
Magnetic inhomogeneity on a triangular
lattice: the magnetic-exchange versus the
elastic energy and the role of disorder
A. Zorko1, J. Kokalj1, M. Komelj1, O. Adamopoulos2, H. Luetkens3, D. Arčon1,4 & A. Lappas2
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Inhomogeneity in the ground state is an intriguing, emergent phenomenon in magnetism. Recently, it has
been observed in the magnetostructural channel of the geometrically frustrated a-NaMnO2, for the first
time in the absence of active charge degrees of freedom. Here we report an in-depth numerical and
local-probe experimental study of the isostructural sister compound CuMnO2 that emphasizes and provides
an explanation for the crucial differences between the two systems. The experimentally verified, much more
homogeneous, ground state of the stoichiometric CuMnO2 is attributed to the reduced magnetoelastic
competition between the counteracting magnetic-exchange and elastic-energy contributions. The
comparison of the two systems additionally highlights the role of disorder and allows the understanding of
the puzzling phenomenon of phase separation in uniform antiferromagnets.

A
lthough phase separation in a uniform system is a widespread phenomenon in diverse fields of matter1–3,
ranging from biological systems4–6, to soft matter7,8, and strongly correlated electron systems9–15, in
magnetism the microscopic pattering has been, until recently, almost exclusively limited to thin ferromag-

netic (FM) films16,17. In this case, such a pattering is a trade-off between minimizing the exchange and the dipolar
energies. It thus represents one possible manifestation of a general requirement of multiple competing phases that
can lead to inhomogeneous states. Lately, it has become increasingly apparent that a similar competition between
energetically nearly equivalent phases is also responsible for phase separation in geometrically frustrated spin
systems18–21 that are generically characterized by ground-state degeneracy22. However, the balance between the
competing phases in these systems is generally much more delicate and, therefore, poorly understood.

Recently, the spatially anisotropic triangular antiferromagnet a-NaMnO2, with dominant intrachain (J1) and
geometrically frustrated interchain (J2) antiferromagnetic (AFM) exchange interactions (inset in Figure 1a), has
been highlighted as a paradigm of a phase-separated ground state in the absence of active charge degrees of
freedom18. Its AFM order that sets in below the Néel temperature TN 5 45 K is accompanied by a simultaneous
structural deformation23. This was initially suggested as being a phase transition from the high-temperature
monoclinic (C2/m) to the low-temperature triclinic (P�1) crystal structure23. However, more detailed, recent
experiments have shown that the magnetic order fails to drive this improper ferroelastic transition to comple-
tion18. Instead, an intricate magnetostructurally inhomogeneous state on the nano-scale has been discovered
below the TN. Such a state was suggested to be an unforeseen consequence of the subtle interplay between the
geometrical frustration and the competing structural phases18.

In order to fully understand this novel phenomenon, further theoretical studies and experimental investi-
gations of related compounds are of paramount importance. In this respect, a comparison with the crystal-
lographically24 and magnetically25 analogous sister compound CuMnO2, known as the mineral crednerite, is
particularly relevant. Here, in contrast to a-NaMnO2, the emergent magnetic order below TN 5 65 K is believed
to lift the macroscopic degeneracy in the spin space completely, by inducing the monoclinic-to-triclinic structural
phase transition26. This spin-induced phase transition is witnessed by the splitting of several families of nuclear
Bragg reflections18,27. It was suggested to reflect the strong magnetoelastic (ME) coupling that allows for the
development of shear strain at a low energy cost27. Interestingly, the strain is significantly enhanced28 in the off-
stoichiometric29 Cu11xMn12xO2, where TN is reduced and the structural transition temperature is further
suppressed with increasing x even for small doping levels28,30,31. Moreover, in off-stoichiometric samples the
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interlayer ordering changes from AFM, observed in stoichiometric
CuMnO2, to FM28,30,31, which was attributed to a partial substitution
of Cu21 for Mn31 that should effectively change the interlayer
exchange coupling from AFM to FM32. On the other hand, this
implies that CuMnO2 may be very close to an electronic instability,
possibly of a similar kind to that found in stoichiometric a-NaMnO2.

Obtaining in-depth information about the magnetic and struc-
tural properties of CuMnO2 on the local scale should clarify the
differences with respect to the isostructural a-NaMnO2. Such know-
ledge would also help to address the pending issue of the microscopic
origin of the phase-separation phenomenon in geometrically fru-
strated magnets. The most obvious ambiguities arise from questions
like: why is the TN enhanced in CuMnO2 compared to a-NaMnO2,
despite the theoretically predicted sizably smaller exchange interac-
tions in the former compound33; what is the role of the ME coupling
in establishing the structural distortion below the TN, what is the role
of disorder; and ultimately, why does the structural phase transition
appear to be fully developed in CuMnO2, while in a-NaMnO2 it only
manifests in a phase-separated state. Here, we answer these questions
by combining numerical calculations with local-probe experimental
investigations. First, we determine the dominant intralayer exchange
interactions by modelling the magnetic susceptibility via exact-diag-
onalization calculations. We demonstrate that the difference in the
TN for the two compounds can be understood via the mismatch of
the two non-equivalent interchain exchange interactions, i.e., by the
different extent of the frustration present in the two compounds,
while the ME contribution is negligible in this respect. Moreover,
we provide the first experimental microscopic insight into the mag-
netism of CuMnO2 via 63,65Cu nuclear magnetic resonance (NMR)
and nuclear quadrupolar resonance (NQR) measurements, as well as
complementary muon spin relaxation (mSR) measurements. These
experiments clearly reveal that the ground state is more homogen-
eous in the Cu case than in the Na case and suggest that the stoichi-

ometric CuMnO2 is on the verge of a phase-separation instability.
Finally, our ab-initio calculations suggest that the more homogen-
eous state of the stoichiometric CuMnO2 originates from an
enhanced energy difference (when compared to a-NaMnO2)
between the two competing phases, born out of the magnetic-
exchange and the elastic-energy changes below the TN.

