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A B S T R A C T

In diagnostic testing, establishing an indeterminate class is an effective way to identify samples that cannot
be accurately classified. However, such approaches also make testing less efficient and must be balanced
against overall assay performance. We address this problem by reformulating data classification in terms of
a constrained optimization problem that (i) minimizes the probability of labeling samples as indeterminate
while (ii) ensuring that the remaining ones are classified with an average target accuracy 𝑋. We show that
the solution to this problem is expressed in terms of a bathtub-type principle that holds out those samples with
the lowest local accuracy up to an 𝑋-dependent threshold. To illustrate the usefulness of this analysis, we
apply it to a multiplex, saliva-based SARS-CoV-2 antibody assay and demonstrate up to a 30 % reduction in
the number of indeterminate samples relative to more traditional approaches.
1. Introduction

The SARS-CoV-2 pandemic has highlighted the importance of an-
tibody testing as a means to monitor the spread of diseases such as
COVID-19 [1,2]. But the widespread deployment of new assays has also
revealed fundamental problems in the ability to reliably analyze the
corresponding measurements. Early on, this shortcoming was attributed
to low prevalence, which made it difficult to distinguish true and false
positives [3]. However, it soon became clear that there were deeper
issues related to statistical interpretation of raw data, suggesting the
need to revisit the underlying theory of diagnostic classification [4–6].

In this context, a fundamental problem arises when many mea-
surements fall near a cutoff used to distinguish positive and negative
samples. The probability of correctly classifying these borderline cases
hovers near 50%, so that even a small fraction thereof can significantly
decrease overall accuracy. A common solution is to define a third,
indeterminate class for which one cannot draw meaningful conclusions,
although this is not always chosen to be near a cutoff [7–13]. While
this approach increases the average accuracy for those samples that
are classified, it also decreases testing efficiency. Thus, there is a need
to develop strategies that balance the construction of indeterminate
classes against overall assay performance.

∗ Corresponding author.
E-mail address: paul.patrone@nist.gov (P.N. Patrone).

1 Questions about assay design should be directed to Christopher D. Heaney at cheaney1@jhu.edu.

The present manuscript addresses this problem by answering the
question: what classification scheme (I) minimizes the fraction of inde-
terminate samples while (II) correctly identifying the remaining ones
with a minimum average accuracy 𝑋? When an indeterminate class
is not permitted, common practice categorizes a sample as positive or
negative if its measurement value 𝐫 falls in a corresponding domain 𝐷⋆

𝑃
or 𝐷⋆

𝑁 ; see Fig. 1. Moreover, it was recently shown that these domains
can be optimized by solving an unconstrained optimization problem
that maximizes accuracy associated with ‘‘binary’’ classification [5]. In
contrast, the present work views (I) and (II) as a constrained optimization
problem, with the size of the indeterminate class being the objective
and the desired accuracy recast as a constraint. We show that the
solution to this problem extends the binary classification result by con-
structing the smallest indeterminate class via a bathtub-type principle
applied to 𝐷⋆

𝑃 and 𝐷⋆
𝑁 : one removes from them the measurements

with the lowest probability of being correctly classified up to an 𝑋-
dependent threshold. As a practical matter, this ‘‘waterline’’ bounding
the indeterminate domain can be efficiently and accurately estimated
via numerical techniques such as bisection, making our result com-
putationally tractable. We provide examples and numerical validation
using a saliva-based, multiplex SARS-CoV-2 antibody test; the Appendix
provides mathematical proofs of our main results.
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At the outset and in contrast with traditional methods, it is impor-
ant to note that concepts such as specificity and sensitivity per se are
ot fundamental quantities of interest in our analysis. As discussed in
ection 6, they describe the accuracy of a fixed and subjective classifi-
ation scheme in two degenerate cases: 0% and 100% prevalence. As
uch, it is trivial (but useless) to optimize either quantity by assigning
ll samples to a single class. Rather, we treat accuracy – defined as a
revalence-weighted, convex combination of sensitivity and specificity – as
undamental, since this naturally interpolates between the aforementioned
egenerate cases. This choice also highlights an important (but often-
gnored) fact: the numbers of false positives and false negatives change
ith prevalence. Thus, sensitivity and specificity may not be useful
etrics of assay performance in a setting where a disease is actively

preading. The bathtub-type principle also reveals that these quanti-
ies are not mathematically fundamental, since they arise from more
ranular notions of conditional accuracy.

Ultimately, this analysis leads to the realization that classification
ccuracy has both a local and global interpretation, and the interplay
etween these interpretations is fundamental to both the problem con-
idered herein the general theory of classification.2 In particular, one
an construct conditional probability density functions (PDFs) 𝑃 (𝐫) and
(𝐫) of a measurement outcome 𝐫 – i.e. a local property – for (known)

ositive and negative samples. As shown in Ref. [5], these PDFs are
ecessary to maximize the global accuracy 𝑋, since the equation

𝑃 (𝐫) = (1 − 𝑝)𝑁(𝐫) (1)

efines the boundary between 𝐷⋆
𝑃 and 𝐷⋆

𝑁 when 𝑝 is the prevalence. In
he present work, we show that 𝑃 (𝐫) and 𝑁(𝐫) also directly define the
ocal accuracy 𝑍(𝐫), and that its global counterpart 𝑋 is the average
alue of 𝑍(𝐫). We next observe that the boundary given by Eq. (1) is
he set for which 𝑍 = 50%, its lowest possible value. The corresponding
oints are the first to be held out, since they contribute most to the
verage error.3 Moreover, one sees that systematically removing the
east accurate 𝐫 yields the fastest increase in the global accuracy for
he remaining points. Our bathtub-type principle formalizes this idea.

This intuition also distinguishes our approach from Ref. [5], which
onsidered uncertainty in classification due to effects that are external

to the assay. In that work, the authors demonstrated that the optimal
binary domains become ambiguous when prevalence is only given to
within confidence intervals. They showed that this problem can be
addressed by holding out samples whose classes were likewise ambigu-
ous. In contrast, our approach defines the indeterminate class as those
measurements with the highest inherent uncertainty as quantified in
terms of local accuracy. In practice, we find that such effects are often
more important, especially as several references have addressed issues
pertaining to accurate, unbiased prevalence estimation [5,6,14].

From a practical standpoint, the main inputs to our analysis are
training data associated with positive and negative samples; thus our
approach is compatible with virtually any antibody assay. These data
are used to construct the conditional PDFs 𝑃 (𝐫) and 𝑁(𝐫), so that
he classification and holdout problems are reduced to mathematical
odeling. This is also the key limitation of our approach insofar as such
odels are necessarily subjective. However, this problem is not unique

o our method. Where possible, we incorporate objective information
bout the measurement process. See Section 4 and Ref. [5] for a deeper
iscussion of such issues and other limitations.

