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Abstract

Mouse ultrasonic vocalizations (USVs) are studied in many fields of science. However, vari-

ous noise and varied USV patterns in observed signals make complete automatic analysis

difficult. We improve several methods to reduce noise, detect USV calls and automatically

cluster USV calls. After reduction of noise and detection of USV calls, we consider USV

calls as functional data and characterize them as USV functions with B-spline basis func-

tions. For discontinuous USV calls, breakpoints in the USV functions are defined using mul-

tiple knots in the construction of the B-spline basis functions, and a hierarchical method is

used to cluster the USV functions by shape. We finally show the performance of the pro-

posed methods with USV data recorded for laboratory mice.

Introduction

Mice are known to emit ultrasonic vocalizations (USVs) in many types of social behaviors,

and the USVs seem to differ depending on a variety of contextual determinants; e.g., the age,

genetic background and behavioral state affect the vocalization rate, syntax, frequency and

duration [1]. This suggests that the USVs of mice convey information in social communica-

tion and this makes them important ([2], [3], [4], [5], [6], [7], [8]). It is also known that mice

USVs contain different USV call (or syllable) types ([1], [9], [10], [11]). The importance

of different patterns of USV calls has recently been reported; e.g., USVs emitted by males

were shown to attract females in a playback test. It has been shown that female mice prefer-

entially approach specific types of USVs emitted by males [12] and tend to approach USVs

of a type that is emitted by a strain different from their own parents’ strain [13]. However,

potentially important factors (e.g., the number of specific USV call types and the specific

sequential emission pattern of call types) within different patterns of USVs used for social

communication are still unclear. Clarifying differences among USV call types would help

address this issue. The detailed characterization of USV call types requires many steps

including recording, call detection, call type classification and clustering. These steps are

taken using commercially available software. In these steps, call type classification and clus-

tering are still time-consuming because noise reduction and pattern classification are done

manually in most cases ([10], [12]). Currently available software (e.g., Avisoft Bioacoustics
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and the ISOMAP analysis method of [9]) can calculate and display spectrograms and allow

automatic signal detection. However, suitable methods for the automatic classification and

clustering of USV calls have not yet been developed.

We are interested in the variety of shapes of USV calls and we consider clustering call

types. We take USV records from six laboratory male mice of two strains. The USV records

contain not only USV phrases of syllables but also background noise, sounds of gnawing,

squeaks (also called noisy syllables in [1]), movement noise and bedding noise of mice. USV

calls appear in a frequency range higher than 30kHz and have several syllable types. Back-

ground noise can be considered uniformly distributed across all frequencies. The other

sounds usually appear at frequencies lower than the frequencies of USV calls, but some spike

into the range of USV frequencies. This was also pointed out by [9]. To focus on USV calls,

we consider all other sounds as noise, estimate the weighted dominant frequency and detect

USV calls.

To classify calls into subsets, [9] suggested considering each call as a function of time and

clustering USV calls into several types by frequency jumps, but their analysis failed to cluster

USV calls into subtypes. There was thus still a need for a new method of further subtype

clustering. Similarly, [14] proposed a series of methods for handling continuous nonhar-

monic mouse USV data. The methods include procedures that reduce noise, find the signal

of the calls and group continuous USV calls through functional clustering. Because USV

calls are more often discontinuous in some datasets, we propose in this paper a method that

employs B-spline basis functions to characterize USV calls as USV functions. Using this

method, we can analyze both continuous and discontinuous nonharmonic USV calls. This

overcomes the limitation of the orthogonal polynomial method introduced in [14] and

reveals more subtypes of syllables with frequency jumps. We also make improvements to

noise reduction; these can be considered a generalization of the method given in the same

paper.

We consider nonharmonic USV call signals as functional data and represent the segments

of frequencies as one-dimensional functions of time. Functional data analysis was proposed

by [15, 16] and has been further developed and applied in many fields [17, 18]. Some func-

tional clustering methods have been proposed for the unsupervised learning of functional

data. As an example, [19] proposed a clustering method based on Gaussian mixture distribu-

tions for sparsely sampled functional data. [20] developed k-center functional clustering

with functional principal component analysis. A two-stage clustering method was proposed

by [21]; this method allows B-spline basis functions to be fitted to functional data and coeffi-

cient vectors to be partitioned through k-means clustering. We here propose a method

similar to that in [21], using two-stage functional clustering with B-splines. However, our

method is suitable for discontinuous curves. Furthermore, we apply Ward’s method for hier-

archical clustering.