Results
Determination of the dominant exchange interactions and the TN.
In order to understand the apparently significantly different
properties of the two isostructural compounds, CuMnO2 and
a-NaMnO2, a proper determination of the dominant terms in the
Hamiltonian is crucial. Therefore, we applied numerical finite-
temperature Lanczos method (FTLM) simulations and density-
functional theory (DFT) calculations. The former were aimed at
quantifying the two main magnetic exchange interactions (J1 and
J2) of the isotropic Heisenberg model on the spatially anisotropic
two-dimensional (2D) triangular lattice (inset in Figure 1a),

H~J1

X
ijð Þ
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:SjzJ2

X
kl½ �
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Here, the first sum runs over the (stronger) intrachain bonds in one
direction, while the second sum runs over the (weaker) interchain
bonds in the other two directions on the triangular lattice of spins S 5 2.

The temperature-dependent magnetic susceptibility x(T) of this
model was calculated for various m 3 n spin clusters (see Methods).
However, even for the largest reachable cluster sizes (7 3 2), some
finite-size effects remain present at low T. With the use of results
from many clusters (m 5 2–7) these effects can, however, be reduced
and the value of x at the thermodynamic limit is thus approached.
Both, the average susceptibility curve from the two largest-size clus-
ters (that gives a better approximation than the individual clusters;
see Methods) and the susceptibility curve obtained in an approach
similar to finite-size scaling (see Methods) fit the experimental data
above the TN very well (Figure 1a). A disagreement with the experi-
mental data below the TN, on the other hand, is expected, because the
2D Heisenberg model cannot account for a finite TN. Both
approaches yield very similar exchange-coupling constants, which
we estimate to be J1 5 53 K and J2/J1 5 0.27(2). These are in very
good agreement with recent ab-initio predictions33, J1 5 56 K and
�J2=J1~0:23, which, in principle, could be erroneous due to the
unknown on-site repulsion32.

Our calculations thus confirm that the exchange interactions are
indeed reduced for CuMnO2 compared to a-NaMnO2, where35 J1 5

65 K and J2/J1 5 0.44. Despite this fact, in CuMnO2 the TN is
increased with respect to that found in a-NaMnO2 by more than
40%. So far, this has been attributed to a difference in the interlayer
coupling26 J9, which, however, is rather small32,33 and can, therefore,
only slightly affect the TN on 2D Heisenberg lattices36. Furthermore,
the amount of frustration reflected in the J2/J1 ratio should directly
influence the TN, as the frustration is known to suppress the spin
correlations37. In a-NaMnO2 and CuMnO2 the intrachain exchange
coupling is dominant. Therefore, these compounds can be regarded as
systems of coupled spin chains, which is manifested in the one-dimen-
sional character of the magnetic excitations in a-NaMnO2

38. For such
systems the TN can be determined with the use of a random-phase
approximation39,40. In this approach the interchain coupling is treated
at the mean-field level, whereas the intrachain interactions are treated
exactly. For isotropic interchain coupling in a non-frustrated lattice
the TN is determined by the condition zJ2xs(TN) 5 1 (Ref. 36, 39–41),
where xs(T) is the chain’s staggered susceptibility. Within this
approach, we generalize the above condition for TN to include the
two interchain constants (J2a . J2b) pertinent to the triclinic phase of
CuMnO2 and a-NaMnO2, as well as the interlayer coupling J9;

Figure 1 | Determination of J’s and TN. (a) The magnetic susceptibility x

5 M/H (M is the magnetization and H is the applied magnetic field) of

CuMnO2, measured by a SQUID magnetometer in a field of m0H 5 0.1 T.

The solid and dashed lines denote the best FTLM fits with the average and

the scaled curves, respectively (see Methods for details). The former yields

the exchange-coupling constants J1 5 53.5 K, J2/J1 5 0.25, and the latter J1

5 52.1 K, J2/J1 5 0.29. Inset shows the spatially anisotropic triangular spin

lattice of the CuMnO2 in the monoclinic setting, with intrachain J1 (thick

bonds) and interchain J2 (thin bonds) exchange constants. (b) The

temperature dependence of the staggered susceptibility xs multiplied by J1

for spin-2 chains (adopted from Ref. 34). The solid line is a guide to the eye.