The remainder of this manuscript is organized as follows. Section 2
eviews key notation and terminology. Section 3 presents the general

2 The testing community has largely restricted its attention to global assay
roperties, since regulatory reporting focuses on assay performance for large
opulations [2].

3 An interesting corollary of the proofs in Ref. [5] is that 𝑍 ≥ 50% for
optimally defined classification domains without indeterminates. Thus, we
never need consider relative errors less than 50%. See also Section 3 and the
Appendix.
2

theory for defining optimal indeterminate domains. Section 4 illustrates
this analysis in the context of a saliva-based, multiplex SARS-CoV-2
saliva assay. Section 5 considers numerical validation of our analysis,
and Section 6 concludes with a discussion and comparison with past
works. The Appendix provides a proof of our main result and other
supporting information.

2. Notation and terminology

One of our primary goals is to provide practical, accessible tools for
constructing indeterminate classes. In doing so, we must combine ab-
stract ideas from measure theory with concepts in applied diagnostics;
it is not reasonable to assume that any reader will have a background
in both. In this section, we provide necessary information so that:
(I) an expert in diagnostics can understand and implement our main
results (i.e. construct holdout domains) without needing to derive the
associated proofs; and (II) a mathematician can verify our work and
understand the applied context. Readers with background in either
the mathematical notation (Section 2.1) or diagnostic terminology
(Section 2.2) may skip the corresponding sections. [We also advise
mathematicians to see our definition of a bathtub-type principle in
Section 2.1, as it differs from Theorem 1.14 in [15].] We also refer
readers to Refs. [16,17] for deeper background on measure theory.

2.1. Mathematical notation and concepts

• By a set, we mean a collection of objects, e.g. measurements or
measurement values. By a domain, we typically mean a set in
some continuous measurement space; see, e.g., Fig. 1.

• The symbol ∈ indicates set inclusion. That is, 𝐫 ∈ 𝐴 means that 𝐫
is in set 𝐴.

• The symbol ∅ denotes the empty set, which has no elements.
• The operator ∪ denotes the union of two sets. That is, 𝐶 = 𝐴 ∪ 𝐵

is the set containing all elements that appear in either 𝐴 or 𝐵.
• The operator ∩ denotes the intersection of two sets. That is, 𝐶 =
𝐴 ∩ 𝐵 is the set of elements shared by both 𝐴 and 𝐵.

• The operator ∕ denotes the set difference. We write 𝐶 = 𝐴∕𝐵 to
mean the set of all objects in 𝐴 that are not also in 𝐵. Note that
in general, 𝐴∕𝐵 ≠ 𝐵∕𝐴. Equivalently, 𝐴∕𝐵 can be interpreted as
the ‘‘subtraction’’ or removal from 𝐴 of the elements it shares in
common with 𝐵.

• The notation 𝐴 = {𝐫 ∶∗} defines the set 𝐴 as the collection of 𝐫
satisfying condition ∗.

• By a bathtub-type principle, we mean the solution to a constrained op-
timization problem that determines an optimal set 𝐴⋆ via a nonlinear
inequality of the form 𝐴⋆ = {𝐫 ∶ 𝑓 (𝐫) ≤ 𝐹⋆} for some constant 𝐹⋆

and function 𝑓 (𝐫).

Unless otherwise specified, the ‘‘size’’ or measure of a set refers to
the probability of a sample falling within that set, i.e. its probability
mass. By the same token, we generally avoid using size to describe the
actual dimensions (in measurement space) of a domain.

2.2. Notation and concepts from applied diagnostics

• Training data correspond to samples whose true classes are
known. In general, training data is used to construct probability
models and/or validate an analysis.

• Test data corresponds to samples whose true classes are unknown,
or treated as such for purposes of validation. Test data are the
objects to which a classification analysis is applied.

• Prevalence is the fraction of samples in a population that are
positive. As such, it is the probability that a person picked at
random is positive, given no other information.

• Sensitivity 𝑆𝑒 (Specificity 𝑆𝑝) is the relative fraction of positive
(negative) samples that are classified correctly. We take the com-
mon convention that these quantities refer to expectation values
or averages.
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2.3. Notation specific to the present work

• The non-caligraphic sets 𝐷𝑃 and 𝐷𝑁 denote positive and negative
classification domains in the binary (no-holdout) problem.

• Caligraphic sets D𝑃 and D𝑁 are the corresponding domains in
the classification problem with indeterminate samples. Dℎ is an
indeterminate set.

• The shorthand D = D𝑃 ∪D𝑁 is used throughout and denotes the
set of all samples that are classified as positive or negative.

• The use of a superscript ⋆ denotes an optimal quantity. For
example, 𝐷⋆

𝑃 is an optimal positive classification domain.

3. Minimum probability indeterminate class

We begin with the mathematical setting underlying classification.
Consider an antibody measurement 𝐫, which can be a vector associated
with multiple distinct antibody targets. We take the set of all admissible
measurements to be 𝛺. Our goal is to define three domains, D𝑃 , D𝑁 ,
and Dℎ associated with positive, negative, and indeterminate (or ℎ for
‘‘hold-out’’) samples. In particular, we say that a test sample 𝐫 is positive
if it falls inside D𝑃 (i.e. 𝐫 ∈ D𝑃 ), and likewise for the other domains.

We require that these domains have several basic properties to
ensure that they define a valid classification scheme. Recalling that
𝑃 (𝐫) and 𝑁(𝐫) are conditional probabilities associated with positive and
negative samples, define the measures of a set 𝑆 ⊂ 𝛺 with respect to 𝑃
and 𝑁 to be

𝜇𝑃 (𝑆) = ∫𝑆
d𝐫𝑃 (𝐫) (2a)

𝜇𝑁 (𝑆) = ∫𝑆
d𝐫𝑁(𝐫). (2b)

That is, 𝜇𝑃 (𝑆) is the probability of a positive sample falling in 𝑆, etc.
We then require that

𝜇𝑃 (D𝑃 ∪D𝑁 ∪Dℎ) = 𝜇𝑁 (D𝑃 ∪D𝑁 ∪Dℎ) = 1 (3)

and

𝜇𝑃 (𝑆 ∩ 𝑆′) = 𝜇𝑁 (𝑆 ∩ 𝑆′) = 0 (4)

when 𝑆 ≠ 𝑆′, for 𝑆, 𝑆′ chosen from D𝑃 , D𝑁 , or Dℎ. Eq. (3) states
that the probability of any event falling in the positive, negative, or
indeterminate domains is one; i.e. any sample can be classified. Eq. (4)
states that the probability of a sample falling in more than one domain
is zero, i.e. a sample has a single classification.