The paper is organized as follows. We first introduce our experiments and USV datasets.

We then review the method of reducing noise and propose a weighted-frequency method to

calculate frequency for each frame when detecting USV calls. After noise reduction, we define

the USV calls as functions employing a B-spline method and cluster them employing a func-

tional clustering method. We finally demonstrate our methods with six real USV datasets and

present conclusions.

Materials and methods

In experiments on testing mouse social behavior, we recorded USV data for three male mice of

the strain BALB/cAnN and three male mice of the strain C57BL/6JJcl. The details of the
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experiments and the information of USV frames produced by fast Fourier transform of the

data are given as follows.

Experiments and datasets

Ethics statement

Mice were maintained in accordance with National Institute of Genetics (NIG) guidelines.

This study was carried out in strict accordance with the recommendations in the Guidelines

for Proper Conduct of Animal Experiments of the Science Council of Japan. The protocol

was approved by the Institutional Committee for Animal Care and Use of the National

Institute of Genetics (Permit Numbers: 21-14).

Animals

Ultrasound emissions from male mice C57BL/6JJcl were recorded during male–female inter-

action. C57BL/6JJcl were purchased from CLEA Japan, Inc. (Tokyo, Japan). Mice were

bred at the NIG and used in the experiments. All animals were kept at the NIG under a

12-h light/dark cycle (light from 8:00 to 20:00) in a temperature-controlled room.

Apparatus

An ultrasound microphone (CM16/CMPA Condenser ultrasound microphone, Avisoft Bio-

acoustics) and recorder (UltraSoundGate 116H, Avisoft Bioacoustics) were used for record-

ing. The microphone was positioned approximately 10 cm above a cage that contained the

mice ([12]).

Recording procedure

A 15-week-old male C57BL/6JJcl was paired with a 15-week-old female C57BL/6JJcl for 1

week. Two days before the test day, the male mouse was housed individually. Another

15-week-old female C57BL/6JJcl was injected with pregnant mare serum gonadotropin to

control its sexual cycle. On the test day, the male mouse was transferred to a small cage (12

cm ×20 cm) with wood chip bedding, and the second female mouse was then introduced

into the small cage. Immediately after the female had been introduced, the recording of

sound began. The recording was performed during the early part of the dark phase, 20:00–

24:00 pm. Ultrasound data for BALB/cAnN were obtained from [12].

Datasets and fast Fourier transform

The six raw datasets recorded for the two mouse strains were transformed by fast Fourier

transform into six sequences of USV frames as follows. Each frame had a duration of

0.85 ms. Each USV frame overlapped 50% with the next frame, and is represented by

256 samples taken at a sampling rate of 300kHz; i.e., the highest measurable frequency

(the Nyquist frequency) was 150kHz, which is half the sampling frequency, and the time

between adjacent frames was 0.425 ms. Hence for each frame, 126 squared amplitudes

(or powers) were computed for the sampling frequencies. The durations and trans-

formed matrix sizes of the datasets are listed in Table 1. Our analysis uses the obtained

matrices.

Each dataset is expressed by a matrix X = {xi,j}, where i = 1, . . ., T and j = 1, . . ., F are for

time and frequency, respectively. The entries, xi,j, are intensities corresponding to the level of

vocalization.

Functional clustering of mouse USV data

PLOS ONE | https://doi.org/10.1371/journal.pone.0196834 May 9, 2018 3 / 26

https://doi.org/10.1371/journal.pone.0196834


Noise reduction

A noise reduction process has been proposed for mouse USV data [14]. The process involves

three steps: taking a moving average, determining the minimum USV call intensity and sepa-

rating the USV call signals from the matrix. This subsection briefly reviews these three steps

and then makes an improvement to the third step.

The first step is to use a small matrix of size m × n to calculate the two-dimensional moving

average of the original matrix data. This gives the moving-average matrix

~X ¼ f~x1; � � � ; ~xT� mþ1g ¼ f~xk;lg;

where

~xk;l ¼
1

mn

Xkþðm� 1Þ

i¼k

Xlþðn� 1Þ

j¼l

xi;j; k ¼ 1; � � � ;T � mþ 1; l ¼ 1; � � � ; F � nþ 1;

with m and n respectively indicating time and frequency. Moving averages are often used

in time series to model the trend of data. The purpose of the moving-average step here is to

reduce perturbation in the signals, which helps in distinguishing noise from the voice signal

and finding the trend of the USV signals.