The Néel transition temperatures TN 5 1.40J1 5 74 K in CuMnO2 and TN

5 0.87J1 5 57 K in a-NaMnO2 are predicted (dashed lines) by equation

(2).
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xs TNð Þ~ 1
k z J2a{J2bð Þzz’J ’½ � : ð2Þ

Here, z 5 z9 5 2 corresponds to the number of neighbouring coupled
chains and planes, respectively while J2b adopts the minus sign because
it frustrates the AFM order dictated by the larger J2a. The constant k
renormalizes the coordination numbers and is reduced from unity41,42

because of quantum effects36. As (J2a 2 J2b)/J1 5 0.083 and 0.035 in
CuMnO2 and a-NaMnO2, respectively33, while J9/J1 is expected to be
an order of magnitude smaller32,33, we estimate the TN by neglecting J9
in equation (2) and by taking k 5 0.7, which is appropriate for quasi-
one dimensional cases (see Fig. 2 in Ref. 36). This gives TN 5 74 K in
CuMnO2 and TN 5 57 K in a-NaMnO2 (see Figure 1b), which are in
good agreement with the experimental values of 65 K and 45 K,
respectively. We note that for anisotropic interchain couplings the
constant k is expected to be further reduced and, ultimately, for J9
R 0 also k R 0 (Ref. 41, 42), leading to TN R 0, which is consistent
with the Mermin-Wagner theorem (no long-range order in the 2D
Heisenberg model at finite T). However, it has been shown43 that for
quasi-2D systems the dependence of the TN and, in turn also of k, on J9
is sub-logarithmic. Therefore, for the exchange-coupling constants
related to CuMnO2 and a-NaMnO2, k will be somewhat, but not
drastically, reduced from the value 0.7, which is perfectly in line with
the small theoretical overestimates of the TN.

This analysis reveals that the Néel transition is predominantly
determined by the Heisenberg Hamiltonian of equation (1).
Moreover, the ferrodistortive structural transition accompanying
the magnetic ordering and leading to the splitting of the two inter-
chain exchange constants (J2a, J2b) in the triclinic phase is needed to
ensure a finite TN. The extent to which frustration is relieved in the
triclinic phase of the CuMnO2 elevates its ordering temperature
above the ordering temperature in a-NaMnO2. Other factors, such
as the interlayer coupling, the magnetic anisotropy and the ME
coupling, can, at best, only slightly shift the TN.

Total-energy change at the TN. Having established that the
magnetic ordering at the TN is predominantly set by the 2D
Heisenberg Hamiltonian and the tendency of both systems to
remove magnetic degeneracy in the ground state by lattice
deformation, the question that arises is what is the microscopic
origin of such a complex transformation. In this respect, the ME
coupling has been suggested as being the key factor23,26,27 in both
a-NaMnO2 and CuMnO2. However, the ME coupling has been
shown to be insubstantial in the former case18, and thus needs to
be evaluated also in the CuMnO2. The total-energy change at the TN,
associated solely with the magnetoelasticity, arises from the coupling
terms44 bijEijmimj between the strain-tensor components Eij and the
magnetization-direction vector m 5 (mx, my, mz). The strength of
the ME coupling, and consequently the corresponding contribution
to the total energy, is proportional to the ME-coupling coefficients bij

(i, j 5 x, y, z). The coefficients bxx 5 2.3 MJ/m3, byy 5 1.6 MJ/m3 and
bxy 5 3.4 MJ/m3 are determined as linear terms in the calculated
dependence of the total-energy-density change Dfij on the strain (see
Methods), which is shown in Figure 2a. The ME energy gain is the
largest for the shear-strain component Exy , which is associated with
the monoclinic-to-triclinic deformation. However, for the
experimental strain Exy~0:0028 (see Methods) the magnetoelastic
energy change amounts to only 2.7 meV per triclinic unit cell, which
is very similar to the value of 2.5 meV found in a-NaMnO2.

The contribution of the ME coupling to the total energy change at
the TN is thus negligible in both compounds. Therefore, the complex
phase transition at the TN has to reflect changes in the magnetic-
exchange and elastic energies18. Our ab-initio calculations of both
relevant contributions to the total energy in the CuMnO2 for the
non-spin-polarized case, relevant to non-magnetically ordered
structures, reveal that the monoclinic structure is energetically lower
than the triclinic one, although only by ,1 meV per 4 formula units
(f.u.); see Figure 2b. This is in-line with the C2/m crystal symmetry
found experimentally at room temperature. However, once the mag-
netic order sets in, the total energy of the triclinic structure is lowered
below that of the monoclinic structure by about 4 meV per 4 f.u.
This change of ,1.25 meV per Mn31 ion is mainly a consequence of
the exchange-energy decrease during the structural phase transition,
associated with the removal of the degenerate magnetic states due to
the interchain frustration. The resulting splitting of the interchain
exchange constants by J2a 2 J2b 5 0.4 meV (Ref. 33) releases S2(J2a 2

J2b) 5 1.6 meV of energy per Mn that is slightly larger than the total-
energy change at the TN, as it is partially spent to compensate for the
elastic-energy increase in the triclinic phase.

The calculated total-energy difference below the TN of 1 meV per
f.u. in CuMnO2 between the two structures that is about 3-times
above the calculation error bar (see Methods), is markedly larger
than in the a-NaMnO2, where the calculated difference was below
the calculation error bar; *v0:5 meV per f.u.45. However, in absolute
terms this difference is small, even in the CuMnO2, so that a com-
petition between the near-degenerate monoclinic and triclinic struc-
tures is expected for both compounds. Experimental local-probe
magnetic techniques are then essential for highlighting possible dif-
ferences between the two systems.