Given 𝑃 (𝐫) and 𝑁(𝐫), the law of total probability [18] implies that

𝑄(𝐫) = 𝑝𝑃 (𝐫) + (1 − 𝑝)𝑁(𝐫) (5)

is the PDF that a test sample yields measurement 𝐫, where 𝑝 is the
revalence.4 The quantity 𝑝𝑃 (𝐫) is the probability that a sample is
oth positive and yields 𝐫, with a corresponding interpretation for
1 − 𝑝)𝑁(𝐫). This motivates us to define the total error rate

[D𝑃 ,D𝑁 ] = ∫D𝑃

d𝐫(1 − 𝑝)𝑁(𝐫) + ∫D𝑁

d𝐫𝑝𝑃 (𝐫). (6)

The terms on the right-hand side (RHS) are the rates of false positives
and false negatives (normalized by the number of tests). Eq. (6) treats
any misclassification as equally undesirable, but importantly, indeter-
minates are not considered errors in Eq. (6). Thus, E so defined is not
the error rate of the assay restricted to samples that fall only within D𝑃
and D𝑁 . The latter is defined as

𝑟[D𝑃 ,D𝑁 ] = 1
𝑝𝜇𝑃 (D) + (1 − 𝑝)𝜇𝑁 (D)

E[D𝑃 ,D𝑁 ] (7)

where D = D𝑃 ∪D𝑁 is the set of all samples not in the indeterminate
region. Eq. (7) is a conditional expectation; i.e. it is the average error
conditioned on the set of samples that can be classified.

4 See Refs. [5,14] for an unbiased method to estimate 𝑝 without needing to
classify.
3

In Ref. [5] we showed that when the set Z1∕2 = {𝑟 ∶ 𝑝𝑃 (𝐫) =
(1−𝑝)𝑁(𝐫)} has measure zero and Dℎ is the empty set,5 E𝑟 is minimized
by the binary classification scheme

𝐷⋆
𝑃 = {𝐫 ∶ 𝑝𝑃 (𝐫) > (1 − 𝑝)𝑁(𝐫)} (8a)

𝐷⋆
𝑁 = {𝐫 ∶ (1 − 𝑝)𝑁(𝐫) > 𝑝𝑃 (𝐫)} (8b)

for prevalence 𝑝. In light of the definition of 𝑄(𝐫), interpretation of Eqs.
(8a) and (8b) is straightforward: classify a sample as positive (negative)
if the probability of being both positive (negative) and having value 𝐫 is
greater than the corresponding probability of being negative (positive)
and having value 𝐫. [See Chapter 3 of [19] for related ideas.] While 𝐷⋆

𝑃
and 𝐷⋆

𝑁 are not the optimal sets for the problem at hand, they play a
fundamental role in the analysis that follows. We also note an important
corollary that when the Z1∕2 has non-zero measure, Eqs. (8a) and (8b)
are generalized to

𝐷⋆
𝑃 = {𝐫 ∶ 𝑝𝑃 (𝐫) > (1 − 𝑝)𝑁(𝐫)} ∪ �̂�𝑝 (9a)
⋆
𝑁 = {𝐫 ∶ (1 − 𝑝)𝑁(𝐫) > 𝑝𝑃 (𝐫)} ∪ �̂�𝑛 (9b)

here �̂�𝑝 and �̂�𝑛 are an arbitrary partition of Z1∕2. The physical
nterpretation of this generalization is that any point having equal
robability of being negative or positive can be assigned to either
lass without changing the error. In practice, however, classification
ften reverts to Eqs. (8a) and (8b) as Z1∕2 has zero measure for many

practical PDFs.
In the present work, we assume that there is a desired average

accuracy 𝑋 and that L = 1 −E𝑟[𝐷⋆
𝑃 , 𝐷

⋆
𝑁 ] < 𝑋 when all samples are

classified. Our goal is to define a minimum probability indeterminate
class D⋆

ℎ and domains D⋆
𝑃 and D⋆

𝑁 for which L[D⋆
𝑃 ,D

⋆
𝑁 ] = 𝑋; that

s, we wish to hold out the fewest samples so that those remaining
re classified with the desired accuracy. Mathematically, we seek to
inimize

[Dℎ] = ∫Dℎ

d𝐫𝑄(𝐫), (10)

ubject to the constraint that

∫D𝑃

d𝐫𝑃 (𝐫) + (1 − 𝑝)∫D𝑁

d𝐫𝑁(𝐫) = 𝑋 ∫D
𝑄(𝐫) (11)

or D = D𝑃 ∪D𝑁 . In light of Eq. (7), this constraint fixes the conditional
xpectation [20] of the assay accuracy restricted to D; i.e. the accuracy
f the assay excluding the holdout domain must be 𝑋.

To solve this problem, it is useful to introduce several auxiliary
oncepts. In particular, define the local accuracy of the unconstrained
i.e. no indeterminate), binary classification to be

(𝐫, 𝐷𝑃 , 𝐷𝑁 ) =

{

𝑝𝑃 (𝐫)∕𝑄(𝐫) 𝑟 ∈ 𝐷𝑃

(1 − 𝑝)𝑁(𝐫)∕𝑄(𝐫) 𝑟 ∈ 𝐷𝑁
(12)

here 𝐷𝑃 and 𝐷𝑁 cover the whole set 𝛺 up to sets of measure
ero; moreover, let 𝑍⋆(𝐫) = 𝑍(𝐫, 𝐷⋆

𝑃 , 𝐷
⋆
𝑁 ) be the local accuracy of

he optimal solution to the binary problem. Then the solution to the
onstrained problem given by Eqs. (10) and (11) is

D⋆
ℎ = {𝐫 ∶ 𝑍⋆(𝐫) < 𝑍0(𝑋)} ∪C(𝑋) (13a)

D⋆
𝑃 = 𝐷⋆

𝑃 ∕D
⋆
ℎ (13b)

⋆
𝑁 = 𝐷⋆

𝑁∕D⋆
ℎ (13c)

here 𝑍0(𝑋) is the solution to the equation

𝛺∕{{𝐫∶𝑍⋆(𝐫)<𝑍0}∪C}
d𝐫

[

𝑍⋆(𝐫) −𝑋
]

𝑄(𝐫) = 0, (14)

or any set C ⊂ {𝐫 ∶ 𝑍⋆(𝐫) = 𝑍0} satisfying Eq. (14). Proof of this result,
s well as the strict interpretation of C requires significant analysis of

5 E and E𝑟 are equal when Dℎ is the empty set. Note also that one can
easure Z1∕2 with respect to either 𝑃 or 𝑁 . This is because the set Z1∕2 by

definition entails that 𝑝𝜇 (Z ) = (1 − 𝑝)𝜇 (Z ).
𝑃 1∕2 𝑁 1∕2
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Fig. 1. Training data associated with the Saliva assay described in Refs. [11,12]. Red x
denote known positives (confirmed via polymerase chain-reaction measurements), and
blue o denote pre-pandemic samples, which are assumed to be negative for SARS-CoV-2
antibodies. The bold, horizontal and vertical black lines are cutoffs used to classify
samples. Data falling above the horizontal line (red shaded domain) are classified
positive; data in the lower right box (shaded blue) are negative, and data in the
lower left box (shaded yellow) are indeterminates. The SARS-CoV-2 IgG measurements
(vertical axis) are a sum of seven antibody levels measured by the assay, whereas
the total IgG measurement (horizontal axis) is the total immunoglobulin-G (IgG)
measurement as determined by an enzyme-linked immunosorbent assay (ELISA).

