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ABSTRACT
Herein, a wide-spectrum (∼678 nm) responsive Bi8(CrO4)O11 photocatalyst with a theoretical solar
spectrum efficiency of 42.0%was successfully constructed. Bi8(CrO4)O11 showed highly efficient and stable
photocatalytic water oxidation activity with a notable apparent quantum efficiency of 2.87% (420 nm),
superior to many reported wide-spectrum driven photocatalysts. Most remarkably, its strong oxidation
ability also enables the simultaneous degradation and complete mineralization for phenol, and its excellent
performance is about 23.0 and 2.9 times higher than CdS and P25-TiO2, respectively. Its high activity is
ascribed to the giant internal electric field induced by its large crystal dipole, which accelerates the rapid
separation of photogenerated electron–hole pairs. Briefly, the discovery of wide-spectrum bismuth
chromate and the mechanism of exponentially enhanced photocatalytic performance by increasing the
crystal dipole throw light on improving solar energy conversion.

Keywords: bismuth chromate, dipole moment, internal electric field, water oxidation, complete
mineralization

INTRODUCTION
The conversion and utilization of solar energy for
chemical fuel production and environmental reme-
diation through artificial photocatalysis have been
recognized to be an ideal route to address criti-
cal energy and environmental concerns [1–3]. The
full utilization of solar light is a great challenge for
achieving sufficient efficiency in practical applica-
tions. In the early stages, UV light-activated materi-
als, such as TiO2, SrTiO3, NaTaO3, etc., dominated
photocatalysis study, due to the wide bandgap of
conventional semiconductors and their strong redox
capability of charge carriers for igniting chemical re-
actions [4–7]. Nonetheless, the extremely low ra-
tio of UV photons in solar energy greatly hinders
the ability to maximize the solar-to-chemical en-
ergy conversion efficiency. In recent years, a num-
ber of mixed-anion and non-oxide materials such
as (oxy)nitrides and (oxy)sulfides have been de-
veloped as attractive broadband light-responsive
photocatalysts [8–11]. The valence band maxi-
mums (VB) of the mixed-anion materials can be

substantially regulated by hybridization of O 2p
or other introduced anion orbitals, enabling both
broadband light absorption and suitable band po-
tentials for both reduction and oxidation of wa-
ter [12,13]. For example, BaNbO2N, reported by
Hisatomi et al., could broaden the light absorption
up to 740nmand simultaneously shows efficientwa-
ter oxidation [14].However, narrowing the bandgap
of a photocatalyst weakens the driving force for re-
dox reactions, especially water oxidation and pollu-
tant degradation, because these reactions involve a
complicatedmulti-electron process [15].Therefore,
the development of wide-spectrum responsive and
highly efficient photocatalysts for water oxidation
and pollutant degradation is a critical issue to be ad-
dressed at present.

Bi-based oxometallate materials, such as BiVO4,
Bi2WO6, Bi2MoO6, etc., have been widely studied
as visible-light active photocatalysts, due to their
high stability, abundant resources and low toxicity
[16–19]. Moreover, they also exhibit excellent pho-
tocatalytic performance in water oxidation, which
is mainly benefiting from their sufficiently deep VB
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Figure 1. (a) The calculated density of state, (b) UV–vis–NIR DRS (the corresponding Tauc plots and a sample photograph
appear in the inset), (c) the surface photovoltage spectrum, and (d) a schematic drawing of the redox potentials of Bi8(CrO4)O11.

position as compared to the potential for water
oxidation and pollutant degradation [20,21]. In par-
ticular, the BiVO4 photocatalysts present highly ef-
ficient and stable water oxidation performance, and
its highest solar-to-hydrogen energy conversion ef-
ficiency of 1.2% for Z-scheme pure-water splitting
by coupling with SrTiO3: La, Rh has been reported
[22]. Nevertheless, their relatively wide bandgaps
(about 2.5 eV) greatly limit their further applica-
tion. Recently, research into Cr-based layered dou-
ble hydroxide photocatalysts revealed that the hy-
bridization of Cr 3d orbitals with O 2p orbitals in
[CrO6] clusters shifts the conduction band mini-
mum (CB) down and results in wide visible-light
absorption [23,24]. Inspired by the above, the con-
struction of bismuth chromate photocatalystmay be
a desired route to achieve wide-spectrum driven, ef-
ficient, and stable photocatalytic performance.

