
Citation: Chen, J.; Shi, H.; Wang, X.;

Zhang, Y.; Zhang, Z. Effectiveness of

China’s Protected Areas in Mitigating

Human Activity Pressure. Int. J.

Environ. Res. Public Health 2022, 19,

9335. https://doi.org/10.3390/

ijerph19159335

Academic Editor: Paul B. Tchounwou

Received: 15 June 2022

Accepted: 26 July 2022

Published: 30 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Effectiveness of China’s Protected Areas in Mitigating Human
Activity Pressure
Jian Chen 1, Hong Shi 2,*, Xin Wang 1, Yiduo Zhang 2 and Zihan Zhang 2

1 School of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China;
vgets@163.com (J.C.); beatrice0620@163.com (X.W.)

2 School of Tourism and Historical Culture, Southwest Minzu University, Chengdu 610041, China;
zhangyiduo@stu.swun.edu.cn (Y.Z.); zhangzihan@stu.swun.edu.cn (Z.Z.)

* Correspondence: shong2021@swun.edu.cn

Abstract: Global protected areas are the key factor in maintaining biodiversity and ecosystem
services. However, few studies use human activity pressure to assess the effectiveness of protected
areas. This study constructed a human activity pressure index to assess the effectiveness of China’s
protected areas, and predicted the change trend in 2050 under the SSP scenarios. The results are
as follows: (1) From 2000 to 2020, the pressure of human activities in 75.15% of China’s protected
areas is on the rise, accounting for 37.98% of the total area of the reserves. (2) China’s protected
areas can relieve the pressure of human activities by 1.37%, and there are regional differences in the
effectiveness. (3) Under the SSP scenarios, the protected areas can alleviate the effect of the pressure of
the population well. These results can provide a systematic and scientific reference for the planning,
construction, evaluation and management of global protected areas.
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1. Introduction

The establishment of protected areas (PAs) is the main means to protect biodiversity
and ecosystem services in the world. According to the International Union for Conservation
of Nature (IUCN), the coverage of global protected natural areas increased from 14.7 percent
in 2016 to 15.4 percent in 2021. Although the coverage of PAs is increasing, they are not
completely immune to the impact of human activities [1,2].

Human activities can directly or indirectly damage biodiversity and ecosystem ser-
vices, and can reduce the effectiveness of terrestrial PAs. Therefore, it is of great significance
to prevent the unrestricted growth of human activities in or near natural PAs for the im-
provement of their conservation efficiency. China is one of the countries with large areas
of PAs. They can be used as a representative to evaluate the conservation effectiveness of
natural PAs. In the current studies, the traditional spatial comparison method is used to
evaluate the conservation effectiveness of PAs in China, ignoring the problem of sample
selectivity bias [1,3]. In addition, there are few studies that take anthropogenic pressure as
an indicator to evaluate the conservation effectiveness [4]. There is also a general lack of
research on the prediction of the impact of future anthropogenic pressure on the existing
PAs in China.

According to the bulletin on ecological and environmental conditions of China, more
than 11,800 natural protected areas had already been established by 2019 in China, covering
a total area of about 2 million km2, accounting for 18.0 percent of the country’s land area
and 5.80 percent of the global protected areas. China is in a critical period of transition
from focusing on the quantity of protected areas to paying attention to the role of protected
areas. Therefore, it is of practical significance to select China as the research sample to
study the ability of protected areas to relieve the pressure of human activities. The core
question of this study is as follows: To what extent do the protected areas in China mitigate
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the pressures of human activities, and what will happen in the future? This paper has three
aspects of innovation. In this study, a human activity pressure (HAP) index is constructed
as an evaluation index. On the basis of solving the problem of sample selectivity bias
by propensity score matching, this paper evaluates the effectiveness of China’s PAs in
alleviating HAP. We also explore the impact of the pressure of a certain human activity on
PAs in a future scenario. Firstly, this paper constructs the HAP from 2000 to 2020, coupled
with multi-source data. Secondly, after the propensity score, the matching method was
used to eliminate the sample selectivity bias, and the relative effectiveness index and panel
model are used to evaluate the effectiveness of China’s PAs in alleviating the pressure of
human activities from different levels. Finally, the propensity score matching method is
used to evaluate the effectiveness of China’s PAs in alleviating population pressure and
urban land pressure under the SSP scenarios. These research results can provide a scientific
basis for global protected areas to relieve the pressure of human activities.