Eq. (11) and is reserved for Appendix. Here we provide an intuitive
interpretation and describe a straightforward algorithm for computing
Eqs. (13a)–(13c).

Eq. (13a) informs that the points to label indeterminate are those
with the lowest local accuracy up to some threshold value 𝑍0, which de-
ends on 𝑋. Eqs. (13b) and (13c) then amount to the observations that
he positive and negative domains are the same as in the unconstrained
inary problem, except that we remove the corresponding points with
ow enough local accuracy. Eq. (14) requires that the average local
ccuracy for the classification sets D⋆

𝑃 and D⋆
𝑁 be 𝑋. By virtue of the

act that Dℎ = 𝛺∕D, this fixes the boundary of the indeterminate set.
hat is, the upper bound 𝑍0(𝑋) on the indeterminate local accuracy

s the lower bound on the accuracy for sets that can be classified. The
(𝑋) is a bookkeeping artifact accounting for the situation in which

he set of points with local accuracy 𝑍0(𝑋) has non-zero probability
ass. In this case, not all of these points need to be held out if doing

o would make L greater than 𝑋. The choice of which points to make
ndeterminate is subjective as they all have the same local accuracy.
n practice (e.g. for smooth PDFs), C(𝑋) is a set of measure zero with
espect to 𝑄, so that we can ignore it in Eq. (13a).

From Eqs. (13a)–(14) it is clear that determining 𝑍0(𝑋) is the key
tep in defining the optimal classification domains. Fortunately, the
nterpretation of Eq. (14) leads to a straightforward bisection method.
irst note that 1∕2 ≤ 𝑍⋆(𝐫) ≤ 1. Let 𝜁0 = 3∕4 be an initial guess for the
alue of 𝑍0(𝑋), and let 𝜁𝑗 be the 𝑗th update computed iteratively as
ollows. For each 𝜁𝑗 compute D𝑃 (𝜁𝑗 ), D𝑁 (𝜁𝑗 ), as well as the left-hand

side (LHS) of Eq. (14), which we denote by I𝑗 . If I𝑗 > 0, then set 𝜁𝑗+1 =
𝜁𝑗 − 2−(𝑗+3); if I𝑗 < 0, set 𝜁𝑗+1 = 𝜁𝑗 + 2−(𝑗+3). If |I𝑗 | ≤ 𝜖𝑋 for some user-
defined tolerance 𝜖𝑋 , or if 𝑗 reaches some maximum iteration number
𝑀 , stop the algorithm. In the former case, the classified samples will
have an average accuracy L in the range 𝑋 −O(𝜖𝑋 ) ≤ L ≤ 𝑋 +O(𝜖𝑋 ).
In the latter case, 𝜁𝑗 −O(𝜖𝑍 ) ≤ 𝑍0(𝑋) = 𝜁𝑗 +O(𝜖𝑍 ), where 𝜖𝑍 = 2−𝑀+3 is
the error in the estimate of 𝑍0(𝑋). For context, 20 iterations of this
algorithm yields errors 𝜖𝑍 on the order of 1 in 107. In the second
case, the existence of a non-trivial set C(𝑋) can be deduced from the
observation that I𝑗 does not converge, but rather cycles between two
well-separated values, depending on whether 𝜁 is greater than or less
than 𝑍0(𝑋). In this case, the set C(𝑋) can be defined arbitrarily but
consistent with Eq. (14) once 𝑍 (𝑋) is identified to sufficient accuracy.
0

4

Fig. 2. Probability models associated with the training data. See main text for a
description of the probability density functions and the considerations behind their
construction. Top: Raw data and probability model for positive training samples. Bottom:
Negative training data and probability model.

(In practice and given the speed of convergence, we find that there is
little value in considering starting points other than 𝜁0 = 3∕4.)

4. Example applied to a salivary SARS-CoV-2 IgG Assay

To illustrate the analysis of Section 3, we consider a saliva-based as-
say described in Refs. [11,12]. We refer the reader to those manuscripts
for details of assay design, sample preparation, and measurement pro-
cesses. For each sample, two measurement values are output: a total
immunoglobulin G (IgG) enzyme linked immunosorbent assay (ELISA);
and a sum of seven SARS-CoV-2 IgG measurements associated with
distinct antigen targets. As a preliminary remark, we observe that
the numerical range of the data spans several decades of median
fluorescence intensity (MFI), which is difficult to model directly. We
also note that the measurements are bounded from below by zero
and have a finite upper bound. This motivates us to transform each
numerical value 𝑑 via log2[𝑑+2]−1, which puts the data on the scale of
its. Empirically we also find that this transformation better separates
ositive and negative populations. Total IgG values are then rescaled
o the domain [0, 1] by dividing each measurement by the maximum.
ARS-CoV-2 measurements are similarly rescaled to the domain [0, 1],
lthough we divide the log-transformed data by 7, since there were
o samples with saturated values. After transformation, each sample
s represented by a two-dimensional vector 𝐫 = (𝑥, 𝑦), where 𝑥 is
he normalized total IgG value, and 𝑦 is the normalized SARS-CoV-2

counterpart.
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The results of this transformation are shown in Fig. 1, along with
lassification domains currently used with this assay.6 The goal of

the analysis is to maintain accuracy while decreasing the number of
indeterminate samples by finding the domain Dℎ with the smallest
robability mass. We remind the reader that size does not refer to the
generalized) volume in measurement space. Rather it refers to the
raction of samples expected to fall within the domain, since this is what
ontrols the number of indeterminate samples. Thus, it is possible that
ℎ can be quite large when expressed in terms of antibody levels and

et contain very few samples.
To motivate our probability models, we consider the phenomena

hat could affect measurements. In particular, we anticipate that for
ositive samples, there should be a degree of correlation between total
gG and SARS-CoV-2 specific antibodies. However, at extreme total
gG values, the SARS-CoV-2 levels may become independent as (i) all
easurements will revert to noise when 𝑥 → −∞ or (ii) SARS-CoV-
antibody levels will decouple from total antibody levels when the

atter is excessively high, e.g. if an individual has been exposed to a
arge number of different pathogens. We also recognize that the ELISA
nstrument only reports numerical values on the domain [𝑥min, 𝑥max].
hus, fluorescence levels above 𝑥max are rounded down to the upper
ound, and levels below 𝑥min are rounded up to the lower bound. As
hown in Fig. 1, this has the effect of accumulating data (and thus
robability mass) on the lines 𝑥 = 𝑥min and 𝑥 = 𝑥max, which is a
anifestation of data censoring [21,22]. While details are reserved for

he Appendix, this observation leads us to model positive and negative
amples via a PDF of the form

