-
itly deal with environmental changes, which lead to an ambiguous
relationship between language and behavior.

Next, to make the explanation of our proposed method in the
following section more understandable, we review the workings
of RNN in existing works from static and dynamic2 perspective.
From the static perspective, the internal state of the RNN con-
text layer at a certain time step, namely, the fixed-dimensional
vector, whose size is the number of context neural units, is deter-
mined by the past input history as well as determining the output
sequence after the step. Therefore, in the schema of the sequence
to sequence learning, the internal state of the network reaches a
certain activation in accordance with the meaning of the received
sentence and immediately generated its own response sentence
based on the activation. Here, the internal activation at the end of
the human’s sentence can be interpreted as a static representation
of themeaning of the human’s sentence in the form of an encoding
in the fixed-dimensional vector; it also can be interpreted as a
static representation of its own following response. In other words,
the linking of the human’s sentence to the network’s response is
encoded as a static fixed-dimensional vector.

On the other hand, such workings also can be seen from amore
dynamic perspective. From the aspect of the network dynamics
after learning, the time development on the internal states of the
context layer during forward calculation can be seen as a represen-
tation of the temporal flow of data. For example, Yamashita and
Tani (2008) trained a humanoid robot implemented with an RNN
to generate iterative motion patterns. During motion generation,
cyclic transitions synchronized with the motions could be seen in
the time development of internal states of the context layer. In
another experiment by Tani and Ito (2003), multiple attractors,
including fixed points and cycles corresponding to variousmotion
primitives, were formed in the internal dynamics of an RNN. As
shown in these cases, RNNs can acquire an internal dynamical
representation that works synchronously with input/output (I/O)
temporal sequences. In particular, the temporal transitions of
internal states having attractor structure are robust against noise;
thus, it can be applied to practical situations, such as motion
generation tasks. Even in the sequence to sequence model, the
neural activation continues to dynamically change during the
phases of both the human’s sentence and the network response.
Thus, by synthesizing the static and dynamic perspectives, we can
describe the execution of this communicative task as follows: the
input sentence can be linked on the output sentence through a
static representation, while the whole of the time development

2In this study, “dynamics” means the time development of the internal states of
the RNN context layer that is defined on a fixed-dimensional space. On a discrete
dynamical system of forward propagation of an RNN, the current internal states are
deterministically calculated from the learnable parameters of the RNN (weights and
biases), their own previous states, and external input.
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of the internal states synchronously represents the temporal flow
of the communication, which consists of the human’s sentence and
the subsequent network response.

In the next section, on the basis of the above review of an
RNN’s working, we propose our novel linking method in which
the dynamics of the RNN represents the interaction pattern and
allows the robot to interact with a human by utilizing the acquired
relationships in appropriate contexts.

3. MATERIALS AND METHODS

In this section, we describe a novel language–behavior linking
structure that can be used in practical interactions by means of
an RNN.We also describe some techniques to achieve the linking
structure.

3.1. Overview of Task and System
In this study, to make the explanation and the evaluation of the
method clearer, we consider only one possible situation; a task
in which a robot responds to a human’s linguistic instructions by
generating appropriate behavior (the bottom panel of Figure 1).
In Section 6, however, we explain that our method can be applied
to other interactive tasks. In the task, because the mapping from
an instruction to the corresponding behavior sometimes requires
the robot to use visual information, in other words, because the
mapping has amany-to-many relationship, the robotmust acquire
systematic semantics in order to behave appropriately even in
unexperienced situations. Moreover, to interact with a human
in an online manner, the robot must also autonomously switch
between phases, such as recognition, generation, and waiting, by
processing contextual information and use the acquired relation-
ships in appropriate contexts.

For the learning experiment, we use the small humanoid robot
NAO made by Aldebaran that has a body corresponding to only
the upper half of the human body. The sequential data fed into/out
of I/O neural units of the RNN consist of the words, robot vision,
and joint angles (the center panel of the Figure 1). Each word
is assigned one I/O neural unit; a sentence is represented as a
sequence of words. Visual images are got by the robot’s head
mount camera. Ten units are also assigned to the robot’s arm
joints (ShoulderRoll, ShoulderPitch, ElbowRoll, ElbowYaw, and
WristYaw on both the arms). In this setting, the RNN is trained
to predict future states of the data. In the evaluation phase after
learning, the output of joint angle units is fed not only into the
robot as a motor command but also back into the input layer
on a subsequent time step. By doing this, we can interpret the
sequences generated by output units of joint angles as the robot’s
autonomous behavior responding to instructions.

3.2. Proposed Method
3.2.1. Dynamical Representation of Interactions
by an RNN
In this section, we introduce our essential method, the novel
linking structure that allows the robot to interact with a human
just by forward calculation in the RNN. On the basis of the review
of an RNN’s working in the previous section, we thought that
the method of sequence to sequence model could be applied

Instruction

Behavior

Waiting
Hit green fast.

Robot

Human

Real Interaction

Recurrent neural network
In. Context Out.

Words
Vision

In. Context Out.Joints

Pre-
diction

Internal dynamics
Instruction Behavior

Waiting

Linking

Fixed point

Fixed-dimensional space

FIGURE 1 | Representation of interactions by the internal dynamics of
the RNN context layer. First, in the instruction phase, by receiving words
input to the network one by one, the internal states of the context layer are
activated in the fixed-dimensional space, branching in accordance with the
meaning of the words. After the instruction, the internal states reach a certain
activation corresponding to the meaning of the sentence. From the activation
(i.e., the linking point), the network immediately generates appropriate
behavior in subsequent forward calculation, while the internal states move
along the second half of the attractor. Eventually, the internal states return to
the initial point, which has been formed as a fixed point, and the robot waits
for another instruction in a stable state.