2. Literature Review
2.1. Human Pressure on PAs

In order to monitor the human pressure on a PA, we first need to obtain the data and
develop the method to quantify human activity. The most common way is to monitor
human pressure on PAs through field surveys. Harris et al. [5] recorded the direct human
pressure (poaching) and indirect human pressure (pastoralism) on PAs by photographic
survey, and explored their influences on the species richness, composition and activities of
mammals. Meanwhile, Abukari and Mwalyosi [6] used questionnaire surveys to quantify
the potential pressure on the PAs from the behavior of residents around the PAs. A field
survey can obtain accurate and targeted data, but it costs a lot, and it is only suitable for
small-scale research.

Large-scale studies usually construct human pressure data by coupling multi-source
data which include basic geographic data, remote sensing images, and statistical data, etc.
According to the number of pressure layers, human pressure data products can be divided
into single pressure products and comprehensive pressure products.

A single pressure product is a data product that contains only one type of the HAP, that
is, only one layer. It is usually obtained by basic surveying and mapping, the interpretation
of remote sensing images, map vectorization, and the spatialization of statistical data. A
single pressure product includes data of land use [7], transportation and accessibility [8],
pollutants [9], population [10], animal husbandry [11], and invasive species [12], etc. Com-
monly used land use data are derived from remote sensing image interpretation, road and
building profiles are derived from map vectorization, and demographic data generally
comes from the spatialization of statistical data. Although NPP-VIIRS and DMSP/OLS, two
kinds of nighttime light data that can be used as representatives of human activities, were
difficult to use to complement each other in temporal resolution before 2020 [13], many
studies have successfully integrated the two data recently [14,15], which has contributed to
the extension of the time series of human pressure products.

The comprehensive pressure products are obtained by integrating multiple single-
pressure layers. The modeling steps include selecting multiple single-pressure layers that
represent human activities, assigning weight to each single-pressure layer, and selecting the
integration manner of the layers. The selection of a single-pressure layer is mainly based on
the availability of the layer, and the selection of a single-pressure layer to be integrated into a
comprehensive pressure product should meet the requirements of the research on temporal
resolution and spatial resolution, as well as the repeatability of measurement [16]. The
weight distribution is mainly based on the research object, and it is carried out according
to the influence degree of pressure on the PAs. The integration manner of the layers is
relatively simple, and the method of direct summation is generally adopted. It is worth
noting that several types of single-pressure layer selected for the comprehensive pressure
product may be related to some extent, rather than mutually exclusive [17].
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At present, there are two sets of dynamic integrated pressure products which are
commonly used at the global scale. One is the Temporal Human Pressure Index (THPI)
dataset [16], the other set is the dataset of the Global Terrestrial Human Footprint Map
(GTHF) [18]. The THPI dataset combines three single-pressure layers of farmland, power
facilities and population density to map the global comprehensive pressure products in
1990 and 2010, with a spatial resolution of about 10 km2. The GTHF dataset is a global
dataset that covers eight single-pressure layers, including the built environment, population
density, power facilities, farmland, pastures, roads, railways and navigable waterways, with
an improved spatial resolution of 1 km2. It should be noted that the GTHF dataset contains
data from 1993 and 2009, but only five of the single-pressure layers contain temporal
information, and the pressure layers for roads, railways, and pastures are static [19].

2.2. A Review of Effectiveness Assessment of PAs

The purpose of monitoring human pressure on PAs is to assess the effectiveness of PAs
in alleviating human pressure. At present, the research on reserve effectiveness assessment
mainly takes habitat, ecosystem services and biodiversity as indicators. However, no matter
what indicator is used to evaluate the effectiveness, the idea is still interlinked. Therefore,
this section takes the assessment method as the clue to summarize the current research on
the effectiveness assessment of PAs. Based on the ideas of Joppa and Pfaff [20], the methods
of effectiveness assessment can be divided into the following three categories.

The first method is the direct assessment method, which only considers the status of
the PAs itself and does not compare it with other areas. Jones et al. [21] used the human
footprint dataset to quantify the pressure of human activities in the PAs, and they found a
threshold where the pressure level is intense. They concluded that a third of the world’s PAs
are under significant human pressure. Wu et al. [22] produced statistics on the proportion
of terrestrial ecological areas, biodiversity priority areas and vegetation types in China’s
PAs in order to evaluate the effectiveness of ecological diversity.

The second method is the spatial comparison method, that is, contrasting the PAs with
all non-PAs or adjacent land (buffer zones). For example, Hellwig et al. [23] compared
land cover changes in PAs, non-PAs and the one-kilometer buffer zone around PAs in
Europe. Guette et al. [24] used the Digital Number (DN) value, namely the pixel brightness
value, of remote sensing images of nighttime light data to quantify human activities. The
trends of nighttime light DN values in global PAs, biodiversity hotspots and 25 km and
25–70 km buffer zones were explored. Duran et al. [25] revealed the overlap of the mining
activities of four metals with global PAs and their 10 km buffer zones. Radeloff et al. [26]
used housing growth data from 1940 to 2030 in the United States to quantify housing
growth rates in wilderness areas, national parks, national forests, and their buffer zones.
Qiu et al. [27] calculated three single-pressure indexes (population density, GDP, land use)
and a comprehensive pressure index in 58 PAs and their 2 km buffer zones in Yunnan
Province. Wang et al. [28] analyzed the forest protection situation of China’s national PAs
and the whole country by using the dataset of the Global Forest Watch.