(𝑥, 𝑦) = P0(𝑥, 𝑦) +P𝑙(𝑦)𝛿(𝑥) +P𝑟(𝑦)𝛿(𝑥 − 1), (15)

here 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 < 1, 𝛿(𝑥) is the Dirac delta function, and P0(𝑥, 𝑦)
is assumed to be bounded and continuous on the whole domain. The
functions P𝑙(𝑦) and P𝑟(𝑦) characterize the probability of SARS-CoV-2
antibody levels for measurement values saturated at the left (𝑙) and
right (𝑟) bounds. We emphasize that the use of delta functions in
Eq. (15) is formal and should be treated with care. A more rigorous
interpretation of what is meant by Eq. (15) is discussed in Appendix.

To model the function P0(𝑥, 𝑦), we treat the total IgG measurements
as independent normal random variables with an unknown mean and
variance. Within the domain 0 < 𝑥 < 1 (note the strict inequalities)
and 0 ≤ 𝑦 ≤ ∞, we assume that the SARS-CoV-2 measurements are
well described by a Gamma distribution with a fixed (but unknown)
scale factor and shape parameter with a sigmoidal dependence on 𝑥.
This dependence is motivated by the correlation described previously.
Taken together, this yields the PDF

P0(𝑥, 𝑦) =
𝑒−(𝑥−𝜇)2∕(2𝜎2)

√

2𝜋𝜎
𝑦𝑘(𝑥)−1 𝑒−𝑦∕𝜃

𝛤 (𝑘(𝑥))𝜃𝑘(𝑥)
(16a)

𝑘(𝑥) = 𝛼21 [tanh(𝛼2(𝑥 − 𝛼3)) + 1] + 𝛼24 (16b)

where 𝜇, 𝜎, 𝜃, and the 𝛼𝑗 are to-be-determined. The boundary functions
are defined to be

P𝑙(𝑦) =
𝑦𝑘(0)−1𝑒−𝑦∕𝜃

𝛤 (𝑘(0))𝜃𝑘(0) ∫

0

−∞
d𝑥 𝑒

−(𝑥−𝜇)2∕(2𝜎2)
√

2𝜋𝜎
(17)

P𝑟(𝑦) =
𝑦𝑘(1)−1𝑒−𝑦∕𝜃

𝛤 (𝑘(1))𝜃𝑘(1) ∫

∞

1
d𝑥 𝑒

−(𝑥−𝜇)2∕(2𝜎2)
√

2𝜋𝜎
(18)

hich describes the probability that a total IgG value below (above)
= 0 (𝑥 = 1) will be mapped back to the lower (upper) instrument

6 All data correspond to samples for which more than 14 days have elapsed
ince symptoms onset. Also, the original training total IgG data included
amples that were diluted to achieve measurement values above a saturation
alue. All such data were rounded down to the undiluted upper threshold to
e consistent with the validation data. This amounts to data censoring, for
hich we can still define the relevant likelihood functions used in parameter

stimation. See also Appendix.
 t

5

Fig. 3. Local accuracy 𝑍⋆(𝐫) of the assay according to the probability models shown
in Fig. 2. Note that 𝑍⋆(𝐫) approaches 100% in regions where 𝑃 (𝐫) and 𝑁(𝐫) do
ot overlap. Conversely, in regions where the PDFs overlap, it is more challenging
o correctly identify samples. Thus 𝑍⋆(𝐫) decreases towards its minimal value of
/2 in such regions. Note that 𝑍⋆(𝐫) is never less than 1/2 (50/50 odds of correct
lassification).

Fig. 4. Illustration of the bathtub-type principle used to compute the minimal proba-
bility indeterminate domain. The contour lines are different ‘‘waterlines’’ up to which
we can hold out samples. The label on each contour is the local accuracy of the assay.
In order to define the indeterminate region, we use the target global accuracy 𝑋 to
efine a maximum local accuracy up to which we hold out samples. Increasing the
lobal accuracy of the restricted classification increases the waterline, thereby holding
ut more samples.

ound. The free parameters are determined via maximum likelihood
stimation using a censoring-based technique; see the Appendix and
efs. [21,22]. As an approximation, we truncate the 𝑦-domain to be
≤ 𝑦 ≤ 1 and renormalize the resulting PDF on this domain.

For the negative PDF 𝑁(𝑥, 𝑦), we anticipate that non-specific bind-
ng of the total IgG antibodies to the SARS-CoV-2 antigens will lead
o a degree of correlation, albeit to a less extent than for positives.
hus, we use the same form of 𝑃 (𝑥, 𝑦), but refit the parameters using
he negative training data. Fig. 2 shows the outcome of this exercise for
he two training sets. Because P𝑙(𝑦), P𝑟(𝑦), and corresponding terms for
(𝑥, 𝑦) are continuous with respect to the Gamma portion of 𝑃 (𝑥, 𝑦) and
(𝑥, 𝑦), the former can be inferred from the contour lines in the figure

up to a normalization factor) and are thus not shown.
Figs. 3 and 4 show 𝑍⋆(𝐫) and waterlines necessary to achieve

ifferent average accuracies. The bathtub-type principle is shown in
he latter; see also Ref. [15] for related ideas. To ensure that L = 𝑋,
e only hold out samples up to the corresponding value of 𝑍0(𝑋).
ote that indeterminates are concentrated in regions where there is

ignificant overlap between positive and negative samples. Fig. 5 shows
he corresponding classification domains computed according to the
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Fig. 5. Positive (yellow-green), negative (dark blue), and indeterminate (light-blue)
classification domains defined for a theoretical target accuracy of 99.6% for the training
data in the previous figures. Symbols have the same meaning as in previous figures.
The empirical accuracy is 98.8%, with a specificity of 100% and sensitivity of 96.7%.
The total accuracy is the prevalence-weighted combination of these latter quantities.
Note the prevalence is associated with the restricted set of samples that are actually
classified; see Section 6. Discrepancy between the theoretical and empirical accuracies
is due to idealization of the modeling and stochasticity in the data. For comparison,
the horizontal and vertical black lines are the same as in Fig. 1 and denote the
corresponding classification domains originally used for this assay. The indeterminate
region based on the bathtub-type principle reduces the number of unclassified samples
by more than 12% relative to the original domains while maintaining specificity and
improving sensitivity for the training data. See also Table 1 and Section 6 for other
examples of indeterminate domains.