The second step is to choose a threshold intensity, according to the noise level, and to set all

entries smaller than the threshold in the moving-average matrix ~X ¼ f~xk;lg to zero. This effec-

tively reduces the background noise in the experiment. Low-frequency noise and noise spiking

from low frequency to high frequency can be removed by setting the intensities at those frames

to zero.

The third step is to detect USV calls. [14] chose the frequency corresponding to the maxi-

mum intensity for each frame ~x i, i = 1, � � �, T − m + 1. When a frame has more than one maxi-

mum, the median frequency among those with maximum intensity is chosen.

Choosing the frequency from the maximum intensity may result in insufficiently smoothed

USV curves. We here propose using a weighted frequency as a generalization of using the max-

imum intensity. For time i, the weighted frequency can be defined by

fi ¼
X

j

x�i;j
P

kx�i;k
j; ð1Þ

where

x�i ¼ quantileð~x i; pÞ ¼ ðx�i;jÞ

Table 1. Durations and the transformed matrix sizes of the datasets.

Dataset Duration(seconds) Size of obtained matrix

S1 Data 99 233393 × 126

S2 Data 299 703182 × 126

S3 Data 299 703182 × 126

S4 Data 188 443086 × 126

S5 Data 320 753614 × 126

S6 Data 302 709966 × 126

https://doi.org/10.1371/journal.pone.0196834.t001
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is a vector containing elements of ~x i larger than the 100p% quantile. We see that the frequency

is thereby weighted by the ratio of x�i;j in the largest 100(1 − p)% quantile intensities in ~x i.

This produces a sequence of frequency in time. The sequence contains USV calls and inter-

spaces of different durations. To detect the USV calls from the sequence, we need to determine

the interspaces between adjacent USV calls. [14] proposed determining the length of inter-

spaces by considering the total number of USV calls for different lengths of interspace. Choos-

ing a threshold for interspacing that is too short may separate the sequence into too many

segments; in contrast, choosing a threshold that is too long may merge distinct USV calls into

a long segment. A plot of the total number of USV calls for different lengths of interspace can

suggest the proper length of interspace, at which the total number of USV calls becomes stable.

The obtained length of interspace, which we will call l, is the shortest length of the interspaces

between adjacent frequency USV calls. That is to say, if two adjacent frequency points are sepa-

rated by l or more units of time, we judge that they are from distinct USV calls; otherwise they

are considered to be part of the same USV call.

From this, we obtain USV calls with different lengths. Since very short USV calls may be

noise, we remove these short “USV calls” to conclude the noise reduction process.

Definition of functional data

Our purpose is to classify the USV calls by shape. We consider the USV calls as functional data

and define them as functions. Many methods are available for estimating USV functions, such

as the use of Chebyshev polynomials [22], kernel methods, and wavelet methods. Because

almost all USV calls from the BALB/cAnN mouse are continuous, [14] proposed the use of

Chebyshev polynomials to model the USV calls of the BALB/cAnN mouse. However, this

method cannot be applied to discontinuous USV calls.

Because many USV calls from the C57BL/6JJcl mice are not continuous, they may contain

several jumps or breakpoints. We prefer the B-spline basis function method [23] for this rea-

son. The B-spline basis function method is one of the most popular methods of representing

data as functions. Libraries of code for working with B-spline functions are available in many

programming languages, including R, S-Plus and MATLAB. In this paper, we use the function

bs() in the splines package for R.

A B-spline basis function is a spline function defined by its order and a sequence of knots.