to interactions that require a link between language and robot
behavior. We hypothesized that if the link is embedded as a static
representation in the middle of the dynamics of an RNN that
synchronously represents the temporal flow of interaction, inter-
actions that require the online use of the language–behavior rela-
tionships could be achieved. Consider the instruction–behavior
task shown in Figure 1. First, in the instruction phase, by receiving
the words input to the network one by one, the internal states of
the context layer are activated, branching in accordance with the
meaning of the words. After the instruction, the internal states
reach a certain activation corresponding to the meaning of the
sentence. Subsequently, from this activation, which can be inter-
preted as the linking point, the network immediately generates
the appropriate behavior in a subsequent forward calculation.
Moreover, the internal states are required to go back to the initial
point after the behavior generation in order to receive the next
instruction. By acquiring such a cyclic attractor structure that
represents recognition and generation, the robot can continue
the given interactive task sustainably by autonomously switching
between the recognition and generation phases and utilizing the
acquired relationship in appropriate contexts using only forward
calculation. In this synchronous mechanism, where the inter-
action context of the robot is continuously represented by the
current internal state, the language–behavior relationships are also
embedded as a fixed-dimensional vector in the middle of the
cyclic attractors. However, in real instruction–behavior tasks, the
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instructions are not given in a perfectly periodical way. Therefore,
the robot has to gain the ability to wait for subsequent instructions
after behavior generation. This ability is also acquired by forming
a corresponding representation in the RNN’s internal dynamical
system. To be more precise, if a fixed-point attractor is formed at
the initial point, the robot is able to wait for a human’s instructions
in its initial posture.

3.2.2. Training Sequences Constructed as Raw
Streams of Interactions
Subsequently, we explain how to construct training sequences to
allow the network to acquire the aforementioned internal dynam-
ics that enables the robot to interact. In the scheme of sequence
to sequence learning, the temporal structures are learned just
by experiencing a certain number of examples in a data-driven
manner, by utilizing the back-propagation through time (BPTT)
algorithm (Rumelhart et al., 1986). We hypothesized that if there
are any contextual patterns of interaction, such as a series that
consists of instruction, behavior, and waiting in this order, in
target data, the model would acquire the temporal patterns as well
as the linking relationships. The details are as follows. First, the
training sequences must be constructed as successions of instruc-
tion and corresponding behavior for the network to self-organize3
a representation as a continuous time development of the internal
states in forward calculation, as in sequence to sequence learning.
Furthermore, because the current task requires the robot to repeat
the interaction, the training sequencesmust concatenate a number
of interaction episodes. Constructing the target in such a way, the
cyclic attractors that enable the robot to respond to a human’s
instruction not only once but any number of times can be formed.
Finally, the interval length of episodes, namely the number of time
steps from the robot behavior to the subsequent instruction, must
be variable for the network to form a fixed-point attractor that
allows the robot to wait stably for instructions. In brief, trained by
target sequences that are constructed to include various aspects of
the given task without abstracting them, the network can acquire
the internal dynamical representations that give it the ability to
deal with those temporal aspects.

3.3. Employed Neural Network Model:
MTRNN
3.3.1. Hierarchical Functionalization in an MTRNN
In this section, we introduce the learning model employed. In the
current case, although the task described at the episode level is just
a simple repetition of instruction, behavior, and waiting phases,
the raw data level is more complicated: first the network gains
the appropriate activation by receiving word inputs and visual
information and integrating them while remaining at rest in the
waiting posture; after that, the network immediately generates the

3We call adaptive change of characteristics of dynamical system in a certain algo-
rithm “self-organization.” Although the acquired representation in this study is
dynamic and thus apparently different from the case of “self-organizing” map
(Kohonen, 1982) that forms statically visualized structure, both share the concept
that the network autonomously acquires a certain representation of structure or
patterns implicitly included in raw data. Tani (2014) also uses self-organization in
the same way as us, such as, “self-organized dynamical structure,” “self-organized
functional hierarchy.”

detailed joint angle sequence of various motions. Therefore, to
cope with such a task, the RNN has to learn not only representing
patterns at the episode level with long timescale dependencies (i.e.,
the global context of interactions as cyclic attractors and the link of
language to behavior as a branching structure) but also translating
the current complicated I/O flows at the raw data level into the
aforementioned internal representations and vice versa. Assuming
that the current interaction context is constantly represented by
the current internal states, this transformation itself is a function
with short timescale dependencies.

To deal with both timescales, we employ an MTRNN that
has multiple context layers working with different time con-
stants (Figure 2). The MTRNN can hierarchically self-organize
functions working at different time scales on different layers
(Hinoshita et al., 2011). For example, Yamashita and Tani (2008)
conducted a robot experiment in which a robot equipped with an
MTRNN was trained to learn motion sequences that consisted
of various motion primitives. Implemented using two context
layers, one that had a small time constant and one that had a
large time constant, the network hierarchically self-organized its
internal dynamics, working synchronously with the primitives
in the former and representing the orders of primitives in the
latter. In the current case, the MTRNN with two stacked context
layers allows the robot to deal with both of the current I/O flows
and the global context. Specifically, the cyclic representations that
correspond to the global context of the interaction and that embed
language–behavior link are self-organized in the top layer that has
a large time constant, and the representations more directly corre-
sponding to the detail of the current I/O flows are self-organized
in the bottom layer that has a small time constant. In other words,
the bottom layer facilitates the bidirectional non-linear transfor-
mation between I/O flows and the dynamical representations of
the interaction in the top layer. During the instruction phase, the
bottom layer receives the word input and the visual information.
It then propagates the information to the top layer, so that the top
layer can be activated along the correct attractor corresponding
the meaning. This is the bottom-up working. In contrast, during
the behavior phase, the transitions along the second halves of the
attractors in the top layer dynamics can be transformed into vari-
ous temporal sequences of joint angles in the output layer through
the bottom layer. This is the top-down working. By working in

FIGURE 2 | The structure of the MTRNN with two stacked context
layers. The data flow fed into/out of the I/O layer of the RNN consists of the
words, robot vision, and joint angles. Blue-colored parts are used only for
learning and explained in detail in Section 3.3.2.
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such a hierarchically functionalized manner, the network allows
the robot to interact with a human using forward dynamics.