The third method is the time comparison method, which compares the protection
effectiveness of the same place at different times, and generally compares the protection
effectiveness before and after the establishment of the PAs. Zeng et al. [29] investigated the
deforestation situation before and after the establishment of Wolong Nature Reserve, and
found that deforestation increased after the establishment of Wolong Nature Reserve.

The direct evaluation method is the simplest evaluation method, but when using this
method, the lack of reference will lead to the ambiguity of the evaluation standard, and it
is difficult to draw a reasonable conclusion. The time comparison method can evaluate the
effect of policy better; however, in the field of PAs, if there are too many reserves and they
are established in different years, there will be confusion over the time period of the study
sample. The spatial comparison method is the most commonly used evaluation method at
present. By comparing the conservation results within the PAs with those outside the PAs,
a more reasonable evaluation result can be obtained. However, this ignores the problem
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that the location of PAs is not randomly distributed, and is often affected by factors such
as altitude, climate, accessibility, and so on [30,31]; it is difficult to distinguish whether
the better protection efficiency in the PAs is due to the establishment of the PAs or the
influence of the geographical background of the PAs. Therefore, some scholars began to
use the matching method to solve the deviation problem of non-random positions [20]. At
present, many studies have used the matching method to evaluate the effectiveness of PAs
in mitigating forest loss [3,32–34], but little attention has been paid to the relief of the HAP
on PAs. Geldmann et al. [35], for the first time, explored the mitigation of the pressure
of human activities in the PAs through the matching method. In their research, several
matching methods were compared; finally, propensity score matching (PSM) was chosen to
eliminate the sample selectivity bias, and the effectiveness of the alleviation of the pressure
of human activities in the PAs was reasonably evaluated, which proved the scientific nature
of this evaluation method [36–38].

3. Materials and Methods
3.1. HAP Index

Human activity pressure data products are divided into single-pressure products and
comprehensive pressure products. At present, comprehensive pressure evaluation is the
mainstream evaluation method, among which Venter et al. [19] constructed the human
footprint method, which is the most representative, and estimated the global human
activity pressure. Therefore, this paper selects four kinds of single HAP—namely urban
land, farmland, population and power facilities—to construct a comprehensive HAP index.

The growth of roads in the PAs cannot be ignored, but it is difficult to obtain real-time
updated road data. For example, due to the difficulty in obtaining data, Venter et al. [18]
adopted static road data in their research; as such, the road pressure is omitted in this paper.
The scoring rules for each individual pressure index are as follows. The direct assignment
method is used to calculate the pressure of urban land and agricultural land. Here, the
score for urban land is 10, while the score for agricultural land is 7.

The modeling of population pressure adopts the formula method. It is assumed that
the population pressure on the natural system increases logarithmically with the increase of
the population density, and that it can reach saturation after a certain point; that is to say, the
population pressure remains unchanged after the population density increases to a certain
degree. For this hypothesis, when the population density is greater than 1000 people/km2,
the score of the population pressure is 10; when the population density is lower than
1000 people/km2, the score of population pressure is calculated by the following formula:

pps = 3.333× log10(pd + 1) (1)

where pps is the population pressure score, and pd represents the population density.
The local technology development and the use of fossil fuels can be estimated well by

the situation of power facilities (Sanderson et al. [17]). In this paper, taxonomy is used for
the value assignment of power facilities. The specific approach is as follows: the DN value
of night light data in 2000 is divided into 0~10 by the quantile method after preprocessing.
In order to make the data of different years comparable, the DN value of the night light
data in 2005, 2010, 2015 and 2020 is also divided into 0~10 according to the same method.