In this work, a wide-spectrum responsive
Bi8(CrO4)O11 photocatalyst was successfully
constructed. Owing to the hybridization of Cr 3d
with O 2p orbitals shifting the conduction band
minimum down, Bi8(CrO4)O11 allows its absorp-
tion up to the entire visible region (∼678 nm) with
a theoretical solar spectrum efficiency of 42.0%.
Moreover, attributed to the giant internal electric
field (IEF) induced by its large dipole moment,

Bi8(CrO4)O11 realized evidently rapid separation
of photogenerated electron–hole pairs, thus showed
highly efficient photocatalytic water oxidation
activity with a notable apparent quantum yield of
2.87% (420 nm), superior to many reported wide-
spectrum driven photocatalysts. Most remarkably,
its strong oxidation ability also enables simulta-
neous degradation and complete mineralization
for phenol, and its excellent performance is about
23.0 and 2.9 times higher than CdS and P25–TiO2,
respectively.

RESULTS AND DISCUSSION
Herein, monoclinic Bi8(CrO4)O11 nanorods
(Figs S1–S3), a novel bismuth chromate photo-
catalyst, were successfully synthesized via a facile
hydrothermal reaction. Then, density functional
theory (DFT)was applied to calculate the electronic
structure of this bismuth chromate. As shown in
Fig. 1a, Bi8(CrO4)O11 possesses a relatively small
bandgap of 1.71 eV. Moreover, the density of state
of Bi8(CrO4)O11 reveals that its VB is mainly com-
posed of O 2p and Bi 6s orbitals, in agreement with
other Bi-based oxometallate photocatalysts, which
could effectively avoid the self-oxidative deactiva-
tion by photogenerated holes. Also, its CB is mainly
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Figure 2. (a) A comparison of photocatalytic water oxidation activity over different photocatalysts. (b) The wavelength-
dependent AQE of water oxidation over Bi8(CrO4)O11. (c) A comparison of degradation rate constants, degradation rates and
TOC removal rates of phenol over different photocatalysts. (d) The wavelength-dependent degradation rate and TOC removal
rate of phenol over Bi8(CrO4)O11.

provided by the hybridization of Cr 3d orbitals with
O 2p orbitals, demonstrating that the introduction
of the [CrO4] cluster plays a crucial role in extending
absorption into the entire visible region. Moreover,
the indirect band structure of Bi8(CrO4)O11 is also
confirmed by its electronic band diagram (Fig. S4a),
which is in favor of confining the recombination
of photogenerated electron–hole pairs. In the
diffuse reflectance spectrum (DRS) (Fig. 1b),
Bi8(CrO4)O11 nanorod photocatalyst displays a
quite broad absorption band, practically allowing
light absorption up to the entire visible region, and
its highest theoretical solar utilization could reach
42.0%. Almost consistent with the above DFT
result, the bandgap of Bi8(CrO4)O11 was calculated
as 1.83 eV by the Kubelka–Munk function, which
absolutely satisfies the thermodynamic energy
criterion of water splitting [25,26]. As shown in
Fig. 1c, Bi8(CrO4)O11 presents an evidently high
surface photovoltage (SPV), and the response range
could be extended to about 678 nm, demonstrating
its wide-spectrum driven photocatalytic activity.
Besides, it exhibits a positive surface photovoltage
signal, meaning that the photogenerated holes are
the main carriers and transfer to the surface to oxi-
dize reactants. Therefore, the above results indicate
that the Bi8(CrO4)O11 nanorod is a very promising
wide-spectrum driven and stable photocatalyst.

Considering that the photocatalytic redox ability
mainly depends on the energy bandpotential, the re-
dox potentials of the Bi8(CrO4)O11 nanorod pho-
tocatalyst were calculated according to the DRS and
Mott–Schottky plots (Fig. S5a) [27,28]. As shown
in Fig. 1d, the CB of Bi8(CrO4)O11 is located at
0.12 eV vs. NHE (pH = 0), a little deeper than
the reduction potential of H+/H2. Also, its VB of
1.95 eV ismore positive than the oxidation potential
of OH−/O2, which indicates that the photogener-
ated holes of Bi8(CrO4)O11 nanorod photocatalyst
possess extremely strong oxidation capability, and
can split water to release O2, and even completely
mineralize organic pollutants under visible light.