3.3.2. MTRNN Formulation
In this section, we explain the mathematics of the MTRNN
employed. Usually, squared errors are used as the loss function
for the learning of normal MTRNNs. However, in cases that use
squared errors as the loss function, when the target sequence has
noisy or unpredictable parts, learning might collapse due that
the network attempts to forcibly learn these parts. To avoid this
problem, this study employs an extended MTRNN introduced by
Murata et al. (2015). This model learns to predict not only the
external states at a future time step but also their uncertainty as
variance. Thanks to the likelihood function defined as presuming
the uncertainty in target sequences, the errors back-propagated
to the learnable parameters can be decreased with respect to
such unpredictable parts by optimally predicting the uncertainty.
Therefore, this model can stably learn the structure of training
data.

In the forward calculation, the internal state of the ith neural
unit on each of bottom, top, output, variance layer at time step
t (ut ,i) is computed by the following equations:

ut,i =



(
1 − 1

τB

)
ut−1,i + 1

τB

(∑
j∈II

wijxt,j

+
∑
j∈IB

wijct−1,j +
∑
j∈IT

wijct−1,j + bi

)
(1 ≤ t ∧ i ∈ IB),(

1 − 1
τT

)
ut−1,i + 1

τT

(∑
j∈IB

wijct−1,j

+
∑
j∈IT

wijct−1,j + bi

)
(1 ≤ t ∧ i ∈ IT),∑

j∈IB
wijct,j + bi (1 ≤ t ∧ i ∈ IO),∑

j∈IB
wijct,j + bi (1 ≤ t ∧ i ∈ IV),

(1)

where II, IB, IT, IO, and IV are the neural unit index sets of the
input, bottom, top, output, and variance layers, respectively; τB
and τT are the time constants for the bottom and top layers,
respectively; wij is the connection weight from the jth presynaptic
unit to ith postsynaptic unit; bi is the bias of the ith unit; xt ,j is the
jth element of the input vector at time step t. The internal states of
respective layers are activated non-linearly as follows:

ct,i = tanh(ut,i) (0 ≤ t ∧ i ∈ IB), (2)
ct,i = tanh(ut,i) (0 ≤ t ∧ i ∈ IT), (3)
yt,i = tanh(ut,i) (1 ≤ t ∧ i ∈ IO), (4)
vt,i = exp(ut,i) (1 ≤ t ∧ i ∈ IV). (5)

As defined by equation (1), the top layer and I/O layer are not
connected directly, but input signals can be conveyed to the top
layer through the bottom layer, and the activation of the top layer
also controls the output through the connections in the opposite
direction. The target data for learning are defined by:

ŷt,i = xt+d,i. (6)

The prediction constant d is the fixed parameter that deter-
mines what time step away to be predicted. This parameter is
adjusted to the sampling rate of the recorded sequential data and
used in both learning and evaluation phase. If d is set to a small
value, the prediction error to be back-propagated tends to be influ-
enced by noise. In contrast, set to a large value, the network can not
respond to input signals with required promptness. The network
is trained by maximizing the following likelihood function L:

L =
T∏

t=1

∏
i∈IO

1√
2πvt,i

exp
(

− (ŷt,i − yt,i)2

2vt,i

)
, (7)

where T is the length of the sequence. This formulation means
that this model presumes that target sequences are generated by
adding time-varying Gaussian noises to the source sequences and
learns to predict the mean (source) and the variance (noise) in
each time step. In the learning, the log likelihood function ln L is
back-propagated to all the past internal states without truncation
to train all the learnable parameters θ by utilizing the BPTT
algorithm. The parameters are updated by the gradient ascent
method as follows:

θ(n) = θ(n − 1) + α∆θ(n), (8)

∆θ(n) =
∂ ln L
∂θ

+ η∆θ(n − 1), (9)

where n is the learning step, α is the learning rate, and η is the
momentum term. Please refer to Murata et al. (2015) for details
of the gradient calculation. Note that the variance layer is used
only in the training phase for stable learning and then ignored in
the evaluation phase. The source code of this learning model is
available at https://github.com/ogata-lab/SCTRNN.

4. EXPERIMENTAL DESIGN

To evaluatewhether our linkingmethod enables a robot to interact
with a human andwhether the expected hierarchical structure can
be self-organized, we conducted a robot experiment, in which a
robot was trained to respond to a human’s linguistic instructions
by generating appropriate behavior using visual information if
necessary.

4.1. Task Design
Here, we specify the task imposed on the robot. The interactive
task assigned to the robot is as follows. First, two bells colored
red, green, or blue are placed in front of the robot to the left and
right. Then, a human instructs the robot by a three-word sen-
tence that consists of (P) Verb+Position+Adverb (e.g., “Point
left slowly”) or (C) Verb+Color+Adverb (e.g., “Hit red fast”),
where the objective words and adverb indicate one of the bells
and the motion speed, respectively. When the two bells have the
same color, the robot cannot determine which bell is indicated by
an instruction of the pattern (C), so a four-word sentence that
consists of (C′) Verb+Color+Position+Adverb (e.g., “Point
blue right fast”) is used in these cases. Receiving the sentence,
the robot immediately starts to generate behavior corresponding
to the instruction. After the behavior generation, the robot waits
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for a subsequent instruction. We call this chunk of interaction
an “episode.” In this task setting, the number of possible episode
patterns is 144, that is, the combination of 8 behaviors (POINT,
HIT)× (LEFT, RIGHT)× (SLOWLY, FAST), 9 bell arrangements
(R,G,B)× (R,G,B), and 2 instructions (P, C or C′).