Finally, four single scores are added together to obtain a comprehensive HAP index
product with a range of 0–30 and a spatial resolution of 1 km × 1 km. The construction of
the HAP index is shown in Equation (2).

sall = surban + scrop + spop + selec (2)

where sall is the pressure score of comprehensive human activities, surban represents the
pressure score of urban land, scrop represents the pressure score of agricultural land, spop is
the pressure score of the population, and selec is the pressure score of electric power facilities.
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3.2. Propensity Score Matching Method

In order to eliminate the selection bias of the samples, this paper uses the propensity
score matching method. The matching method can be used to select a treatment group and
a control group with similar initial conditions. The idea is that, for the individual i in the
treatment group, we can find an individual j in the control group, and make the values of
the observation variables of the two as similar as possible (Xi ≈ Xj). Generally speaking,
the observed variable is a multi-dimensional vector. The propensity score matching method
takes the propensity score as the distance function, and matches according to the rules of
the nearest neighbor or whole matching. The propensity score of individual i is defined as
the probability of individual i entering the treatment group under the given observation
variables, and its calculation method is expressed as follows:

p(Xi) = pr(PAi = 1|Xi) =F(h(Xi)) (3)

where p(Xi) represents the propensity score of individual i, PAi is the dummy variable,
PAi = 1 is the treatment group, and PAi = 0 is the control group. Xi is a series of observed
variables, h(.) is a linear function, and F(.) is a logical function.

3.3. The Panel Model

This paper uses the panel model to study the effectiveness of China’s protected areas
at mitigating human activity pressure. The formula of the model is as follows:

Yit = a0 + a1PASit + a2Xit + εit (4)

where Yit represents the HAP at random point i in year t, PASit is the individual dummy
variable, PASit= 1 is the treatment group, and PASit= 0 is the control group. Xit is a series
of control variables, and εit is the random error term. Because the virtual PAS does not
change with time, a fixed effect model cannot be used for the panel model; as such, the
random effect model is adopted.

3.4. Data Source and Processing

According to different purposes, the data used in this paper is divided into three types:
the data of PAs, data used to construct the HAP index, and other data (Table 1). In the
process of preprocessing, WGS1984 (National Geospatial-Intelligence Agency, Springfield,
VA, USA) cylindrical equal-area projection is used uniformly for all of the spatial data.

Table 1. The dataset used in this article.

Data Category Nature Year Data Source

Data of PAs

Boundary data of
PAs in China Vector data 1957–2012

Geographic Information Database of China Nature
Reserve Specimen Resource Sharing Platform

http://www.papc.cn/html/folder/946895-1.htm
(accessed on 20 May 2019)

List of National Nature
Reserves (2017) Text data 2017

Ministry of Ecology and Environment of the
People’s Republic of China.
http://www.mee.gov.cn/
(accessed on 20 May 2019)

Data used to construct HAP index

Land cover data Raster data (300 m) 2000–2019
European Space Agency, http:

//maps.elie.ucl.ac.be/CCI/viewer/index.php
(accessed on 20 May 2019)

Future urban
land use data Raster data (300 m) 2020–2050

https:
//doi.pangaea.de/10.1594/PANGAEA.905890

(accessed on 4 July 2020)

http://www.papc.cn/html/folder/946895-1.htm
http://www.mee.gov.cn/
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
https://doi.pangaea.de/10.1594/PANGAEA.905890
https://doi.pangaea.de/10.1594/PANGAEA.905890
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Table 1. Cont.

Data Category Nature Year Data Source

Population density data Raster data (1 km) 2000–2020

NASA Center for Socio-Economic Data and
Applications. https://sedac.ciesin.columbia.edu/

data/set/gpw-v4-population-density-rev11
(accessed on 4 July 2020)

Future population data Raster data (1 km) 2020–2050

NASA Center for Socio-Economic Data and
Applications. https://sedac.ciesin.columbia.edu/
data/set/popdynamics-1-km-downscaled-pop-

base-year-projection-ssp-2000-2100-rev01
(accessed on 4 July 2020)

Complementary DMSP
and VIIRS night

light data
Raster data (1 km) 2000–2018

https://figshare.com/articles/dataset/
Harmonization_of_DMSP_and_VIIRS_nighttime_
light_data_from_1992-2018_at_the_global_scale/

9828827/2 (accessed on 4 July 2020)
Other data

Temperature Text data 2000–2020

NOAA National Environmental Information
Center Database https://www.ncei.noaa.gov/

data/global-summary-of-the-day/archive/
(accessed on 4 July 2020)

Precipitation Text data 2000–2020

NOAA National Environmental Information
Center Database https://www.ncei.noaa.gov/

data/global-summary-of-the-day/archive/
(accessed on 4 July 2020)

Elevation Raster data (1 km)

Food and Agriculture Organization of the United
Nations http://www.fao.org/soils-portal/soil-
survey/soil-maps-and-databases/harmonized-

world-soil-database-v12/zh/
(accessed on 4 July 2020)

Data set of major roads
across the country Vector data 2000

Geographic Data Platform of Peking University
https://geodata.pku.edu.cn/index.php?c=

content&a=show&id=1399 (accessed on 4 July 2020)

National road data sets Vector data 2018
Geographic Data Platform of Peking University.

https://geodata.pku.edu.cn/index.php?c=
content&a=show&id=713 (accessed on 4 July 2020)