NMR/NQR insight to the magnetism. Information about the
magnetic properties of CuMnO2 on the local scale are revealed in
the NQR/NMR experiments via the hyperfine (hf) coupling Ahf of
the electronic and the 63,65Cu nuclear magnetic moments. Moreover,
the quadrupolar splitting in the electric-field gradient (EFG)
provides information about the material’s structural properties.
The NQR spectra measured in zero field correspond to a single
line for each copper isotope46, while the powder NMR spectra are
structured (see Methods for details). Our simultaneous fit of the
NQR and NMR data at 80 K (Figure 3a) yields a hf coupling
constant 63Ahf 5 2.3(1) T/mB that is significantly larger than the

Figure 2 | DFT calculations. (a) The calculated difference in the total-

energy density for the three different magnetoelastic components. The

solid lines are linear fits for the xx and yy components, and a quadratic fit

for the xy component. (b) The ab-initio calculated total energy of the

relaxed monoclinic (m) and triclinic (t) structures of the CuMnO2 as a

function of the volume for the antiferromagnetic (AFM) and non-

magnetic (NM) cases. The insets zoom at the regions around the local

minima of the relaxed structures. The global minimum of the energy is set

to zero and the corresponding volume of the triclinic structure V0 is used

for volume normalization.
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coupling constant 23Ahf 5 0.11(1) T/mB found18 in a-NaMnO2. Since
Ahf scales with the orbital overlap, the charge transfer from the Mn31

ions to the interlayer cations (Cu1 or Na1) is much larger in the
CuMnO2 than in the a-NaMnO2. This implies a stronger J9 in the
former compound and thus is in line with the somewhat better
agreement between the experimental and the predicted TN, as the
renormalization factor k in equation (2) is closer to the used value of
0.7.

The width d of the NQR spectra at 80 K, amounting to 0.16 MHz/
27.2 MHz 5 0.6% of the line-position value nc already in the para-
magnetic phase (Figure 3b), is rather large. The line widths 63d . 65d
reveal spectral broadening being in accordance with the quadrupole
moments 63Q . 65Q and contradicting the gyromagnetic ratios 63c ,
65c. Therefore, sizeable structural distortions of the local environ-
ments must be present. The temperature dependence of both nc

and d shows a pronounced sudden increase below the TN

(Figure 3b), clearly marking the phase transition. The anomaly in
nc at the TN is attributed to the structural transformation of the
CuMnO2 sample, directly affecting the quadrupolar frequency nQ.
Namely, static internal magnetic fields below the TN cause a sym-
metric broadening/splitting of the NQR line so that its center of
gravity is unaffected46. On the other hand, the pronounced increase
of d by a factor of ,2 at the TN, exceeding the change of nc by several
orders of magnitude, can only be magnetic in origin.

We must emphasize that the existence of the NQR signal below the
TN is unexpected. Namely, in the frame of the homogeneously
ordered magnetic phase27 with k~ 0,1=2,1=2ð Þ the Cu nuclei would
experience extremely large internal magnetic fields. Although the Cu
site is a structural center of inversion, the magnetic order breaks this
symmetry, as the spins at 6r from a given Cu site are FM ordered (see
the inset in Figure 3b), in contrast to the a-NaMnO2, where the order
of the two corresponding spins is AFM18. Such a spin configuration
in CuMnO2 yields a large local hf field Bhf ~

63Ahf
�

3|m^2:2 T (m
5 3.05 mB is the size of the ordered26 Mn31 moment). This field leads
to extremely broad NQR spectra, 63d~63c

�
2p|2Bhf^50 MHz,

being two orders of magnitude broader than the experimental ones.
Indeed, the NQR signal below the TN corresponds to a minority

fraction of all the 63Cu nuclei, while a majority of the signal is lost
at the TN due to the onset of large internal fields. Namely, the
Boltzman-corrected intensity of the NQR signal at 4.6 K, when fur-
ther corrected for nuclear relaxation effects, is smaller than the
intensity at 80 K by a factor of ,17. This reveals that, unexpectedly,
about 6% of all the Cu sites in our sample experience small or no
internal magnetic fields and do not correspond to the reported
homogeneous magnetic phase. We note that the AFM order of the
moments positioned symmetrically with respect to the Cu site, or the
absence of any order, result in a zero static local magnetic field at the
Cu site, and would explain the NQR-observable sites below the TN.
Since this minority signal exhibits clear anomalies at the TN

(Figure 3b) it is obviously well coupled to the bulk that undergoes
the magnetostructural transition. This is confirmed by the temper-
ature dependence of the spin-lattice relaxation rate, 1/T1, that shows
a maximum at the TN due to critical spin fluctuations47 related to the
magnetic instability of the bulk. However, in contrast to the mono-
tonic decrease found in the Na-based compound below the TN, in the
CuMnO2, another clear maximum in both the NMR and NQR 1/T1

is observed at around 10 K. This reveals an, as yet, unobserved
instability that could be either magnetic or structural in its nature.