We first evaluate the photocatalytic water oxi-
dation performance over Bi8(CrO4)O11 nanorods.
Figure 2a shows a comparison of the photocatalytic
O2 evolution rate over different samples. It can be
seen that Bi8(CrO4)O11 exhibited far superior pho-
tocatalytic water oxidation performance, and its av-
erage O2 evolution rate reached 14.94 μmol h−1,
about 11.5 and 4.0 times higher than that of Bi2WO6
nanosheets [29] and commercial WO3 nanoparti-
cles. Besides, Bi8(CrO4)O11 consequently achieved
a considerable apparent quantum efficiency (AQE)
2.87% at 420 nm, even 0.65% at 650 nm (Fig. 2b),
higher than many reported wide-spectrum driven
photocatalysts (Table S2). In addition, the trend of
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AQE values for water oxidation over Bi8(CrO4)O11
is also consistent with its UV–vis DRS, further con-
firming that the photocatalytic water oxidation reac-
tion is driven by its absorbed incident photons. Fur-
thermore, after loading Co(OH)2 as co-catalyst, its
photocatalytic water oxidation performance was im-
proved by 2.1 times (Fig. S6). Just as importantly, no
notable deactivation emerged over Bi8(CrO4)O11
during a continuous photocatalytic water oxidation
reaction for 72 h (Fig. S7a). By comparing its XRD
patterns and XPS results before and after reaction
(Figs S7b and S8), it could be found that the crys-
tal structure and composition of Bi8(CrO4)O11 af-
ter reaction show no marked change, further in-
dicating its robust resistance to water and light
corrosion.

Most noticeably, the excellent activity of
Bi8(CrO4)O11 is also manifested in photocat-
alytic degradation of phenol. As shown in Fig. 2c,
Bi8(CrO4)O11 showed a superior photocatalytic
degradation performance for phenol under visible
light, and its degradation reaction constant could
reach 0.119 min−1, about 22.5 and 8.8 times higher
than CdS nanowires [30] and N,N′-di(propanoic
acid)-perylene-3,4,9,10-tetracarboxylic diimide
(PDI) supramolecular [31,32] photocatalysts,
respectively. Even its degradation activity is not
inferior to P25 TiO2 under simulated sunlight,
being about 2.9 times higher than the latter. Re-
markably, Bi8(CrO4)O11 also presented extremely
strong mineralization ability, which almost enables
simultaneous degradation and complete mineral-
ization for phenol. The total organic carbon (TOC)
removal rates of phenol over Bi8(CrO4)O11 under
visible light and simulated sunlight are 94.8%
(degradation rate: 95.5%) and 97.3% (degradation
rate: 98.1%) in 0.5 h, respectively, while that of
CdS, PDI and P25 are significantly lower than their
corresponding degradation rates. In particular, even
under 650 nm red light irradiation, Bi8(CrO4)O11 is
still able to simultaneously degrade and completely
mineralize phenol (Fig. 2d), and few wide-spectrum
driven photocatalysts can achieve that [33]. Be-
sides, Bi8(CrO4)O11 also exhibited highly efficient
photocatalytic formaldehyde degradation activity
under visible light in a continuous-flow system,
and the removal rate could be maintained at about
95% (Fig. S10c). No notable deactivation emerges
during continuous measurement for 76 h.

It is well known that photocatalytic activity is
closely related to the separation efficiency of pho-
togenerated electron–hole pairs [34–36]. Previous
studies have demonstrated that the IEF induced
by the crystal dipole is considered to effectively
boost the separation of photogenerated electron–
hole pairs and enhance the photocatalytic perfor-
mance exponentially, such as in Bi2MoO6, BiPO4,

and BiOCl [37–39]. Therefore, to reveal the high
activity mechanism of Bi8(CrO4)O11, the crystal
dipoles of Bi8(CrO4)O11 and tetragonal Bi14CrO24
nanosheets (Figs S1 and S2) and their influence on
the charge carrier separation and photocatalytic ac-
tivitywere studied.Through theDebye equation, the
dipole moments of Bi8(CrO4)O11 and Bi14CrO24
were calculated to be 22.32 and 2.52 Debye (D),
respectively. As shown in Fig. 3a, due to the exis-
tence of the great dipole of Bi8(CrO4)O11, the dis-
tortion of [BiOx] and [CrOy] polyhedrons induced
an apparently uneven distribution of the electronic
cloud between Bi–O and Cr–O, thus resulting in
a giant IEF. Then, Kelvin probe force microscopy
techniques were employed to reveal the IEF distri-
bution in Bi8(CrO4)O11 and Bi14CrO24. As shown
in Fig. 3b, Bi8(CrO4)O11 shows an obvious dif-
ference in the contact potential difference (CPD)
between the edge and the bulk, about 202 mV
(Fig. 3c), but the CPD difference over Bi14CrO24 is
virtually invisible, only about 39 mV. According to
the literature, the relatively large CPDdifference be-
tween the two regions reflects that a relatively strong
IEF is formed in the crystal [40–42], consequently
demonstrating the existence of a greater IEF in
Bi8(CrO4)O11.