Fig. 6. Positive (yellow-green), negative (dark blue), and indeterminate (light-blue)
classification domains for validation data and defined for a theoretical target accuracy
of 99.6%. The validation data was not used for training the probability models. Symbols
have the same meaning as in previous figures. The empirical accuracy is 99.2%, with
a specificity of 99.4% and sensitivity of 98.8%. The indeterminate region based on the
bathtub-type principle reduces the number of unclassified samples by almost 40%. See
Section 6 for other examples of indeterminate domains.

bathtub-type principle for a target accuracy of 99.6%; see also Table 1.
Relative to the original classification domains, the analysis reduces
the empirical rate of indeterminate samples by more than 12% while
increasing both accuracy and sensitivity of the assay (with empirical
specificity remaining constant). See also Fig. 6 and Section 6 for
additional examples of holdout domains.

5. Numerical validation

To validate that the sets D⋆
𝑃 , D⋆

𝑁 , and D⋆
ℎ obtained in Section 3 are

optimal, we consider a numerical experiment wherein we perturb H as
 o

6

Fig. 7. The logarithm of the swap derivative given by Eq. (19) computed for the
optimal domains D⋆

𝑃 , D⋆
𝑁 , and D⋆

ℎ . The 0-level line is the boundary of the indeterminate
region. Note that the logarithm is everywhere positive. Thus, swapping any infinitesimal
regions between D⋆

ℎ and D⋆ will increase the probability mass in the indeterminate,
provided constraint Eq. (11) is satisfied.

a function of these domains. For point 𝐫 ∈ Dℎ and 𝐫′ ∈ D, we formally
define a ‘‘point-swap derivative’’ to be

𝛿H[Dℎ]
𝛿𝐫𝛿𝐫′

=
𝑍(𝐫) −𝑋
𝑍(𝐫′) −𝑋

. (19)

In principle 𝑍(𝐫) can be an arbitrary definition of local accuracy,
lthough in practice we take 𝑍(𝐫) = 𝑍⋆(𝐫) in this section. The in-
erpretation of Eq. (19) is as follows. In taking point 𝐫′ from D and
dding it to Dℎ and vice-versa for 𝐫, we must ensure that the constraint
q. (11) remains satisfied. The ratio 𝑍(𝐫)−𝑋

𝑍(𝐫′)−𝑋 provides the ‘‘rate-of-

xchange’’ of probability. For example, if 𝑍(𝐫) − 𝑋 < 𝑍(𝐫′) − 𝑋 < 0,
then adding 𝐫 to D will infinitesimally decrease the global accuracy, so
that we must hold out a larger yet still infinitesimal fraction of 𝑄 in the
vicinity of 𝐫′. It is clear that Eq. (19) goes through a singularity when
𝑍(𝐫′) → 𝑋 and becomes negative for 𝑍(𝐫′) > 𝑋 and 𝑍(𝐫) < 𝑋. The
interpretation of this is straightforward: we should always reverse any
swap for which a point with local accuracy greater than the average
is put in the indeterminate class. Such points are not considered in the
analysis below. More rigorous interpretations of Eq. (19) are considered
in the Appendix, especially in the context of the singular PDF given by
Eq. (15).

The benefit of Eq. (19) is that it allows us to estimate a ‘‘set-partial
derivative’’ by computing the relative probability exchange for any
point in the indeterminate domain. In particular, we compute

𝛿H[Dℎ]
𝛿𝐫

= inf
𝐫′

𝑍(𝐫′)<𝑋
𝐫′∈D

[

𝑍(𝐫) −𝑋
𝑍(𝐫′) −𝑋

]

(20)

for the optimal domains D⋆
ℎ and D⋆. Fig. 7 shows the logarithm of

Eq. (20) for a mesh of points in the indeterminate region, taking 𝑍(𝐫) =
𝑍⋆(𝐫). Note that swapping any point in the indeterminate region with
one in the positive and negative classification domains increases the
size of the indeterminate, as expected.

To validate that swapping points between D⋆
𝑃 and D⋆

𝑁 does not
increase the accuracy of the assay or decrease the size of the indetermi-
nate domain, we examine the quantity 𝑍(𝐫) directly. In particular, the
Appendix shows that 𝑍⋆(𝐫) ≥ 1∕2 for all 𝐫 ∈ D⋆ guarantees that D⋆

𝑃 =
𝐷⋆

𝑃 ∕D
⋆
ℎ and D⋆

𝑁 = 𝐷⋆
𝑁∕D⋆

ℎ are optimal for the indeterminate region
⋆
ℎ . Fig. 3 demonstrates that this inequality holds for the solution given
y Eqs. (13a)–(14). Thus, no rearrangement of points decreases the size
f the indeterminate domain.
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Table 1
Summary of fraction of holdouts, sensitivity, and specificity for the data in Figs. 5 and 6. The rectilinear classification method is
described in Fig. 1, while the optimal method is given by Eqs. (13a)–(14). For sensitivity, specificity, and accuracy calculations,
the numbers in brackets are empirical 95% confidence intervals.
Data & Method COVID samples Pre-COVID samples All samples

Training samples 147 283 430
Holdouts (Rectilinear) 32/147, 21.8% 64/283, 22.6% 96/430, 22.3%
Holdouts (Optimal) 28/147, 19.1% 56/283, 19.8% 84/430, 19.5%

Sensitivity Specificity Accuracy
Classification (Rectilinear) 111/115, 96.5%

[92.0%, 98.9%]
219/219, 100%
[98.6%, 100%]

330/334, 98.8%
[97.2%, 99.6%]

Classification (Optimal) 115/119, 96.6%
[92.3%, 99.0%]

227/227, 100%
[98.7%, 100%]

342/346, 98.8%
[97.3%, 99.6%]

Validation samples 87 192 279
Holdouts (Rectilinear) 6/87, 6.9% 66/192, 34.4% 72/279, 25.8%
Holdouts (Optimal) 5/87, 5.8% 34/192, 17.7% 39/279, 14.0%