Land area data Raster data (1 km) 2010

NASA Center for Socio-Economic Data and
Applications. https://sedac.ciesin.columbia.edu/

data/set/gpw-v4-land-water-area-rev11
(accessed on 4 July 2020)

4. Results
4.1. Spatial Distribution of the HAP Index in China and Its PAs
4.1.1. Spatial Distribution of the HAP Index in China

The spatial distribution of the HAP index constructed by the above method is shown in
Figure 1. It can be seen that from 2000 to 2020, with the acceleration of China’s urbanization
process, the pressure of human activity starts to spread from the urban center to the
surrounding areas, and most of the pixels of which the HAP index values are within the
range [13.65, 17.05] enter into a higher range. In total, 80.78% of the country’s land is
subjected to different degrees of the HAP, and the proportion of protected land of which
the HAP index is greater than 0 is 45.96% of the total protected land, which is lower than
the proportion of the country’s land.

https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base-year-projection-ssp-2000-2100-rev01
https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base-year-projection-ssp-2000-2100-rev01
https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base-year-projection-ssp-2000-2100-rev01
https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827/2
https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827/2
https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827/2
https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827/2
https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/zh/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/zh/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/zh/
https://geodata.pku.edu.cn/index.php?c=content&a=show&id=1399
https://geodata.pku.edu.cn/index.php?c=content&a=show&id=1399
https://geodata.pku.edu.cn/index.php?c=content&a=show&id=713
https://geodata.pku.edu.cn/index.php?c=content&a=show&id=713
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-land-water-area-rev11
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-land-water-area-rev11
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can be seen from Figure 2a, the areas where the change trend of the HAP remains un-
changed or decreases are mainly in some central urban areas, the Qinghai–Tibet Plateau, 
Xinjiang, Inner Mongolia, Sichuan–Chongqing, and other areas. The HAP index in most 
of China’s land shows an upward trend, and this trend also appears in PAs (Figure 2b). 

Figure 1. Spatial distribution of the HAP index in China.

4.1.2. Spatial Distribution of the HAP Index in PAs in China

In this paper, trend analysis is used to analyze the change trend of the HAP index.
Specifically, the least square method is used to calculate the slope of the HAP index over
five years in order to represent the change trend of the HAP index during 2000–2020. As can
be seen from Figure 2a, the areas where the change trend of the HAP remains unchanged
or decreases are mainly in some central urban areas, the Qinghai–Tibet Plateau, Xinjiang,
Inner Mongolia, Sichuan–Chongqing, and other areas. The HAP index in most of China’s
land shows an upward trend, and this trend also appears in PAs (Figure 2b).

The land area showing an upward trend account for 64.71% of the total area, while
the reserve area showing an upward trend account for 37.98%, and the number of reserve
areas showing an upward trend account for 75.15%. On the whole, the change range of the
HAP index is not obvious, and the slope concentrates around value 0.
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Figure 2. Spatial distribution of the HAP index in China and its PAs ((a)slope of HAP in China,
(b) slope of HAP of protected areas in China).

4.2. Balance Test of the Propensity Score Matching Method

In this paper, altitude, slope, precipitation, temperature, the distance to a road, and
the distance to urban land are selected as observation variables. First, random points
are created in the PAs established before 2000 with an interval of no less than 1 km, and
20,297 random points are obtained. Because the resolution of the HAP index product
constructed in this paper is 1 km, if the interval is less than 1 km, there may be more than
one random point in a pixel, which does not meet the sampling requirements. If the interval
is greater than 1 km, the sample size will be insufficient. Second, 180,000 random points
are created outside the PAs. In order to avoid the spillover effect of the PAs affecting the
matching results, random points are not generated within the 10 km buffer zone of the
PAs [33]. Finally, the pixel values of the HAP and observed variables in 2000 are extracted to
the random points, and the nearest-neighbor caliper matching method is used for matching.
According to the recommendations of Rosenbaum and Rubin [39], a quarter of the sample
standard deviation of the propensity score is selected as the caliper size. After the matching
process, the random points inside and outside the PAs are 19,724 and 173,347, respectively.
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The balance test results of the propensity score matching method are shown in Table 2.
As can be seen from the change of the T statistic, at the level of 0.05, the characteristic
variables of the two groups of random points no longer have significant differences after
matching. Rosenbaum and Rubin [39] pointed out that if the absolute value of standard
deviation after matching is less than 20%, it means that the matching is effective. In this
study, the absolute values of the standard deviations are all less than 5%. This shows that
the characteristic variables and matching method selected in this paper are reasonable.

Table 2. Balance test results of the propensity score matching method.