Furthermore, the intensity of their IEF
was measured via the model developed by
Kanata-Kito et al. (details are given in the sup-
plementary data online) [43,44]. It can be found
that the IEF of Bi8(CrO4)O11 is 8.4 times as high
as that of Bi14CrO24 (Fig. S13), well consistent
with the above results. Benefiting from its greater
IEF, Bi8(CrO4)O11 presented an evidently stronger
surface photovoltage response and photocurrent
density (Fig. S16), about 22.7 and 4.0 times higher
than Bi14CrO24, respectively, revealing that a
faster charge carrier transfer kinetics emerges in
Bi8(CrO4)O11. As expected, Bi8(CrO4)O11 ex-
hibited 17.2 and 153.0 times higher photocatalytic
water oxidation and degradation performance than
Bi14CrO24, respectively. Then, after summarizing
the above results into Fig. 3d, it can be found
that the IEF, charge separation efficiency and
photocatalytic activity of bismuth chromate are
positively correlated with their dipole moments;
thus Bi8(CrO4)O11 with a greater dipole showed a
significantly higher IEF, charge separation efficiency
and photocatalytic performance. Therefore, as
illustrated in Scheme 1, the large crystal dipole
of Bi8(CrO4)O11 induces a giant IEF, which ac-
celerates the rapid separation of photogenerated
electron–hole pairs and exponentially enhances
its photocatalytic performance. Most importantly,
based on the abovemechanism,manymore efficient
photocatalysts can be designed successfully by
regulating the crystal dipole.
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CONCLUSION
In conclusion, a wide-spectrum (∼678 nm) respon-
sive Bi8(CrO4)O11 nanorod photocatalyst was con-
structed via the hybridization of Cr 3d with O 2p
orbitals. Attributed to the giant IEF induced by its
large dipole moment, Bi8(CrO4)O11 realizes evi-
dently rapid separation of photogenerated electron–
hole pairs, thus showing highly efficient photocat-
alytic water oxidation performance with a notable

apparent quantum yield of 2.87% (420 nm), supe-
rior to many reported wide-spectrum driven pho-
tocatalysts. Most remarkably, its strong oxidation
ability also enables simultaneous degradation and
complete mineralization for phenol, and its excel-
lent performance is about 23.0 and 2.9 times higher
than CdS and P25-TiO2, respectively. Briefly, the
discovery of wide-spectrum bismuth chromate and
themechanismof exponentially enhancedphotocat-
alytic performance by increasing the crystal dipole
throw light on designing efficient wide-spectrum
photocatalysts.

METHODS
Synthesis of samples
NaBiO3 and other chemicals were purchased from
Aladdin and Sigma-Aldrich, respectively, and used
without further purification. For Bi8(CrO4)O11
nanorods, 0.56 g NaBiO3 was ultrasonically dis-
persed in 80 mL deionized water, followed by
addition of 7.35 mL 25 mmol L−1 Cr(NO)3 aque-
ous solution under vigorous stirring. Then the re-
sulting solution was transferred into a 100 mL
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Teflon-lined stainless autoclave and maintained
at 180◦C for 6 h. The brown-red Bi8(CrO4)O11
was collected by centrifuge separation, rinsed thor-
oughly with ethanol and deionized water several
times, and dried at 70◦C overnight. For Bi14CrO24
nanosheets, 1 mmol Bi(NO3)3 and 0.084 mmol
Cr(NO3)3 were ultrasonically dissolved in a cer-
tain concentration of mannitol aqueous solution
(25 mL), followed by addition of 5 ml saturated
Na2CO3 solution under vigorous stirring. Then the
resulting solution was transferred into a 50 mL
Teflon-lined stainless autoclave and maintained at
150◦C for 12 h.The precursor was collected by cen-
trifuge separation, rinsed thoroughly with ethanol
and deionizedwater several times, and dried at 70◦C
overnight. The precursor was then calcined in a
crucible at a certain temperature for 10 min un-
der air atmosphere to yield orange-red Bi14CrO24
nanosheets.