Sensitivity Specificity Accuracy
Classification (Rectilinear) 81/81, 100%

[96.3%, 100%]
125/126, 99.2%
[96.3%, 100%]

206/207, 99.5%
[97.7%, 100%]

Classification (Optimal) 81/82, 98.8%
[94.4%, 100.0%]

157/158, 99.4%
[97.0%, 100%]

238/240, 99.2%
[97.3%, 99.9%]
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6. Discussion: Historical context, open direction, and limitations

6.1. The role of prevalence

Examination of Eq. (11) reveals that the terms of the LHS are
proportional to prevalence-weighted estimates of sensitivity and speci-
ficity. In particular, recognize that

𝑆𝑒 =
[

∫D
𝑃 (𝐫) d𝐫

]−1

∫D𝑃

𝑃 (𝐫) d𝐫, (21a)

𝑝 =
[

∫D
𝑁(𝐫) d𝐫

]−1

∫D𝑁

𝑁(𝐫) d𝐫 (21b)

re the sensitivity and specificity restricted to the domain D. When
here is no indeterminate domain, the normalization factors ∫

D
𝑃 (𝐫)d𝐫 =

D
𝑁(𝐫)d𝐫 = 1, so that Eqs. (21a) and (21b) revert to the standard

efinitions of these quantities. In this case, we see that Eq. (11), which
o longer acts as a constraint, amounts to the statement that the
revalence-weighted sum of sensitivity and specificity is equal to 𝑋;
hat is

𝑆𝑒 + (1 − 𝑝)𝑆𝑝 = 𝑋. (22)

When we permit an indeterminate class, however, the interpretation
s not as straightforward. In particular, the presence of the term N𝑄 =
D
𝑄(𝐫)d𝐫 on the right-hand side (RHS) appears problematic, for note

hat it implies

−1
𝑄

[

𝑝∫D𝑃

𝑃 (𝐫)d𝐫 + (1 − 𝑝)∫D𝑁

𝑁(𝐫)d𝐫
]

= 𝑋. (23)

he normalization factor N𝑄 differs from its counterparts in Eqs. (21a)
nd (21b). Thus, it is not obvious what our constraint enforces about
he sensitivity and specificity of the assay restricted to D.

The resolution to this conundrum is to recognize that the prevalence
f the population also changes when we restrict classification to D. This
s not to say that the value of 𝑝 itself (i.e. associated with the total
opulation) changes, but rather that the relative fraction of positives
nd negatives differs on D ⊂ 𝛺. This is not unexpected, since the shape
f the indeterminate region is a function of the local accuracy 𝑍, which
epends on the specifics of the probability models. Mathematically, we
nderstand these observations by rewriting Eq. (23) in the form
𝑝N𝑃
N𝑄 ∫D𝑃

𝑃 (𝐫)
N𝑃

d𝐫 +
(1 − 𝑝)N𝑁

N𝑄 ∫D𝑁

𝑁(𝐫)
N𝑁

= 𝑋 (24)

where N𝑃 = ∫
D
𝑃 (𝐫)d𝐫 and N𝑁 = ∫

D
𝑁(𝐫)d𝐫 are the required normal-

ization constants. Eq. (24) becomes an analogue to Eq. (22) of the form

𝑝N𝑃 𝑆𝑒 +
(1 − 𝑝)N𝑁 𝑆𝑝 = 𝑋 (25)
N𝑄 N𝑄

7

here 𝑝D = 𝑝N𝑃 ∕N𝑄 is the prevalence restricted to the domain D. Note
hat 𝑝D has the properties necessary to be a prevalence:
𝑝N𝑃
N𝑄

+
(1 − 𝑝)N𝑁

N𝑄
= 1 ⟹ 1 − 𝑝D =

(1 − 𝑝)N𝑁
N𝑄

(26)

which is a consequence of the definition of N𝑄. Thus, we see that the
constraint corresponds to a domain-restricted-prevalence weighted sum
of sensitivity and specificity.

From a theoretical standpoint, Eq. (26) is extremely serendipitous.
The constraint as defined by Eq. (11) only refers to the prevalence of
the full population. It is not obvious that this equation will remain a
prevalence-weighted sum when holding out samples, especially as the
restricted-prevalence does not in general equal 𝑝. Further implications
of this observation are explored in the next section.

However, an immediate practical consequence of Eq. (26) is that
the relative fraction of positives from an assay using indeterminates is
not a reliable estimator of total prevalence. In order for the restricted
prevalence 𝑝D to equal 𝑝, one requires

N𝑃 − N𝑄 = 0 = ∫D
𝑃 (𝐫) − 𝑝𝑃 (𝐫) − (1 − 𝑝)𝑁(𝐫)d𝐫,

which implies

0 = ∫D
𝑃 (𝐫) −𝑁(𝐫) = N𝑃 − N𝑁 . (27)

hat is, 𝑝 = 𝑝D only occurs when the holdout domain removes equal
ass from the probability models, which is extremely restrictive.

To overcome this problem, we recall that Ref. [5], demonstrated
ow an unbiased estimate of the total prevalence can be constructed without
lassifying samples using a simple counting exercise on subdomains of
. The validity of that method is independent of the assay accuracy,

o that it can be used to estimate 𝑝 in the present work. Indeed,
uch techniques are necessary to construct the optimal classification
omains, given the fundamental role of 𝑝 in their definitions. We refer
he reader to Ref. [5] for a deeper discussion of such issues.

.2. Other notions of optimality

A common practice in the testing community is to preferentially
ptimize an assay so that either the specificity or sensitivity reaches
desired target, but not explicitly a linear combination of the two.

q. (25) and the bathtub-type principle suggest a route by which our
ethod can solve an analogue of this problem. However, a deeper

nvestigation of sensitivity and specificity is first necessary to motivate
his generalization and understand how such methods differ from Eqs.
13a)–(14). [See also Ref. [23] for additional notions of optimality, as
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Fig. 8. Holdout domain computed with a target accuracy of 99% and according to the
constraints given by inequalities (29) and (30). For the latter, we set 𝑋− indirectly by
holding out samples up to 𝑍𝑝 = 0.972 in the positive classification domain. This yields
n empirical specificity of the training data was 100% while keeping the empirical
ensitivity above 94%. Note that the indeterminate domain (light-blue) is increased
nly into the positive classification domain (yellow-green) in attempting to satisfy
nequality (30). The teal strip adjacent to the light blue and yellow-green is the modified
ndeterminate domain. After increasing the empirical specificity to 100%, the optimized
omains holds out 15.1% of samples, as opposed to 22.3% for the rectilinear method;
ee Table 1.

ell as Refs. [24–26] for other approaches to defining classification
omains.]