Variable

Mean Value
Standard

Deviation (%)

Reduction in
the Standard
Deviation (%)

t-Test

The Treatment
Group

The Control
Group t Statistic

Associated
Probability of

the t-Test

lnpecp
Before the match −2.7261 −3.1 42.1 52.90 0.000
After the match −2.7261 −2.7284 0.3 99.4 0.26 0.796

lntemp
Before the match 3.8746 3.8061 26.9 34.26 0.000
After the match 3.8746 3.8794 −1.9 92.9 −1.91 0.056

lnslope
Before the match 0.7148 0.21309 27.6 37.80 0.000
After the match 0.7148 0.70359 0.6 97.8 0.63 0.528

lnelev
Before the match 6.7748 6.7164 4.0 5.14 0.000
After the match 6.7748 6.7708 0.3 93.2 0.28 0.781

lntourban
Before the match 10.333 10.392 −5.5 −6.58 0.000
After the match 10.333 10.321 1.1 80.5 1.08 0.279

lntoroad
Before the match 9.9819 10.026 −3.7 −4.56 0.000
After the match 9.9819 9.9951 −1.1 70.4 −1.11 0.265

lnlandcover
Before the match 0.80104 0.8439 −7.1 −8.70 0.000
After the match 0.80104 0.80166 −0.1 98.6 −0.11 0.913

Note: lnpecp represents precipitation, lntemp represents temperature, lnslope represents the slope, lnelev repre-
sents elevation, lntourban represents the distance to urban land, lntoroad represents the distance to a road, and
lnlandcover represents the landcover type.

4.3. Assessment of China’s PAs regarding the Alleviation of the Pressure of Human Activities

The panel model was used to evaluate the effectiveness of PAs in various geographical
zones regarding the alleviation of the pressure of human activities. In order to construct
the panel model, the sample data of the HAP and control variables in and outside the
PAs from 2000 to 2020 should be obtained. In this paper, the elevation, slope, average
annual precipitation and average annual temperature are selected as the control variables.
Firstly, the dummy variable, PAS, in this paper does not change with time, such that the
random points in 2005, 2010, 2015 and 2020 are the same as those in 2000 after matching.
Secondly, these random points are used to extract the pixel values of the HAP index and
the control variables in the five years. Finally, this paper chooses the random effects model
for estimation.

The results of the panel model are shown in Table 3. As shown in the second column,
at the national level, China’s PAs can relieve 1.37% of the pressure of human activities.
Moreover, there are regional differences in the ability of PAs to relieve the pressure of
human activities. The reserves in Northeast, East and Central South China have the most
significant ability to relieve the pressure of human activities, with coefficients of −0.339,
−0.328 and−0.199, respectively. The PAs in Southwest and Northwest China do not relieve
the pressure of human activities but increase the pressure of human activities. This may
be due to the influence of policies, such as the policy for the development of the western
region, which led to the rapid development of the western region from 2000 to 2020.
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Table 3. Panel model estimation results.

Variable
(1) (2) (3) (4) (5) (6) (7)

Nationwide Northeast China North China East China Central South Region Northwest China Southwest China

PAS −0.0137 * −0.339 *** −0.0388 * −0.328 *** −0.199 *** 0.0465 ** 0.0482 ***
(0.0070) (0.0158) (0.0206) (0.0106) (0.0062) (0.0202) (0.0112)

lnelev −0.491 *** −0.279 *** −0.616 *** −0.140 *** −0.141 *** −0.797 *** −0.911 ***
(0.0018) (0.0080) (0.0056) (0.0032) (0.0029) (0.0091) (0.0045)

lnslope 0.112 *** −0.0825 *** 0.216 *** −0.0651 *** −0.0873 *** 0.109 *** 0.0832 ***
(0.0016) (0.0044) (0.0043) (0.0025) (0.0020) (0.0039) (0.0033)

lnpecp 0.0635 *** 0.00874 *** 0.0460 *** −0.00984 *** −0.0240 *** 0.102 *** 0.0202 ***
(0.0004) (0.0014) (0.0009) (0.0016) (0.0009) (0.0007) (0.0011)

lntemp 0.319 *** 0.140 *** 0.0735 *** 0.675 *** 0.222 *** 0.533 *** 0.366 ***
(0.0018) (0.0074) (0.0041) (0.0088) (0.0048) (0.0058) (0.0023)

_cons 3.577 *** 2.952 *** 5.138 *** 0.202 *** 2.072 *** 5.138 *** 6.736 ***
(0.0142) (0.0549) (0.0414) (0.0401) (0.0261) (0.0735) (0.0358)

N 807292 79403 138076 82089 111441 195871 200343
R2 0.4122 0.2150 0.2584 0.4839 0.4793 0.2188 0.5306

Note: PAS is a dummy variable, lnelev represents elevation, lnslope represents the slope, lnpecp represents
precipitation, lntemp represents temperature. The numbers in the brackets indicate the standard error, * represents
significance at the level of 0.1, ** represents significance at the level of 0.05, and *** represents significance at the
level of 0.01.