4.2. Target Data
The target sequences were collected as follows. First, the behavior
sequences were obtained by actually running the robot (Figure 3).
Each sequencewas recorded as a sequence of 10-dimensional joint
angle vectors by executing the programs controlling the robot
arms along predefined trajectories. The sequences were recorded
every 240ms. The slow behaviors and the fast behaviors took
approximately 45 and 30 time steps, respectively. The recorded
angles were normalized so that the movable ranges were from
−0.8 to 0.8. The visual images were simultaneously recorded by
the robot’s built-in camera and converted into 4-dimensional vec-
tors consisting of sine and cosine of hues of bell colors, normalized
by multiplying them by 0.8. After recording all the combinatorial
sequences of behaviors and bell colors, the instructions were pre-
fixed to them on a computer. The instructions are represented
as sequences of 9-dimensional vectors, each element of which
corresponds to one word (Point, Hit, Left, Right, Red, Green, Blue,
Slowly, and Fast). The instructive sentences consist of a series of
words that are expressed by triangle activations that reach the
top, 0.8, in six steps, and go back down to zero in six steps.
Here, the joint angles and visual information in the instruction
phases were set to the same values as the initial values of the
following behavior phase. Therefore, the robot stays in the initial
posture during the instruction phases, and the bell colors are not

changed in an episode, although some noise and fluctuation that
have been added in data recording can be included. In this way,
all of the 144 episode patterns were created as sequences of 23-
dimensional vectors (Figure 4), available at http://ogata-lab.jp/
projects/cognitive-robotics-group.html.

Subsequently, wemade long sequences concatenating a number
of the episodes in random order for the RNN to achieve the
ability to sustainably continue the interaction by forming a cyclic
structure. The intervals between episodes varied from 3 to 25
steps to form a fixed-point attractor enabling the robot to wait
for subsequent instructions. Note that no explicit phase-switching
signs are included in the target sequences. The network extracts
the implicit interaction pattern from the experiences and acquires
the ability to autonomously switch phases by learning. We made
three training datasets. Dataset 1 comprised 72 sequences, each
of which concatenates 20 episodes; all the possible episodes were
included at least once (144/144). Dataset 2 also comprised 72
sequences concatenating 20 episodes. However, half of the possi-
ble patterns were excluded from the set for the generalization test
(Table 1, 72/144). Dataset 3, similarly, comprised 72 sequences
concatenating 20 episodes; only one-third patterns were included
in the set (Table 2, 48/144). We executed learning and evaluated
the results independently for each set.

4.3. Performance Evaluation Method
We created another dataset for evaluation. The evaluation dataset
includes all the possible episode patterns. In the evaluation, only
the instructions and visual information are input to the trained
network externally. In contrast, the input units of joint angles
receive values generated by the corresponding output units d steps

Receiving 
an instruction

HIT-LEFT

POINT-LEFT

POINT-RIGHT

HIT-RIGHT

Receiving
an instruction

gg
POINT-LEFT

POINT-RIGHT

HIT-RIGHT

Waiting for
an instruction

Robot behavior Joint angles 

Time steps 
FIGURE 3 | The behaviors to be generated by the robot responding to the human’s instructions. Each behavior is generated either “SLOWLY” or “FAST,”
which take approximately 45 and 30 time steps, respectively. For each behavior, only the five joint angles on the moving arm are plotted.
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FIGURE 4 | An example of a target sequence representing an episode. In this episode, the robot generates the “POINT-LEFT-SLOWLY” behavior after receiving
the instruction “Point red slowly” when the bell arrangement is Red–Green from left to right. Only the five joints of the left arm are plotted.

TABLE 1 | Episodes included in dataset 2 (72/144).

Behavior Bell colors
R–R R–G R–B G–R G–G G–B B–R B–G B–B

POINT-L-SLOWLY P C P C P C P C P

POINT-L-FAST C′ P C P C′ P C P C′

POINT-R-SLOWLY C′ P C P C′ P C P C′

POINT-R-FAST P C P C P C P C P

HIT-L-SLOWLY C′ P C P C′ P C P C′

HIT-L-FAST P C P C P C P C P

HIT-R-SLOWLY P C P C P C P C P

HIT-R-FAST C′ P C P C′ P C P C′

Two possible instructions that instruct the robot to generate a certain behavior
(row) in a certain bell color arrangement (column) exist: that is, (P) position word
instruction and (C) or (C′) color word instruction. In dataset 2, the robot experi-
ences one of them for each combination of bell arrangement and behavior. For
example, when the bell arrangement is Red–Green, the robot experiences only the
(C) color word instruction to generate the POINT-LEFT-SLOWLY behavior (1st row,
2nd col); when the bell arrangement is Blue–Red, the robot experiences only the
(P) position word instruction to generate the HIT-RIGHT-FAST behavior (8th row,
4th col).

TABLE 2 | Episodes included in dataset 3 (48/144).

Behavior Bell colors

R–R R–G R–B G–R G–G G–B B–R B–G B–B

POINT-L-SLOWLY C P P C P C

POINT-L-FAST C′ P C C′ P C′

POINT-R-SLOWLY C′ P C′ P C C′

POINT-R-FAST P C C P C P

HIT-L-SLOWLY C′ C P C P C′

HIT-L-FAST P C P C C P

HIT-R-SLOWLY C P C C P P

HIT-R-FAST P C C′ P C P

The RNN did not experience any instructions in black-painted situations.

before. By calculating forward in such a manner, we can interpret
the sequences generated by output units corresponding to joint
angles as the robot’s autonomous behavior. Here, the evaluation
is conducted by simulation on a computer, just conducting the
forward calculation with the dataset, without the real robot. The
performance is evaluated by comparing the generated values of
joint angles with the correct values, using the root-mean-square
error (RMSE) per joint per time step. In the evaluation, the order
of episodes is changed from the training datasets. If the network
acquired the temporal patterns as a systematic mapping from
the instructions to corresponding behaviors rather than by rote
memorization of whole sequences that concatenate a number
of episodes, the network would be able to behave appropriately
in situations with differently ordered episodes. We also evaluate
the waiting ability for instructions by using the other dataset in
which the intervals between each episode are set to 100 steps.
The performance is also evaluated by using the RMSE between
the joint angles generated during waiting phases and those of the
initial posture.