Let

t� d ¼ � � � ¼ t0 ¼ 0 � t1 � � � � � tm� 1 � 1 ¼ tm ¼ � � � ¼ tmþd ð2Þ

be m + 2d + 1 knots on [0, 1]. We denote by βk,d(t) the kth B-spline basis function of order d
for the knot sequence in (2). βk,d(t) is then defined recursively in terms of divided differences:

bk;dðtÞ ¼
t � tk

tkþd � tk
bk;d� 1ðtÞ þ

tkþdþ1 � t
tkþdþ1 � tkþ1

bkþ1;d� 1ðtÞ;

k ¼ � d; � � � ; � 1; 0; 1; � � � ;m � 1

with the initial condition

bk;0ðtÞ ¼

1

tkþ1 � tk
tkþ1 > tk and t 2 ½tk; tkþ1Þ;

0 otherwise:

8
><

>:

This process generates P(≔ d + m) B-spline basis functions. We know that any linear

combination of a set of B-spline basis functions is still a spline function that is a piecewise
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Fig 1. The first panel shows a part of the original data (log transformed). After the moving average is taken and

background noise is reduced, we obtain the sequence of USV signals using weighted frequencies in the second panel and

the USV functions generated by the B-spline method in the last panel.

https://doi.org/10.1371/journal.pone.0196834.g001
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polynomial in which the adjacent polynomials join smoothly at the knots. An essential prop-

erty of B-splines is that knot duplication reduces continuity. If we duplicate an interior knot

in the construction of the knot sequence, and generate the B-spline sequence, then the linear

combination of B-splines has one less continuous derivative at the duplicated knot. This

means that constructing functions with breakpoints is straightforward.

Assume that we have N USV calls. There are ni pairs of (ti,j, fi,j), j = 1, � � �, ni, in the ith USV

call, i = 1, � � �, N. To define a spline, we first specify the degree of the B-splines and knots over

the interval where the function is to be approximated. These choices determine the goodness

of fit of the functions. Cubic splines (d = 3) and quantiles of ½ti;1; ti;ni
� are typical choices for

piecewise polynomials and interior knots, respectively. Without getting deeply involved in

model selection, we suggest setting single interior knots at the same quantiles for both continu-

ous and discontinuous USV calls. For discontinuous USV calls, we specify a constant κ as the

threshold. When |fi,j − 1 − fi,j|> κ, the curve is considered discontinuous at time j, and j is called

a breakpoint. To construct a jump at a breakpoint in the regression function, we put d + 1

knots at the breakpoint. Here, d is the degree of the B-spline functions. This allows us to obtain

the same length of coefficient vectors for the USV calls with the same number of breakpoints.

For all USV calls, we assume that

fi;j ¼ yi;0 þ
XP

p¼1

yi;pbp;dðti;jÞ þ εi;j; p ¼ kþ d þ 1; k ¼ � d; � � � ; 0; � � � ;m � 1; P ¼ d þm

or in matrix form,

f i ¼ Bθi þ εi;

where ti ¼ ðti;1; � � � ; ti;nj
Þ
0
, f i ¼ ðfi;1; � � � ; fi;nj

Þ
0
respectively indicate time and frequency.

Fig 2. The shortest length of interval between adjacent USV calls can be determined from the change in the total number of USV calls while

adjusting the length.

https://doi.org/10.1371/journal.pone.0196834.g002

Functional clustering of mouse USV data

PLOS ONE | https://doi.org/10.1371/journal.pone.0196834 May 9, 2018 7 / 26

https://doi.org/10.1371/journal.pone.0196834.g002
https://doi.org/10.1371/journal.pone.0196834


B ¼ ð1; b1;dðtÞ; � � � ; bP;dðtÞÞ is then the set of B-spline basis functions with degree d. Using

the least-squares method, for each USV call i, we obtain the regression function

bf i ¼ Bbθ i;

with coefficient vector

bθ i ¼ ðB
0BÞ� 1B0f i:

Hence, for each curve, we obtain a coefficient vector of length P + 1 = d + m + 1.

Fig 3. Histogram of RMSEs for fitting 393 USV curves. The mean of the RMSEs is 0.143, while the variance is 0.024.

https://doi.org/10.1371/journal.pone.0196834.g003
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Functional clustering

We propose a two-step clustering method for splitting the obtained USV curves into clusters.

In the first step, we group the curves by the number of breakpoints. Curves with the same

number of breakpoints have the same length of coefficient vectors and should be gathered into

the same cluster. These clusters are called the first-level clusters, or groups.

In the second step, we separate the curves in each first-level cluster by shape. This process is

performed by clustering the coefficient vectors, using standard multivariate clustering meth-

ods, such as Ward’s method.