4.4. Assessment of the HAP Mitigation of PAs in China under the SSP Scenarios
4.4.1. Population Pressure Mitigation of PAs in China under the SSP Scenarios

The relative effectiveness index is used to evaluate the population pressure relief
efficiency of PAs in China under the SSP scenarios. The relative effectiveness indexes of
China’s PAs in the alleviation of the three population pressures under the five scenarios
are obtained (Table 4). It can be seen that under the five SSP scenarios, the average of
the relative effectiveness indexes of China’s PAs in alleviating the pressure of the popu-
lation is negative, showing good pressure relief efficiency. When alleviating the pressure
of the population, the effectiveness of the PAs under the five SSP scenarios ranked as
SSP4 > SSP1 ≈ SSP5 > SSP2 > SSP3.

Table 4. Relative effectiveness index of PAs in China in alleviating population pressure under the
SSP scenarios.

SSPs Scenario Number of PAs Index (Negative, %) Index (Positive, %) Relative Validity
(Average)

SSP1 670 74.03 25.97 −0.076
SSP2 670 76.72 23.28 −0.054
SSP3 670 79.55 20.46 −0.031
SSP4 670 76.12 23.88 −0.087
SSP5 670 74.03 25.97 −0.076

In order to directly reflect the increase of the population pressure index in and outside
the PAs, this paper calculates the average increase of the population pressure index after
matching. Figure 3 shows the average growth amount of the population pressure index in
China and its six major regions under the SSP scenarios. Because the population of China is
gradually decreasing under the SSP scenarios, the decreasing trend is also reflected in the
population pressure index. The decreasing values of the population pressure index under
the five SSP scenarios are different to some extent, but the overall pattern is similar. Except
for Northeast China, the average decrease of the population pressure index in the PAs is
higher than that outside the PAs.
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4.4.2. Urban Land Pressure Mitigation by PAs in China under the SSP Scenarios

Similarly, the relative effectiveness index is also used to evaluate the effectiveness of
China’s PAs in alleviating urban land pressure under the SSP scenarios. First, after the
matching process, the random points outside the PAs are extracted, and their average
growth of urban land pressure under the five scenarios is taken as a benchmark. By
subtracting their respective benchmarks from the average growth of urban land pressure
in the PAs under the five scenarios, the relative effectiveness indexes of China’s PAs in
alleviating urban land pressure under the five scenarios are finally obtained (Table 5). It
can be seen that under the five SSP scenarios, because most PAs are far away from urban
land, they are almost not affected by urban land pressure. Specifically, the proportion of
PAs with a negative relative effectiveness index is more than 90%.
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Table 5. Relative effectiveness index of PAs in China in alleviating urban land pressure under
SSP scenarios.

SSPs Scenario Number of PAs Index (Negative, %) Index (Positive, %) Relative Validity
(Average)

SSP1 670 94.63 5.37 0.032
SSP2 670 95.37 4.63 0.022
SSP3 670 95.67 4.33 0.016
SSP4 670 94.93 5.07 0.028
SSP5 670 93.88 6.12 0.031

Although the number of PAs with poor performance is small (about 5%), the average
value of the relative effectiveness index is positive, indicating that the PAs with poor
performance contribute more to the value of the relative effectiveness index. That is to say,
from 2020 to 2050, the alleviation efficiency of PAs against the pressure of urban land use is
not high. When alleviating the urban land pressure, the effectiveness of the PAs under the
five SSPs scenarios was ranked as SSP3 > SSP2 > SSP4 > SSP5 > SSP1.

In order to directly reflect the growth of urban land pressure index in and outside
the PAs, this paper calculates the average growth of the urban land pressure index after
matching. Figure 4 shows the average growth amount of the urban land pressure index in
China and its six regions under the SSP scenarios. For example, under the SSP2 scenario,
there is almost no increase in urban land pressure within the PAs, while under the SSP3
scenario, the increase in urban land pressure within the PAs in East China even exceeds
that outside the PAs.
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5. Discussion
5.1. The Pressure of Human Activities in 75.15% of China’s PAs Shows an Upward Trend

In this study, the HAP in about three quarters of China’s PAs showed an increasing
trend in the last 20 years, which indicates that human activities in and around the PAs are
increasing. These human activities include the development of mines, roads, hydropower
stations, power transmission lines and tourist attractions in the PAs. Many countries in
tropical regions even rely on PAs to develop tourism and promote national economic
development by obtaining foreign exchange income from tourism [40]. Qiu et al. [27]
also confirmed that the population and economic activities in 58 PAs in Yunnan Province
were gradually increasing. The pressure of human activities in 75.15% of China’s PAs
shows an upward trend. This conclusion also indicates that although China has gradually
formed a natural reserve protection system with national parks as the main body, PAs
as the basis, and various kinds of natural parks as the supplement, it is still necessary to
establish a real-time monitoring system based on big data in order to monitor the HAP in
Pas, and to avoid irreversible impacts of human activities on habitats, ecosystem services
or biodiversity in PAs. Therefore, countries and regions need to conduct the dynamic
assessment and management of global PAs, which can be considered as part of the social
governance system [41].