Probing the magnetic disorder with mSR. In order to provide more
insight into the magnetic state in the CuMnO2 that is, according
to the unexpected minority NQR signal, apparently not as
homogeneous as inferred from previous bulk measurements, we
resorted to the mSR local-probe technique. Moreover, this
technique reveals details about the low-temperature anomaly in
the NMR/NQR relaxation at 10 K. In contrast to NQR/NMR,
which is limited because the intrinsic signal disappears below the
TN, the mSR measurements can assess the magnetic properties of
the entire CuMnO2 sample also below the TN. This time a hf/
dipolar coupling between the electronic magnetic moments and
the muon magnetic moment is utilized after a muon stops in the
sample. The resulting local magnetic field Bm at the muon site affects
the mSR asymmetry A(t) that is proportional to the muon
polarization precessing in Bm.

Figure 3 | NMR results. (a) 80-K 63,65Cu NQR and NMR (inset) spectra of CuMnO2. The solid lines represent a simultaneous NMR/NQR fit (see Methods

for details), assuming a Gaussian distribution of the NQR frequencies 63,65nNQR~63,65nQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zg2=3

p
, that yields the quadrupolar frequency 63nQ 5 27.0(1)

MHz, the asymmetry parameter g 5 0.20(5), the isotropic hf shift Khf 5 1.6(1)% that is much larger than the dipolar shift Kd 5 0.11%, and the individual

line widths 63d 5 0.17(1) MHz, 65d 5 0.14(1) MHz. The dashed lines show the center of the NQR lines and the reference NMR frequencies corresponding

to a zero magnetic shift. The 63Cu NQR spectrum at 4.6 K is added for comparison. (b) The temperature dependence of the 63Cu NQR line width 63d and

the line position 63nc. The inset highlights the hf paths through the O22 sites that provide the coupling of each Cu nuclei with six surrounding Mn31

magnetic moments (arrows), ordered with the magnetic wave vector27 k~ 0,1=2,1=2ð Þ. (c) Comparison of the temperature-dependent 63Cu NQR/NMR

spin-lattice relaxation rate 1/T1 in the CuMnO2 and 23Na NMR 1/T1 in the a-NaMnO2 (Ref. 18). The latter is normalized by the squared ratio of the hf

coupling constants. The error bars represent the standard deviation of the fit parameters.
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In CuMnO2, the weak-transverse-field (wTF) experiment that
effectively keeps track of the temperature-dependent ordered part
of the sample by measuring the amplitude of the oscillating mSR
signal48, reveals that the fraction of the muons detecting large frozen
internal fields starts growing already below 80 K (Figure 4a); i.e., far
above the TN, which can be attributed to developing short-range spin
correlations48. Below the TN, the whole sample becomes magnetically
ordered within only a few kelvins, leaving no room for a non-frozen
fraction above the experimental error bar of a few percent. Similar
information is obtained from the zero-field (ZF) mSR, where the
initial asymmetry strongly decreases around the TN and at low tem-
peratures reaches 1/3 of its high-temperature value (inset in
Figure 4b). Such a reduction is characteristic of the establishment
of strong static internal fields in powder samples. Statistically, in 1/3
of all cases the muon magnetic moment is aligned parallel to the Bm

and therefore exhibits no precession, while rapid oscillations of the
asymmetry in other cases diminish the mSR signal on a coarse time
scale.

A detailed look at the ZF relaxation curves below TN (Figure 4c)
also allows for the detection of the quickly-oscillating component.
Similar to the a-NaMnO2 case18, the two-component model

AZF tð Þ~
X2

j~1

fj
1
3

e{lLtz
2
3

cos cmBm,jt
� �

e{lT,j t

� �
ð3Þ

fits well with the experimental data. Here, fj denotes temperature-
independent probabilities that the muons stop at either of the two
magnetically non-equivalent stopping sites j. The preferential site is
occupied in 70(5)% cases. The internal field at this site is only slightly
higher than at the second site (0.59 and 0.54 T at the first and the
second site, respectively, at 5 K); however, a fit with only a single
oscillating component (the dashed line in Figure 4c) results in a
much poorer agreement with the data. The damping rate of the
oscillations lT,j that is due to the finite width of the local-field dis-
tributions18 in CuMnO2 is reduced by a factor of ,3 when compared
to the a-NaMnO2 (Figure 4c), indicating more homogeneous
magnetism.

In the ZF experiment, the magnetic phase transition at the TN is
expressed as a maximum of the longitudinal muon-relaxation rate
lL, like in the NQR/NMR relaxation experiments. Moreover, the
second maximum observed in the NQR/NMR experiments at 10 K
is also found in the mSR. Since the ZF mSR signal corresponds to the
total volume of the sample and the muons are only sensitive to
magnetism, this reveals that the low-temperature anomaly is of mag-
netic origin and is intrinsic to the CuMnO2 system.

Discussion
The FTLM and DFT numerical calculations provide a solid basis for
addressing the experimentally observed similarities and differences
between the CuMnO2 and the a-NaMnO2. Considering the latter
calculations in the magnetically ordered state, the triclinic phase is
energetically preferred in both compounds. With increasing temper-
ature, the staggered susceptibility decreases and this leads to a finite
TN. Above the TN the exchange-energy gain associated with the
magnetically ordered state disappears, which in turn leads to a struc-
tural transformation to the monoclinic phase that is energetically
preferred in the non-magnetic state. The isotropic Heisenberg
Hamiltonian of the spatially anisotropic triangular lattice is domi-
nantly responsible for elevating the TN in the CuMnO2 with respect
to the a-NaMnO2, while the magnetoelastic and the interlayer cou-
plings play a less important role.