Fig 4. Cluster dendrogram and clusters obtained by clustering the coefficient matrix of continuous USV functions for mouse BALB/cAnN 1752

using Ward’s method.

https://doi.org/10.1371/journal.pone.0196834.g004
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Fig 5. Examples of the five clusters in Group I.

https://doi.org/10.1371/journal.pone.0196834.g005
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Results

Analysis of BALB/cAnN data

Our first example is a dataset (S1 Data) from a BALB/cAnN male mouse, BALB/cAnN 1752.

The intensity level range is [5, 5330]. To reduce noise, we first apply the moving-average

method with a small matrix of size 15 × 3. We then set intensities less than 200 to 0. Because

almost all USV calls are at a frequency larger than 40 × 1172Hz, signals in this range are

Fig 6. Cluster dendrogram and clustering of discontinuous USV functions with one breakpoint for mouse BALB/cAnN 1752 are shown in the

first three panels. The USV function with two breakpoints is shown in the last panel.

https://doi.org/10.1371/journal.pone.0196834.g006
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considered. By considering the largest 5% quantile intensities at each frame, a sequence of

weighted frequency (1) over time is obtained. Fig 1 shows part of the original data and the

results of the noise reduction method in the first two panels. Fig 2 shows that the total number

of USV calls becomes stable when the length of the interspace between two adjacent USV calls

is 30. We thus set 30 × 0.425 ms as the shortest length possible between adjacent USV calls.

After deleting 33 short “USV calls” (shorter than 15 × 0.425 ms = 6.375 ms), we obtain 393

USV calls for analysis. Fig 2 reproduces the result obtained using the maximum-frequency

method in [14]. The figure shows that the weighted frequency method achieves the same result

Fig 7. Examples of the two clusters in Group II and the USV call in Group III.

https://doi.org/10.1371/journal.pone.0196834.g007
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Fig 8. The first panel shows some of the data (log transformed) for mouse C57BL/6JJcl 2358. The second panel is the

result after noise reduction. The last panel shows the USV curves obtained using the B-spline basis function method.

https://doi.org/10.1371/journal.pone.0196834.g008
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as the maximum frequency method and can be considered a generalization of the maximum

frequency method.

We regard the obtained signals of USV calls as functional data and use the B-spline regres-

sion to define them as functions. Because almost all USV patterns are continuous, we set eight

equally spaced interior knots on the domain of each USV curve. To define breakpoints, we set

κ = 8. We then add four multiple knots for each breakpoint and fit the signals with cubic B-

spline basis functions. From this, we finally obtain 386 continuous USV functions, six USV

functions with one breakpoint, and one USV function with two breakpoints. The obtained

functions for the USV call examples are given in the last panel of Fig 1. A histogram of the

roots of mean squared errors (RMSEs) for the 393 USV curves is presented in Fig 3. The mean

and variance of the RMSEs are respectively 0.143 and 0.024.

Fig 9. Determining the interval length between adjacent USV calls.

https://doi.org/10.1371/journal.pone.0196834.g009

Functional clustering of mouse USV data

PLOS ONE | https://doi.org/10.1371/journal.pone.0196834 May 9, 2018 14 / 26

https://doi.org/10.1371/journal.pone.0196834.g009
https://doi.org/10.1371/journal.pone.0196834


Fig 10. Histogram of RMSEs for the fitting of 374 USV curves. The mean of the RMSEs is 0.546 and the variance is 0.118.

https://doi.org/10.1371/journal.pone.0196834.g010

Table 2. Three-hundred and seventy-four USV curves are divided into five groups by the number of breakpoints.

Group I II III IV V

Number of breakpoints 0 1 2 3 more than 3

Number of USV curves 115 95 50 42 72

https://doi.org/10.1371/journal.pone.0196834.t002
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The final step is functional clustering. The 393 functions are first classified by their

number of break points into three groups: continuous curves (Group I), discontinuous

curves with one breakpoint (Group II) and discontinuous curves with two breakpoints

(Group III).

For continuous curves, we use Ward’s [24] clustering criterion to obtain a dendrogram, as

shown in Fig 4. We can divide the 386 continuous curves in Group I into three or five clusters.