5.2. Regional Differences in China’s PAs in Alleviating the Pressure of Human Activities

There are regional differences in the ability of PAs to alleviate the pressure of human
activities. In the past two decades, the PAs in Northeast, East and Central China have
effectively alleviated the pressure of human activities; however, the PAs in Southwest and
Northwest China have not relieved the pressure of human activities but increased the
pressure of human activities. This may be due to the influence of policies, such as the
“Great Western Development Policy”, which led to the rapid development of the western
region from 2000 to 2020.

For example, by 2015, 81 counties (cities and districts) in Guizhou were connected
at high speed, making Guizhou the ninth province in China and the first province in
the west to realize the connection between counties and counties. These measures have
effectively changed the accessibility and investment and financing environment of Guizhou.
Compared with other western provinces, the movement of the human flow has increased.
In addition, the conservation of PAs is not uniform across China’s provinces, which may
also contribute to the differences in the relief of the HAP in PAs [42].

6. Conclusions

Taking HAP as an indicator, this paper evaluates the effectiveness of China’s PAs in
alleviating HAP, and explores the alleviating situation of specific HAPs in China’s PAs
under the SSP scenarios; we drew the following conclusions:

(1) From 2000 to 2020, the pressure of human activities began to spread from the urban
center to the surrounding areas. In total, 80.78% of China’s land is under pressure
from human activities to varying degrees, while only 45.96 % of the protected land
has a HAP index greater than 0. The land area with a rising trend of the HAP index
accounts for 64.71% of the total area, and 75.15% of the reserves show an upward
trend in the HAP index, but their area accounts for only 37.98% of the total area of PAs.

(2) PAs in China can relieve the pressure of human activities by 1.37%, and there are
regional differences in the ability of PAs to alleviate the pressure of human activities.
The reserves in Northeast, East and Central China have the most significant effects
on relieving the pressure of human activities, with coefficients of −0.339, −0.328
and −0.199, respectively. Meanwhile, PAs in Southwest and Northwest China are
increasing the pressure of human activity.

(3) Under the five SSP scenarios, the urban land pressure index shows an overall increas-
ing trend, and the increase is mainly concentrated in Eastern and Central China, but
there is no similar pattern under the five SSP scenarios. For example, under the SSP3
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scenario, the average increase of urban land pressure in the Eastern China PAs exceeds
that outside the PAs.

7. Implications

In order to prevent the disorderly increase of the HAP in PAs, China should build a
long-term supervision system for PAs in the future. The recommended value and maximum
allowable value of the HAP should be set nationwide, and each major region, province,
city and county should formulate different strategies to limit growth of the HAP in PAs
according to the actual situation, such as development needs and ecological fragility.

The impact of the HAP on PAs in China under the SSPs scenario requires the compre-
hensive consideration of the complex socioeconomic situation in China. Urban expansion
and the migration of the rural population to cities will change the relationship between
humanity and the natural system. Urban expansion directly or indirectly occupies ecologi-
cal space and destroys part of the natural ecosystem [43]. However, the migration of the
rural population to cities may change the original livelihood methods of rural residents
(poaching, deforestation, etc.). A reasonably organized population can make more inten-
sive use of resources, and can finally enable the world to find ways to alleviate ecological
environmental degradation.

There is room for further research to assess the effectiveness of PAs in alleviating
the pressure of human activity. First of all, the quality of the HAP products needs to be
improved. In terms of data, remote sensing and big data can be used as representatives of
human activities [4]. However, there are certain differences in data sources, resolution and
accuracy, such that it is difficult to select data that can fully represent human activities.

Secondly, in terms of studies evaluating the effectiveness of PAs, this paper presents a
new potential approach: the pressure of human activities is used as an indicator [35,44] or
the state of natural ecosystems is used as an indicator [16,22,32]. However, the interaction
between human activities and nature is a complex process, and unilateral assessment
has certain limitations. Future research should focus on the interaction process between
human activities and nature, so as to provide more reasonable guidance for the planning,
construction, evaluation and management of PAs.
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