5. RESULTS

The network setting employed in the current experiment is as
follows. The numbers of neural units in the bottom and top layers
were NB = 80 and NT = 30, respectively. The time constants were
τB = 2 and τT = 12, respectively. The prediction constant d, the
momentum term η, and the number of training iterations were
set to 4, 0.9, and 100,000, respectively. The learning rate α was
set to 0.1 at the beginning of the learning and adaptively updated
during learning process by using the algorithm introduced by
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FIGURE 5 | The learning progress with respect to each dataset. Each line corresponds to a learning process determined by one random seed. The red circles
indicate the networks that scored the best performance among all the used random seeds and learning epochs. We call them Model 1, Model 2, and Model 3.

Namikawa and Tani (2010). In hyper-parameter search phase, we
tried a number of hyper-parameter combinations ofNB = {60, 80},
NT = {20, 30}, τB = {2, 3, 6}, τT = {12, 15, 20}, and d= {2, 4}.
These parameter candidates for trial were empirically determined
based on some previous studies that employed NAO and RNN
(Murata et al., 2015; Yamada et al., 2015). From these candi-
dates, we carried out the parameter search by try-and-error and
eventually chose the above parameter set, which scored the best
results among the tried sets. The training was conducted 10 times
from randomly initialized learnable parameters with respect to
each of the training datasets independently. We evaluated the
performance of the trained networks every 5000 epochs. Figure 5
shows the learning processes with respect to each dataset. Each
line corresponds to one random seed. Although the learning pro-
gressed unstably, the tendency of RMSE decrease relating to both
experienced patterns and unexperienced patterns can be shown.
In this section, we show the results of the networks that scored the
best performance among all the used random seeds and learning
epochs (red circles in Figure 5). We call the best network trained
by dataset N “Model N.”

5.1. Performance of Tasks
5.1.1. Behavior Generation
The quantitative results of the behavior generation performance
are shown in Table 3. All the models succeeded in behaving
appropriately in all the experienced episode patterns. The overall
RMSEs per joint per time step during behavior generation were
0.00706, 0.00691, and 0.00624, respectively. Even in the worst

TABLE 3 | Performance of behavior generation.

Experienced (train) Unexperienced (test)

All Worst SD All Worst SD

Model 1 (144/144) 0.00706 0.01173 0.00176 – – –
Model 2 (72/144) 0.00691 0.00983 0.00150 0.00908 0.02032 0.00308
Model 3 (48/144) 0.00624 0.00790 0.00084 0.01193 0.05433 0.00703

“All” indicates the overall RMSE per joint per time step during evaluation. “Worst” indicates
the RMSE in the worst episode during evaluation. “SD” is of the RMSE of each episode
during evaluation. Note that these performances were achieved by the best networks
trained from datasets 1–3, corresponding to red circles in Figure 5.

episode, the RMSE was only 0.01173. Here, in the cases of
Models 2 and 3, in which a number of episode patterns were not
experienced in learning phase, the network seems to more fit to
the experienced patterns. The RMSEs of unexperienced situations
were a little worse than those of experienced situations. However,
by comparison of the generated joint angles and correct ones,
it was confirmed that the generated behavior was rather similar
to the correct behavior even in the worst episode, as shown in
Figure 6.

5.1.2. Waiting Ability
Next, we evaluated the ability to wait for instructions. The results
showed that after every behavior generation, the joint angles
returned to the initial posture and kept the posture until a
subsequent instruction was input. The RMSEs during the waiting
phase were 0.00581, 0.00376, and 0.00324 for Model 1, Model 2,
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FIGURE 6 | (A) The worst unexperienced episode that scored the largest RMSE (0.0203) in the evaluation of Model 2. The solid lines are generated joint angles, and
the broken lines indicate correct angles. (B) The worst unexperienced episode that scored the largest RMSE (0.0543) in the evaluation of Model 3. Only the five joints
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FIGURE 7 | Comparison of the internal dynamics of the bottom and top layers during evaluation. The y-axis of the color map is the index of the neural units.
When the internal state of a unit at a particular time step is more (less) than +5.0 (−5.0), the edge color is provided. The internal states of the bottom layer change
more quickly, in general, than the internal states of the top layer.

andModel 3, respectively. It was also confirmed that after waiting
for a long time, the robot could respond to an instruction by
generating an appropriate behavior. Thus, the robot had acquired
the ability to wait for instructions.

As these results, the robot could continue to interact online
with a human with regard to the given task by utilizing acquired
relationships in appropriate contexts.

5.2. Analysis of Internal Dynamics
5.2.1. Comparison between the Top Dynamics
and the Bottom Dynamics
In previous subsection,we confirmed that the trainednetworkwas
autonomously able to behave appropriately in the current task.

Next, we conducted analyses of the network dynamics and its
representations in each context layer. First, we roughly compared
the dynamical changes of the internal states of the bottom layer
with the top layer. Figure 7 shows that, as expected, the internal
states of the bottom layer change more quickly than those of the
top layer.

5.2.2. Details of the Top Layer Dynamics
Subsequently, in order to analyze the internal representations
of both the context layers in detail, we visualized the internal
states during the evaluation by projecting them from the high-
dimensional space to visualizable subspaces bymeans of principal
component analysis (PCA). Below, we show the results of the
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FIGURE 8 | (A) The time development of the internal states in the top layer in the PC1 direction. Each line expresses the time development averaged over all the
episodes in which each behavior was generated during evaluation. The episodes in which the instruction consists of four words were excluded. The internal states of
the top layer develop along branches corresponding to the meaning of the input words. (B) The same time development projected onto PC1–PC2 space. The cyclic
structure directly representing the temporal flows of interaction, which consist of the repetition of instruction recognition and behavior generation, can be seen. This
representation corresponds to the top panel of Figure 1.