Because we consider only the shapes of the curves, all the curves are plotted in the interval of

time [0, 1]. In the case of splitting Group I into five clusters, we have five types of syllable

shapes: downward, flat, mound, upward, and mound-upward (see examples in Fig 5). Group

Fig 11. Cluster dendrogram obtained for continuous functions and two clusters.

https://doi.org/10.1371/journal.pone.0196834.g011
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II can be divided into two clusters as jump-up and jump-down shapes (Fig 6). Only one dis-

continuous USV function has two breakpoints in Group III; this is shown in the last panel of

Fig 6. Examples for Groups II and III are given in Fig 7.

USV datasets from the other two BALB/cAnN mice are analyzed in the same way,

except that the threshold intensity is chosen as 130 because of the low intensity ranges of the

datasets. From data of mouse BALB/cAnN 1563, we detected 25 USV calls, among which 24

are continuous and one is discontinuous. The calls are clustered in S1 File of Supporting

information. From the data of mouse BALB/cAnN 1565, we obtain 189 continuous USV

calls and four discontinuous USV calls. The clustering is given in S2 File of Supporting

information.

Analysis of C57BL/6JJcl data

This subsection makes a detailed analysis with a dataset (S4 Data) for a C57BL/6JJcl male

mouse, C57BL/6JJcl 2358. Different strains of mice produce different types of USV calls. The

first panel of Fig 8 shows some USV calls of this mouse. We see that some USV curves are

continuous; however, many USV curves contain jumps. Considering the intensity level

([0, 32766]), we choose the largest 2% quantile intensities at each frame and obtain 430 USV

calls, as seen in Fig 9. For this dataset, we put only one interior knot at the middle of the

interval for each curve, and set κ = 5 as the threshold with which to define breakpoints.

Using the same method as the first dataset, we reduce the noise and delete 56 short “USV

calls.” Finally, 374 USV functional data items are used. Fig 10 presents a histogram of RMSEs

of fitting. The mean and variance of the RMSEs are respectively 0.546 and 0.118. According

to the number of breakpoints, we divide all USV calls into five groups (Table 2). The curves

in the first four groups are then separated further by shape. Cluster dendrograms and clus-

ters are obtained by clustering the coefficient matrix of USV functions of each group using

Ward’s method.

Fig 12. Examples of the two clusters in Group I.

https://doi.org/10.1371/journal.pone.0196834.g012
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Fig 11 shows that the continuous USV functions can be split into two clusters (flat or down-

ward, upward). Their examples are given in Fig 12. Fig 13 presents the upward and downward

clusters and two outliers of USV curves with one breakpoint (see examples in Fig 14). USV

functions with two breakpoints can be separated into four clusters— upward, downward, con-

cave and convex— as shown in Figs 15 and 16. Figs 17 and 18 present dendrograms and four

clusters of the USV curves with three breakpoints. We do not separate curves in Group V.

Curves in Group V contain four or more breakpoints and have complicated shapes. We have

confirmed that most of them are obtained from harmonic USV calls, which should not be

characterized by one-dimensional functions.

Fig 13. Clustering of discontinuous USV functions with one breakpoint for mouse C57BL/6JJcl 2358.

https://doi.org/10.1371/journal.pone.0196834.g013
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S3 File of Supporting information shows the groups and clusters of USV functions obtained

for mouse C57BL/6JJcl 2396. Among the 225 USV functions in total, 93 are continuous. Most

USV calls from mouse C57BL/6JJcl 2420 are harmonic. In this case, modeling USV calls as

one-dimensional functions is not appropriate, and jumps on the obtained curves are unstable.

If we forcibly analyze the data using the same method, the method works but the result is less

reliable. An analysis result is presented in S4 File of Supporting information. In the result, 839

USV functions are obtained. Among them, 270 are continuous.

Fig 14. Examples of the four clusters in Group II.

https://doi.org/10.1371/journal.pone.0196834.g014
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From the data analysis of the two mouse strains, we also see a difference in the proportions

of discontinuous USV functions. The proportions of discontinuous USV functions given by

the six mice are as follows.

Because the six mice can be considered independent, the Mann–Whitney test (also called

the Wilcoxon rank-sum test) statistic U = 0 calculated from Table 3 suggests that with a one-

tailed test at a significance level of 0.05 (Statistical Table 8.2 (2), [25]), USV syllables emitted by

mice of strain BALB/cAnN have fewer breakpoints than those emitted by C57BL/6JJcl.