On the other hand, our local-probe experiments on the CuMnO2

revealed some subtle, yet profound, features that should be carefully
considered in the attempt to understand the presence/absence of
nano-scale phase separation in the spatially anisotropic triangular
lattice. Both, the NQR/NMR and the mSR investigations demon-
strated that CuMnO2 undergoes a magnetostructural phase trans-
ition at TN 5 65 K almost completely. The minority NQR
component (,6%) that remains present below the TN can be
explained by regions where the interlayer magnetic ordering is FM
instead of being AFM, as the latter causes the disappearance of the
NQR signal due to large local fields. The NQR signal exhibits a
magnetic anomaly around 10 K, which is expressed by the increased
relaxation rates of the NQR/NMR as well as the mSR. Since mSR, on

Figure 4 | mSR results. (a) The temperature-dependent magnetically ordered volume fraction [1 2 A0(T)/A0(120 K)] of the CuMnO2, derived from the

wTF mSR asymmetry AwTF data (inset); solid lines are fits to the model AwTF tð Þ~A0 Tð Þcos cmBwTFt
� �

e{lTtzC Tð Þ, where cm 5 2p 3 135.5 MHz/T is the

muon gyromagnetic ratio, BwTF is the transverse applied magnetic field and lT the transverse muon relaxation rate. The A0(T) term corresponds to

muons experiencing no sizeable static internal magnetic field, while the C(T) term describes those muons that reside at sites with large static fields

(Bm?BwTF). (b) The longitudinal muon relaxation rate derived from the ZF muon asymmetry AZF data (inset); solid lines are fits to the model

AZF tð Þ~A’0 Tð Þe{lLt , where the initial asymmetry A’0 Tð Þ is temperature dependent to account for the disappearance of the oscillating component below

the TN. (c) mSR asymmetry of CuMnO2 (upper panel) and a-NaMnO2 (lower panel; adopted from Ref. 18) at 5 K. The solid and dashed lines represent the

corresponding fits to the ‘‘two-component’’ model of equation (3) and a model with only one oscillating component, respectively. Fitting to the CuMnO2

data yields x2 5 0.71 and 1.71 for the former and the latter models, respectively. The error bars represent the standard deviation of the fit parameters. For

the muon asymmetry data the latter are set by the square root of the total number of detected positrons.
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the other hand, detects a bulk magnetic signal, the small NQR com-
ponent is apparently coupled to the bulk magnetic phase. This is
further confirmed by the line position and the width of the NQR
spectra, changing considerably at the TN. The coupling with the bulk
phase can then be regarded in the context of the nano-scale phase
inhomogeneity. A comparison of the ZF mSR asymmetry curves of
the CuMnO2 and the a-NaMnO2 is quite informative in this respect.
The notably reduced damping of the oscillations in the ordered phase
of the former compound provides evidence of much narrower field
distributions, and hence less disorder. This conclusion is also in line
with the number of the interlayer cation (Cu1 and Na1) sites experi-
encing internal fields that do not comply with the symmetry of the
bulk magnetic order, which in the CuMnO2 is decreased to 6%, from
the 30% found18 in the a-NaMnO2.

The magnetostructurally inhomogeneous ground state of the
a-NaMnO2 on the nano-scale has previously been attributed to the
combined effects of geometrical frustration and near-degenerate
monoclinic and triclinic structural phases18. We believe that the key
factor controlling such an inhomogeneity is the difference in the total
energy of the two competing phases in the magnetically ordered state.
This difference is notably larger in the CuMnO2 (1 meV per f.u.) than
in the a-NaMnO2, where it is below the computational error bar
(,0.5 meV per f.u.45). In the latter compound, an infinitesimal
quenched disorder, locally favouring one phase over the other, can
then be held responsible for triggering the phase separation. Similar
effects are suppressed in the stoichiometric CuMnO2, but would
become enhanced for larger deviations from perfect system uniform-
ity. Indeed, enhanced strain, acting as a precursor of the monoclinic-
to-triclinic structural phase transition, has been observed18,23 in the
high-temperature monoclinic phase in stoichiometric a-NaMnO2,
while in the CuMnO2 a Cu-Mn off-stoichiometry is required to pro-
duce such a strain28. Moreover, the diffuse magnetic scattering char-
acteristic of 2D correlated regions that coexist with sharp magnetic
Bragg peaks (one of the signatures of the inhomogeneity18 found in the
a-NaMnO2) is also found26,30,31 in the CuMnO2. However, in contrast
to the a-NaMnO2, where it persists to low temperatures, in stoichi-
ometric CuMnO2 it gradually gives way to the 3D ordered phase
below the TN. Interestingly though, in off-stoichiometric samples30

the volume fraction of the 2D-correlated phase shows no decrease
below the TN, implying that the 2D-ordered regions keep competing
with the 3D order at low temperatures. The total-energy difference of
the competing phases below the magnetostructural transition, reflect-

ing the interplay of the magnetic-exchange and the elastic energies,
then seems to determine the amount of disorder required to stabilize
the inhomogeneous ground state on a geometrically frustrated tri-
angular lattice. Systems with near-degenerate competing phases can
be locally perturbed more easily. Such an inhomogeneity may, there-
fore, be a more general feature of geometrically frustrated magnets.