analysis of Model 1. The left top panel of Figure 8 shows the
time development of the internal states of the top layer during the
interaction episodes in the PC1 direction; the contribution ratio
(CR) is 28.3%. Each line indicates the average time development
for all the episodes in which each of the eight behaviors was
generated during evaluation. However, the episodes in which the
instruction consists of four words were excluded. By receiving
the instruction, the internal states of the top layer branch in
accordance with the words. During instruction phase, the internal
states developing along different branches for differentwords (e.g.,
point or hit) maintain these different transitions without merg-
ing together. In other words, the input history of words can be
retained as internal states of the top layer. After bifurcating three
times (POINT or HIT, LEFT or RIGHT, SLOWLY or FAST), the
internal states reach eight different activations corresponding to
the respective behaviors. From the points that represent links from
instructions to behaviors, the network immediatelymoves into the
behavior phase. In addition, the right top panel of Figure 8 shows
the same time development projected onto the PC1–PC2 space,
instead of folding up the time axis. By visualizing in this way,
it is clearly seen that the cyclic attractors that directly represent
the temporal flows of instruction–behavior episodes as the cycles
were acquired in the forward dynamics. After behavior phase, the
internal states reach the initial point again (asterisk). Thanks to
this cyclic dynamics, the robot could continue to interact with the
human in the current task. The autonomous phase-switching from
recognition to generation can be achieved in a series of forward
calculations without any explicit cues. Incidentally, in the cases of
4-word instruction (e.g., “Point red left slowly”), the robot cannot
identify which of the bells the color word indicates. In these cases,
the internal states first branched by receiving the verb but were
not bifurcated by the following color word. After that, they were
bifurcated twice by a position word and an adverb, and eventually

reached the appropriate activation and immediately generated the
corresponding behavior (Figure 9).

As one of the important things, when the instruction was the
type (C), the course that the internal states should develop along
differs according to the arrangement of the bells. For example, the
word of “red” can mean either left or right depending on which
side the red bell is. Even in such cases, the network was able to
choose the correct branch by learning the relationship between
the bell colors and color words. Note that because the branching
structure is realized by a dynamical system, the trajectory of the
internal states is not perfectly identical in each episode, having
some variance from the average trajectory. This is also caused
by the influence of the previous episode and the perturbation by
the visual fluctuation. Figure 10 shows this fact. The graphs in
Figure 10 show the internal states after verb, after objective, and
after adverb input, projected onto the PC1–PC3 subspace (CR is
52.2, 40.0, 8.5%, respectively, and PCs were extracted by using
only the internal states on the top layer just after the instruction
phase). The plot types differ in accordance with the behavior to
be generated in the episode. The doubling of clusters by receiving
words can be seen. Eventually, after the adverb, the eight clusters
that correspond to the eight behaviors appear. Thus, the link
from instructions to behaviors is actually achieved as a cluster
structure.

Here, these clusters have a systematic structure in the topology.
To be more exact, the clusters are arranged on the vertices of
the parallelepiped, whose axes correspond to POINT-HIT, LEFT-
RIGHT, SLOWLY-FAST, respectively. For example, the four bro-
ken lines in the right-hand graph of Figure 10 roughly indicate
the vectors that connect average link points of two behaviors
differing in only the verb element (e.g., HIT-LEFT-SLOWLY and
POINT-LEFT-SLOWLY). The minimum cosine between two out
of four vectors calculated in the original 30-dimensional space
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FIGURE 9 | The time development of the internal states in the top layer in the PC1 direction. Each line expresses the time development averaged over all the
episodes in which each behavior was generated during evaluation. Note that only the episodes in which the instruction consists of four words were included. In the
cases of 4-word instruction, the robot cannot identify which of the bells the color word indicates. In these cases, the internal states first branched by receiving the
verb but were not bifurcated by the following color word. After that, they were bifurcated twice by a position word and an adverb, and eventually reached the
appropriate activation.
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FIGURE 10 | The internal states after verb, after objective, and after adverb input, from left to right, respectively, projected onto PC1–PC3 space
(CR is 52.2, 40.0, 8.5%, respectively). The cluster structure topologically organized in accordance with the input words can be seen. The broken lines in the right
graph roughly indicate the vectors that connect average linking points of two behaviors differing in only the verb element (e.g., HIT-LEFT-SLOWLY and
POINT-LEFT-SLOWLY), that is, the POINT-HIT axis. The minimum cosine between two of the four vectors calculated in the original 30-dimensional space was 0.972,
indicating that they are almost parallel to each other. In the cases of the LEFT-RIGHT axis and the SLOWLY-FAST axis, the minimum cosines are 0.938 and 0.977,
respectively. In contrast, the cosines (1) between the POINT-HIT axis and the LEFT-RIGHT axis, (2) between the POINT-HIT axis and the SLOWLY-FAST axis, and
(3) between the LEFT-RIGHT axis and the SLOWLY-FAST axis were 0.079, 0.075, and 0.035, respectively, indicating that these axes are close to orthogonal.

was 0.972, indicating that they are almost parallel. In the cases of
the LEFT-RIGHT axis and the SLOWLY-FAST axis, theminimum
cosines are 0.938 and 0.977, respectively. In contrast, the cosines
(1) between the POINT-HIT axis and the LEFT-RIGHT axis, (2)
between the POINT-HIT axis and the SLOWLY-FAST axis, and
(3) between the LEFT-RIGHT axis and the SLOWLY-FAST axis
were 0.079, 0.075, and 0.035, respectively, indicating that these
axes are almost orthogonal. This parallelepiped was developed

from the 9-word inputs that were orthogonal to each other
through a series of branching dynamics.

Last, it was confirmed that the robot can wait stably for instruc-
tions in its initial posture, thanks to a stable characteristic of the
initial point. This characteristic was evaluated as follows. After
behavior generation, the forward calculation was continued with
the noiseless input of visual information and the autonomous
looped input of joint angles without any instruction inputs. After
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a large enough number of time steps, the internal states of the top
layer converged to a fixed-point attractor. Average reduction rate
per time step was approximately 97–98%. After convergence, we
added a small perturbation to every neural unit in the top layer one
by one (Figure 11). Though the perturbations spread throughout
the layer once, the internal states converged again. Thanks to such
stable dynamics self-organized on the initial point, the ability to
wait stably for instructions in its initial posture was achieved.