For comparison,BiWO6 nanoplateswere synthe-
sized as in [29], and WO3 nanoparticles were pur-
chased from Aladdin.

Characterization
XRD patterns of the samples were obtained on a
Rigaku D/max-2400 X-ray diffractometer using Cu
Kα1 (λ = 0.154 18 nm) at 40 kV and 200 mA,
with a scan step of 0.02◦. The morphologies of the
samplesweremeasuredby transmission electronmi-
croscopy (TEM) on a Hitachi HT 7700 at an ac-
celerating voltage of 100 kV and high-resolution
transmission electron microscopy (HRTEM) on
a JEOL JEM-2100F operated at an accelerating
voltage of 200 kV. Field emission scanning elec-
tron microscopy (FESEM) on a Hitachi SU-8010
was used to further investigate the morphology.
XPS measurements were performed using an ES-
CALAB 250Xi instrument (Thermo Scientific) with
Al Kα radiation. DRSwere obtained on a Cary 5000
(Varian) with BaSO4 as a reference. The surface
potential images of the samples were measured by
Kelvin probe force microscopy (KPFM) in ambient
atmosphere on aCypherVRS(Oxford Instruments)
and a Pt/Ir-coated Si tip was used as a Kelvin tip.
The surface photovoltage measurements were con-
ducted with a home-built instrument as previously
reported [45]. Photoelectrochemicalmeasurements
were performed on a CHI660E electrochemical
workstation, using a standard three-electrode cell
with a working electrode, a Pt-wire counter elec-
trode and a saturated calomel reference electrode.
Na2SO4 (0.1 mol L−1) was used the electrolyte so-
lution. The working electrode was prepared by dip-

coating photocatalyst slurry on ITO glass electrode
(2× 4 cm2).

Photocatalytic performance evaluation
The photocatalytic water oxidation reaction un-
der visible-light irradiation was performed in a
Pyrex top-irradiation reaction vessel with a station-
ary temperature at 5◦C, which was connected to a
glass closed gas system (Labsolar-6A, PerfectLight).
100mg photocatalyst was suspended individually in
100 mL aqueous solution (pH = 2.5) containing
10 mmol L−1 Fe(NO3)3 as a sacrificial reagent. The
suspension was then thoroughly degassed and irra-
diated using a 300 W Xe lamp with a cut-off filter
(λ ≥ 420 nm, light intensity 250–260 mW cm−2).
The evolved gases were analyzed at given time in-
tervals by an online gas chromatograph (GC-2002
N/TFF, TCD detector, Ar carrier, 5 Å molecular
sieve column).

The AQE for water oxidation was measured us-
ing a 300WXe lamp (FX300, PerfectLight)with dif-
ferent band-pass filters of 420, 450, 500, 550, 600,
and 650 nm (FWHM = 15 nm). The irradiation
area was controlled as 1.2 × 1.2 cm2. The average
intensity was determined by an optical power me-
ter (S310C connected to a PM100D console, Thor-
labs).The AQE was calculated as follows:

AQE

= 4 × the number of evolved O2 molecules
the number of incident photons

× 100%.

The photodegradation reactions were carried in
quartz tube reactors with a 50 mL 10 ppm phenol
pollutant solution and 25 mg photocatalyst pow-
ders. The reaction solution was kept at 35◦C by a
recirculating cooling water system. The visible-light
source was obtained from a 300 W Xe lamp with a
cut-off filter (λ ≥ 420 nm). Before light irradiation,
the suspension solutionswere first ultrasonically dis-
persed for 5min and thenmagnetically stirred for 1 h
in the dark to reach adsorption–desorption equilib-
rium. At certain time intervals, a suspension (2 mL)
was extracted and centrifuged to remove the pho-
tocatalysts. The concentration of phenol pollutants
was determined by a high-performance liquid chro-
matography (HPLC) system (ShimadzuLC-20AT)
with a C18 reversed-phase column, and the total or-
ganic carbon (TOC) in the aqueous solutionwas an-
alyzed using a TOC analyzer (Multi N/C 2100, An-
alytik Jena AG).
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