Methods
Finite-temperature Lanczos method simulations. Calculations of the spin
susceptibility for the S 5 2 Heisenberg model on the anisotropic triangular lattice
(equation (1)), were performed with the finite-temperature Lanczos method
(FTLM)49,50 and were used to determine the leading exchange couplings J1 and J2 in
the CuMnO2. Within the FTLM finite-size clusters are diagonalized in a similar
manner as for the standard exact diagonalization Lanczos method (at T 5 0) and
additional random vector averaging over the R vectors is employed to determine the
properties at T . 0. Typically, R , 10 suffices for the largest systems and the lowest T,
while smaller systems require a larger R. The limitations of the method are mainly set
by finite-size effects, which are the largest at low T and determine the lowest reachable
T(,J1). In order to reduce the finite-size effects we used periodic boundary
conditions, adjusted cluster shapes, the largest reachable cluster sizes (up to N 5 14
sites), and additional approximations for the values in the thermodynamic limit.

The temperature-dependent magnetic susceptibility x(T) of the model given by
equation (1) was calculated previously in Ref. 35 for a-NaMnO2. It was shown that in
the regime of interest, elongated spin clusters are the most appropriate. In particular,
if a cluster has m independent spins in the J1 direction and n spins in the J2 directions,
it was realized that due to J2 , J1 and two competing J2 bonds, x does not depend on n
for n . 2 (see Fig. 2 in Ref. 35). This fact allows us to reduce the finite-size effects by
using a larger m. We note that due to the alternating behaviour of x with m (see
Figure 5), which originates in periodic boundary conditions and antiferromagnetic
spin-spin correlations, the average susceptibility curve from the two largest-size
clusters (m 5 6 and 7) is a better approximation than the m 5 7 curve.

Scaling-like approximation for the susceptibility. The results for several different
sizes of finite clusters and their systematics, shown in Figure 5, allow a scaling-like
analysis to obtain a better approximation of x in the thermodynamic limit. Typical
scaling analyses use scaling functions of the form x(N) 5 a 1 b/N and additional
higher terms when needed; e.g., c/N2. Since our calculations are limited to rather small
maximum system sizes by S 5 2, we also use the results from small systems (starting
with m 5 2). Consequently, such scaling functions are not appropriate. In particular, at
higher T (see, for example, T . 5J1 in Figure 5) x has already converged with N for
systems with m $ 5, while for m , 5 notable finite-size effects are seen. Therefore, the
scaling function should be close to a constant for 1/N smaller than some value, while at
larger 1/N, the scaling function should allow for a stronger N dependence. For these
reasons we use a generalized scaling function of the form x(N) 5 a 1 b [exp(c/N) 2 1],
which corresponds to typically used functions in the limit of small 1/N. In order to also
capture the alternating component of x with m (Figure 5) we add, in a similar fashion,
the term b1 [exp(c1/N) 2 1] (21)N/2. Such a scaling function also gives a correct
(converged with N) result for high T, while typical scaling functions fail in this respect.
We have performed such a scaling for each T separately. However, since we are limited
to small systems with notable finite-size effects at low T *vJ1

� �
and since the scaling

function has many parameters, the result of such an analysis should not be taken as a
strict thermodynamic limit. Rather, it should be regarded as a next approximation of it,
compared to the result from simpler averaging of the two largest-cluster curves.

Density-functional theory calculations. The calculations of the total energies and
the magneto-elastic (ME) coupling coefficients were performed within the
framework of the density-functional theory (DFT) and the generalized-gradient
approximation (GGA)51 for the exchange-correlation contribution by applying the
Quantum Espresso code52. The electron-ion interactions were described by the
Vanderbilt ultrasoft potentials53 including the spin-orbit coupling for the Mn atoms.
The plane-wave cut-off parameters were set to 585 eV and 4678 eV for the expansion
of the wave functions and the potential, respectively. In order to take into account the
proper antiferromagnetic ordering, the 1 3 2 3 2 supercells of the monoclinic and the
triclinic structures were used. The calculations of the total energies as a function of the
unit-cell volume for the different types of magnetic ordering were carried out by using
4 3 8 3 2 reciprocal vectors in the full Brillouin zone (BZ) for the Methfessel-Paxton
sampling54 integration. The criterion for the self consistency was the total-energy
difference between two subsequent iterations being less than 1028 Ry. The
monoclinic phase was further optimized by minimizing the total energy and the inter-
atomic forces with respect to the lattice parameters and the atomic positions. The
resulting structure served as the zero-strain reference for the calculations of the ME
coefficients that are based on the evaluation of the total-energy differences of the
order of ,1024 Ry, which is also the accuracy for the determination of the total-
energy differences between the monoclinic and triclinic phases in Figure 2b,
calculated per 4 f.u. The tests yielded 8 3 16 3 4 reciprocal vectors in the full BZ to be
enough for well-converged results.