Taken together, in the top layer, the dynamical structure work-
ing synchronously with the temporal flows of interaction was self-
organized. The recognition, generation, and waiting phases were
implicitly represented as parts of the attractors. The link from
language to behavior was embedded as a topologically organized

cluster structure that could be reached by time development along
branches corresponding to the words.

5.2.3. Details of the Bottom Layer Dynamics
We also visualized the dynamics of the internal states of the
bottom layer by means of PCA. Figure 12 shows that the neural
units of the bottom layer do not retainmemory for a long duration,
rather they take states corresponding to the current I/O values.
First, during the verb phase, the time development of the internal
states on the bottom layer differs depending on the verb (point or
hit). After moving into the objective phase, the information about
the verb input vanishes. Instead, the internal states are activated
corresponding to the current input objective (left, right, red, green,
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FIGURE 13 | The internal states of the bottom layer at various time steps during interaction episodes projected onto various subspaces: in other
words, the static representations. The times t=6, 17, 28 correspond to the tops of the triangle input of words. The time t= 43 corresponds to the 10th time step
after the instruction phase. In the first row, the information about the bell colors is constantly reflected. Note that in the objective phase, the cluster structure is
deformed because the integration of bell color and a color word is required. In the space shown in the second row, the cluster structure corresponding to the current
word input is shown. In the space of the third row, the information about joint angles is mainly represented.

or blue). The phase shift from objective to adverb is similar.
Instead of vanishing from the bottom layer, the information is fed
to the top layer and is retained as mentioned above. In contrast,
during the behavior phase, the information retained in the top
layer is fed down to the bottom layer. By receiving information
flows from the top layer, the internal states of the bottom layer
go along different trajectories in accordance with the behavior
to be generated. Incidentally, the reason that we plot the time
development in the direction of PC8 is that, in this component,
the information about verbs, objectives, adverbs, joint angles was
included rather evenly, so these facts can be seen easily. Although
the higher CR components also showed the similar tendency, they
concurrently tended to mainly represent a specific modality. For
example, we confirmed that PC1–4 mainly represented the joint
angles.

We analyzed the bottom layer in more detail. Figure 13 shows
the internal states at various time steps during interaction episodes
projected onto various PC subspaces. In other words, they are
static internal representations at various times in the interaction
context. The analysis showed that the multimodal information of
the current I/O was topologically embedded separately in these
spaces. In the space shown in the first row, the information about
bell colors is constantly reflected. In the spaces on the second
row, the cluster structure corresponding to the current word input
is shown. Note that these three graphs on the second row are
different subspaces. The graphs on the third row show the internal
states projected onto the space mainly representing joint angles.
During the instruction phase, the robot keeps its initial posture;
thus, the internal states are not activated in this space, and they
stay in the vicinity of the initial point. After switching into the
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behavior phase, the internal states are activated in this space in
accordance with the behavior to be generated.

Synthesizing these results with the analysis of the top layer,
the working of the whole of the network is as follows. The global
representations involved in the whole context of interaction were
self-organized in the top layer with slow dynamics. The linking
structure was simultaneously embedded in the middle of the
dynamics. However, the details of the I/O streams, including
multimodal information, are more complicated than the repre-
sentations visualized by the analysis of the top layer. Thus, the
bottom layer, which can change its internal states more drastically,
translates between the I/O temporal flows and the top layer repre-
sentations. In the instruction phase, the bottom layer receives the
words and visual information and feeds them into the top layer
so that the top layer reaches an appropriate activation. This is the
bottom-up working. In the behavior phase, the network works in
the top-down manner. Transitions along the second halves of the
attractors are transformed into detailed flows of joint angles by a
high-dimensional non-linear transformation through the bottom
layer. Because the functions that work on different timescales were
hierarchically self-organized on their respective layers, the whole
network enabled the robot to continue to interact with the human
on a given task.

6. DISCUSSION

In this paper, we proposed a novel method for linking language
to robot behavior, in which the link is encoded as a fixed-
dimensional vector in the middle of the RNN forward dynamics
that simultaneously represents temporal patterns of interactions
asmultiple attractors. In the robot experiment, the internal activa-
tion representing the link was gained by branching in accordance
with the human’s instruction and visual information. From the
linking point, the robot immediately generated the appropriate
behavior in the subsequent forward calculation, while the internal
states move along the second half of the attractor. Moreover,
by forming a fixed-point attractor at the initial point, the robot
could wait stably in the initial posture for subsequent instruc-
tion. Thanks to this structure, which represented not only the
link but also some aspects of the interaction, the robot was able
to interact with a human on the given task by autonomously
switching between recognition, generation, and waiting phases
and utilizing the acquired relationship in appropriate contexts. In
the following section, we compare the current model with other
linking methods and indicate its advantages and disadvantages.

6.1. Topologically Organized Linking
Structure
The experiment demonstrated that the link was represented as a
topologically organized cluster structure on the fixed-dimensional
space of the internal states of the top layer. This kind of
organization that represents the compositional structure of lan-
guage could be seen in the study by Sugita and Tani (2005). To
link language to robot behavior, they utilized two RNNs that
dealt with language and behavior and a module referred to as
a parametric bias that bound both RNNs by small-dimensional
vectors. As a result of learning that constrained the parametric bias

vectors to be equalized for generating corresponding language and
behavior, a topological structure representing wordmeanings and
their compositionality was self-organized in the parametric bias
space. In their scheme, finding an optimal parametric bias vector
(linking point) for translation from a sentence to a corresponding
behavior required the iterative back-propagation process. The
current experiment showed that a similar kind of topological
structure representing the link can be embedded in the forward
propagation process by learning.