Fig 15. Clustering of discontinuous USV functions with two breakpoints for mouse C57BL/6JJcl 2358.

https://doi.org/10.1371/journal.pone.0196834.g015
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Discussion

We proposed a functional clustering method for mouse USV data as well as a two-dimensional

moving average method and a method for weighting frequency to reduce noise. We defined

USV syllables as functions with B-spline basis functions and used multiple knots to define

breakpoints for discontinuous USV curves. USV functions with the same number of break-

points were grouped together and then clustered further by shape.

The methods were proposed for nonharmonic USV calls. It is difficult to use these methods

to characterize and classify harmonic USV calls because we define these USV calls as one-

Fig 16. Examples of the four clusters in Group III.

https://doi.org/10.1371/journal.pone.0196834.g016
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dimensional functions. A relatively large number of breakpoints in a USV curve suggests that

the curve may be from a harmonic USV call.

In data analysis, we empirically specified some parameters, such as the size of the matrix

to use for the moving average, the minimum USV intensity, the quantile for large intensity p
and the threshold for jump κ. The size of the matrix for the moving average was chosen so as

to distinguish the USV signals from noise. The minimum of the USV intensity depends on

the level of noise and the experimental environment. In our analysis, it was a larger value of

xi,j at which there is no USV call. The quantile for large intensity was selected so as to avoid

Fig 17. Cluster dendrogram for discontinuous functions with three breakpoints and four clusters.

https://doi.org/10.1371/journal.pone.0196834.g017
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extra jumps in the USV curves. In representing the USV functional data by B-spline basis

functions, we proposed the use of more interior knots and a higher breakpoint threshold κ
for continuous USV calls and the use of fewer interior knots and a lower breakpoint thresh-

old for discontinuous calls. A higher number of interior knots allows the expression of more

detailed characteristics of the USV curves and results in good clustering for small differences.

However, using fewer interior knots allows characterization of the features of the USV curves

Fig 18. Examples of the four clusters in Group IV.

https://doi.org/10.1371/journal.pone.0196834.g018

Table 3. Proportions of discontinuous USV functions in the six datasets.

BALB/cAnN 7

393

1

25

4

193

C57BL/6JJcl 259

374

132

225

569

839

https://doi.org/10.1371/journal.pone.0196834.t003

Functional clustering of mouse USV data

PLOS ONE | https://doi.org/10.1371/journal.pone.0196834 May 9, 2018 23 / 26

https://doi.org/10.1371/journal.pone.0196834.g018
https://doi.org/10.1371/journal.pone.0196834.t003
https://doi.org/10.1371/journal.pone.0196834


simply and the good classification of USV calls with simple shapes. Hence, to cluster USV

calls in a broad way, choosing fewer interior knots is better. Finally, the breakpoint threshold

κ should be chosen by considering the continuity of USV calls and the sizes of all jumps. As

we consider frequency jumps in clustering USV functions, identifying the difference in the

proportion of discontinuous USV functions is useful in characterizing the USV calls of dif-

ferent mouse strains.

Supporting information

S1 R Code. R module (usv.R) contains code with which to perform the methods described

in the article. We provide eight functions in file usv.R. Three of the functions are for reduc-

ing noise, defining USV functional data and clustering USV functions by shape. The other five

functions are used to plot figures of original USV data, detected USV signals, USV functions,

figures for finding the minimum interspace of adjacent USVs and histograms of RMSEs. File

usv.R contains code with which to demonstrate the methods and to show the examples and

results in the paper.

(R)

S1 Data. Mouse USV dataset balb1752.txt.

(ZIP)

S2 Data. Mouse USV dataset balb1563.txt.

(ZIP)

S3 Data. Mouse USV dataset balb1565.txt.

(ZIP)

S4 Data. Mouse USV dataset B6_2358.txt.

(ZIP)

S5 Data. Mouse USV dataset B6_2396.txt.

(BZ2)

S6 Data. Mouse USV dataset B6_2420.txt.

(BZ2)

S1 File. Analysis result of dataset balb1563.txt.

(PDF)

S2 File. Analysis result of dataset balb1565.txt.

(PDF)

S3 File. Analysis result of dataset B6_2396.txt.

(PDF)

S4 File. Analysis result of dataset B6_2420.txt.

(PDF)
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