Determination of the magnetoelastic coupling. The magnetoelastic coupling
constants bij are calculated from the associated magnetoelastic energy density. This
contains the products bijEijmimj of the strain-tensor components Eij and the

Figure 5 | The finite-size effects in the FTLM calculation. The calculated

susceptibility on various m 3 n clusters for the optimal parameters J1 5

53 K and J2/J1 5 0.27. The curve averaging the 6 3 2 and 7 3 2 data and the

scaled curve are also shown.
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components mi of the normalized magnetization. The form of the magnetoelastic
energy density is determined by the symmetry of a particular system44. The
magnetism of the CuMnO2 and the a-NaMnO2 is essentially two-dimensional;
therefore, only the terms with the lateral strain-tensor components are important. For
the monoclinic symmetry, these include

bxxExxm2
x ,

bxtExymxmy ,

byyEyym2
y :

ð4Þ

Individual magnetoelastic terms are then determined by specifically choosing strain
components and magnetization directions and calculating the total-energy density
f Exx,Eyy,Exy,mx ,my,mz
� �

, from

Dfxx~f E0,0,0,1,0,0ð Þ{f E0,0,0,0,0,1ð Þ,

Dfyy~f 0,E0,0,0,1,0ð Þ{f 0,E0,0,0,0,1ð Þ,

Dfxy~f 0,0,E0,1,1,0ð Þ{f 0,0,E0,0,0,1ð Þ:

ð5Þ

The above total-energy differences are calculated ab-initio as a function of E0 for
relaxed crystal structures. In CuMnO2, Dfxx and Dfyy change linearly with increasing
strain at least up to E0~0:03, while an additional quadratic term is observed in Dfxy

(Figure 2a). The experimental strain value Exy~0:0028 that is obtained by calculating
the relative shift of the Mn21 ions in the triclinic structure, when compared to the
monoclinic structure (based on high-resolution synchrotron XRD data analysis18), is
an order of magnitude lower. Therefore, the linear term is dominant for all three
contributions and allows the extraction of the three magnetoelastic constants bxx 5

2.3 MJ/m3, byy 5 1.6 MJ/m3 and bxy 5 3.4 MJ/m3.

Nuclear magnetic/quadrupolar resonance. 63,65Cu (I 5 3/2) NMR/NQR
measurements were performed on a high-quality powder sample with the same phase
purity and stoichiometry as in the study presented in Ref. 27. The NMR/NQR spectra
and the spin-lattice relaxation were measured between 4.6 K and 120 K in a magnetic
field of 8.9 T (NMR) and in zero magnetic field (NQR) on a custom-built
spectrometer. Frequency sweeping and a solid-echo pulse sequence were used for
recording the spectra, while a saturation recovery method was used for measuring the
spin-lattice relaxation. Typical p/2-pulse lengths were 3.5 ms and 6 ms in the NMR
and NQR experiments, respectively. The reference NMR Larmor frequencies of 63n0

5 100.728 MHz and 65n0 5 107.908 MHz were determined with a 0.1 M NaCl-
solution reference by taking into account the gyromagnetic ratios 23c 5 2p 3

11.261 MHz/T, 63c 5 2p 3 11.295 MHz/T and 65c 5 2p 3 12.089 MHz/T.
The NQR spectrum of each isotope is particularly simple, as it is given by a single

line46 at 63,65nNQR~63,65nQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zg2=3

p
, with the ratio of the quadrupolar frequencies

63nQ/65nQ 5 1.08 fixed by the corresponding quadrupolar moments and the EFG
tensor Vij asymmetry parameter being g 5 (Vxx 2 Vyy)/Vzz. The NMR spectrum is
more complicated, because the applied magnetic field B0 breaks the symmetry in the
spin space. The central-transition (21/2 « 1/2) powder NMR line adopts a char-
acteristic structure because of the angular-dependent NMR shift K from the reference

frequencies n0 5 cB0/2p, 63,65K~
n{63,65n0

63,65n0
~Khf zKdz

63,65KQ. In analogy18 to the

a-NaMnO2, we take the hf shift Khf ~�hAhf m=n0 (�h is the reduced Planck constant) to
be isotropic, while the dipolar contribution Kd and the quadrupolar46 shift 63,65KQ can be
accurately calculated. The former has a uniaxial symmetry and is calculated18 (Kd 5

0.11% is the dominant eigenvalue) by taking into consideration all the Mn31 paramag-
netic spins around a given Cu site within a sphere large enough to ensure convergence.

A homogeneous life-time broadening of the NQR spectra is negligible. The spin-
spin relaxation time 63T2 5 46 ms at 80 K yields 63dh 5 6.9 kHz, which is much
smaller than the spectral width. The spin-lattice relaxation is of magnetic origin. We
find the isotopic effect 65T1/63T1 5 0.86 that is in accordance with magnetic relaxation
dictating 1=T1!c2A2

hf .

Muon spin relaxation. The mSR investigation was carried out on the General
Purpose Surface muon (GPS) instrument at the Paul Scherrer Institute, Villigen,
using the same powder sample as in the NMR/NQR experiments. Zero-field (ZF) and
weak-transverse-field (wTF) measurements in a 3 mT magnetic field were performed
in the temperature range between 5 and 120 K. The veto mode was utilized to
minimize the background signal. The ZF mSR measurements below the TN revealed
that each muon stops at one of the two possible non-equivalent stopping sites, like
was observed18 in a-NaMnO2.
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