Representing links as fixed-dimensional vectors in the middle
of the dynamics is one of the suitable ways to deal with the “lin-
ear nature” of language indicated by Saussure (1959). Language
expression is restricted in the sense that a sentence can express a
matter only by a linear series of words that extract certain features
and that compositionally construct the whole meaning, whereas
their order is uncorrelated to the temporal aspect of the matter. In
the current case, the “POINT-RIGHT-SLOWLY” behavior cannot
be temporally reduced to some parts that correspond to “point,”
“right,” and “slowly.” These words express a certain feature relating
to whole of the behavior and compose the meaning by being
arranged in accordance with a syntactic rule. In other words, the
combinatorial structure of language is intrinsically different from
of the real world. When one considers dealing with the grounding
of language on behavior, both of which have a temporal extent,
after accepting the restriction, a method that embeds grounding
in a fixed-dimensional space can achieve it in a unified way.
In the current experiment, language recognition was embedded
as a branching structure that develops a cluster structure corre-
sponding to the behavior to be generated (language recognition
and behavior generation). Park and Tani (2015) showed that an
MTRNN can recognize human gesture patterns and generate cor-
responding robot behavior by utilizing a gained fixed-dimensional
vector (behavior recognition and behavior generation). Hein-
rich and Wermter (2014) demonstrated that the MTRNN can
generate various sentences from the optimal fixed-dimensional
vectors that are gained from a robot proprioception sequence
(behavior recognition and language generation). As in these cases,
the recognition and generation of undefined-length sequences,
including both language and behavior, can be uniformly achieved
in RNN dynamics through representations encoding grounding
in a fixed-dimensional space.

Such kinds of topological structure can also be seen in
the field of NLP. Mikolov et al. (2013) demonstrated that,
as a result of training an RNN language model with a cor-
pus, the distributed representations of word meaning were
embedded in the high-dimensional space and that some alge-
braic operations could be executed on the representations (e.g.,
“King”− “Man”+ “Woman”= “Queen”). Although, so far, this
kind of analysis has been conducted just in the NLP field, if it is
shown in the future that such operations can be similarly applied
to linking representations, it will be of great practical use.

6.2. Advantages and Disadvantages
of the Model
In comparison with other models, the current linking method has
both advantages and disadvantages. First, by embedding the link
in forward dynamics, the network can translate an instruction
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into a behavior online with a small calculation cost. Furthermore,
another function, autonomously switching between recognition,
generation, and waiting phases without explicit cues was achieved
by self-organized attractors directly corresponding to the tem-
poral flows of the interaction. However, the model acquired by
training with the current data can not translate the behavior
sequence to the corresponding sentence. The link is achieved just
unidirectionally. Ogata et al. (2007) utilized two RNNs and a para-
metric bias layer for language–behavior grounding, as in Sugita
and Tani (2005). Although their model also required an itera-
tive back-propagation process for translation, the model could
perform bidirectional translation, from sentence to behavior and
vice versa. In the current scheme, to achieve the translation from
behavior to sentence, we have to collect data that consist of behav-
iors and corresponding sentences in this order, and the network
has to make additional paths that correspond to these relations in
the dynamical system.

From the opposite point of view, the self-organized dynamics
is perfectly dependent on the temporal construction of training
sequences. By collecting data constructed as actual temporal flows
of the task imposed on the robot, the network seems to acquire
an appropriate linking structure without changing the general
framework. This leads to the possibility that we can make robots
execute collaborative tasks requiring language use, just by giving a
certain number of examples as raw sequential data without any
preprocessing to construct explicit sets of language and corre-
sponding behavior. In this study, we designed a rather arbitrary
task and the training data were collected in an artificial way,
such as predesigned trajectories of the joint angles. We need to
investigate whether the network can learn from data collected in
more natural way, such as direct teaching with real utterances and
with raw camera images.

Another considerable point is the stability and the safety of the
mechanism. In the current experiment, the robot responded to the
human’s instruction even in most of the unexperienced episodes
by generalization. It was also confirmed, by adding perturbations,
that the initial point was stable to a certain extent. However, we
cannot assure that the working of the network is globally stable
even for exceptional cases or in a large noise environment because
a global analysis of the characteristics of a high-dimensional
dynamical system is extremely difficult. The current model con-
tinues to work using just the forward calculation; therefore, there
is a risk that the dynamics will become unstable in unexpected
situations. To ensure safety for practical use, some protective
systems that monitor error values or output joint torque should
be implemented.

6.3. Conclusion and Future Work
In this study, we proposed a novel method for linking language
to behavior by means of RNN learning. The robot experiment
demonstrated that, as expected, the network self-organized the
forward dynamics that directly represented the temporal flows
of interaction, and the link was embedded in the middle of the
forward dynamics as a fixed-dimensional vector. Thanks to such
structure, the robot was able to interact online with a human on
a given task by autonomously switching phases and utilizing the
acquired relationships in appropriate contexts in the process.

In future work, we plan to conduct other robot experiments
to evaluate the following matters. First, the current experiment
was limited in a specific simple task, thus we will explore to
what extent the task complexity can be scaled up. To scale up the
timewise complexity, the implementation of LSTM units, which
have recently attracted much interest because of their capacity to
process long term dependencies, would be effective. Second, we
should evaluate whether the proposed method can be applied to
other tasks, such as language generation, behavior recognition,
or bidirectional translation. The internal dynamical system of the
RNN and the robot’s ability achieved by the proposed method are
data-driven. Thus, this approach is compatible with the method-
ology of deep learning that attempts tomake optimalmodels from
large amounts of data. Therefore, the implementation of deep
NNs, such as CNNs or auto encoders, would also be effective
for the acquisition of dynamical representations of raw sequen-
tial data for robots to behave optimally in their placed environ-
ment. These deep learning methods also have some drawbacks.
For example, it often takes huge amount of time and computer
resources, and online or incremental learning could not be per-
formed well unlike the reinforcement learning. In particular, from
the point of view of the robot applications, one of the important
problems is how to obtain a large amount of training data. We will
have to consider using a simulator environment, such as SIGVerse
(Tan and Inamura, 2012), for data acquisition.
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