Examination of the binary problem reveals that when 𝑝 = 1∕2, the
omains 𝐷⋆

𝑃 and 𝐷⋆
𝑁 equally weight sensitivity and specificity; that is,

rrors in either are treated as equally undesirable. It is straightforward
o show that increasing 𝑝 will increase sensitivity at the expensive of
pecificity, and vice versa. The interpretation of this observation is that
s the number of positive samples increases, we should increase the size
f the positive classification domain so as to capture the their increasing
hare of the population. It is therefore possible and even likely that
hen the prevalence approaches 0 or 100%, either sensitivity or speci-

icity may be unacceptably low, since the corresponding contribution
o the total accuracy becomes negligible.

A possible solution to this problem is to recast Eq. (11) as an
nequality constraint of the form

∫D𝑃

d𝐫𝑃 (𝐫) + (1 − 𝑝)∫D𝑁

d𝐫𝑁(𝐫) ≥ 𝑋 ∫D
𝑄(𝐫) (28)

ogether with the additional constraints

𝑒 ≥ 𝑋+ (29)

𝑝 ≥ 𝑋−, (30)

here 𝑋+ and 𝑋− are user-defined lower bounds. While an optimal
olution to this problem is beyond the scope of the current manuscript,
he bathtub-type principle suggests a construction akin to active-set
ethods [27]. First, solve the optimization problem associated with
qs. (10)–(11) and check the resulting values of sensitivity and speci-
icity. If these quantities are deemed to small, remove samples up
o user-defined waterlines 𝑍𝑛 ≥ 𝑍0 and 𝑍𝑝 ≥ 𝑍0 (which may be
ifferent), where 𝑍𝑛 and 𝑍𝑝 apply only to samples in the negative
nd positive classification domains. Fig. 8 shows an example of this
pproach applied to the data in previous figures. We originally set
= 0.99 but required that the empirical specificity be 100% for the

raining set. To accomplish this, we set 𝑍𝑝 = 0.972, which augments
he size of the indeterminate domain (teal strip added to the light blue
omain) without decreasing the number of true negatives.
8

6.3. Relationship between prevalence, sensitivity, and specificity

Eq. (25) and the examples of Secs. 6.1 and 6.2 beg the question:
to what extent is prevalence-weighted accuracy a preferred or natural
framework for diagnostic classification, as opposed to methods based
on explicit reference to sensitivity and specificity? To unravel this,
consider that the latter two are purely theoretical properties of a
specific choice of classification domain and are only loosely connected
to the reality of testing. This is evident from the definitions given by
Eqs. (21a) and (21b). The concept of prevalence, i.e. implying existence
of a population, does not enter; rather all that is needed is a choice of the
classification domains. Thus, an assay can have exceptional sensitivity
and yet still be wrong half the time if the prevalence is low. In a related
vein, it is clear that specificity and sensitivity only characterize assay
accuracy in the limits 𝑝 → 0 and 𝑝 → 1, respectively.

Here we encourage a new perspective. As a baseline strategy, the
most important task is to correctly classify samples; at least this is of the
utmost importance to patients. Moreover, computing accurate preva-
lence estimates is critical for epidemiologists (although we have shown
previously that this problem is solved accurately without recourse to
classification). With this goal in mind, the sensitivity and specificity
are subservient to accuracy via Eq. (11), and it is not unreasonable to
let them change with prevalence if doing so increases overall testing
accuracy. We highlight this because under such a paradigm, 𝑆𝑒 and 𝑆𝑝
lose their status as the key performance metrics that define the ‘‘qual-
ity’’ of an assay, and they cannot be viewed as static properties. Such
observations are not to say that 𝑆𝑒 and 𝑆𝑝 are useless, however. Clearly
there are times when it is more important to correctly identify samples
from one class, and this motivates the generalization of Section 6.2.

But these observations clarify our perspective of why the prevalence
sets a natural scale for classification. In particular, Eq. (11) has two
equivalent interpretations: (i) the accuracy of the assay must be 𝑋; and
(ii) the prevalence-weighted sensitivity and specificity must be 𝑋. The
equivalence of these interpretations arises from the fact that notions of
accuracy assume the existence of a population to which the test is applied.
Thus, Eq. (25) is perhaps unsurprising in light of Eq. (11) because both
are self-consistent statements about the properties of a population.

The benefit of treating prevalence-weighting as a natural frame-
work for diagnostic classification is that one can easily identify when
subjective elements (i.e. not intrinsic to the population) have been
added to the analysis. For example, the indeterminate domain in Fig. 8
associated with the inequalities (28)–(30) is not optimal insofar as
there is a smaller counterpart that yields the same average accuracy
for the classified data. However, it is clear by construction how we
have modified the latter, i.e. by adding a user-defined constraint on the
specificity. Likewise, even Eq. (11) should be viewed as a subjective
modification of the unconstrained, prevalence-weighted classification
problem.

Ultimately the choice of classification method is best determined
by assay developers, and there may be situations in which prevalence
weighting is inappropriate. Nonetheless, we feel that the analysis herein
highlights the assumptions behind our work and attempts to ground it
in objective elements inherent to the population of interest.

6.4. Implications of an indeterminate class

The use of an indeterminate class in diagnostics can have conse-
quences, especially for individual patients. We briefly consider such
issues here.

We first note what does not change: it is still possible to estimate
prevalence of an entire population, even though some samples are held
out. This is a consequence of the methods in Ref. [5,14], which yield
unbiased predictions of 𝑝 that converge in mean-square without ever
classifying data. These results are understood physically by recognizing
that prevalence estimation entails determining the number of positive
samples, not identifying their classes. The latter task is more specific
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and amounts to a choice about how to interpret the data, which has no
bearing on its underlying statistical properties (such as prevalence).

This observation highlights the subjective nature of classification
insofar as Eqs. (6)–(11) are choices of the types of errors we wish
to minimize. These choices are informed by the measurement setting
and dictate what role an indeterminate class plays in reporting results
to individuals. In mass surveillance studies, for example, the primary
goal may be to deduce prevalence of various populations. In such
cases, a large fraction of inconclusive results could reduce individual
confidence in testing, although it should not affect the overall aims of
the study. In other settings, such as antibody testing to assess immunity,
the specific test results matter more. In some cases an indeterminate
class as constructed herein (in terms of local accuracy) could in fact
increase confidence and/or usefulness of the diagnostic. For example,
in testing an immunocompromised individual, the potential loss asso-
ciated with an incorrect result suggests the need for a more stringent
criterion (e.g. using local accuracy) to determine if an individual has
seroconverted.

6.5. Limitations and open directions

A fundamental limitation of our analysis is the assumption that
the probabilistic models describing positive and negative samples can
be used outside the scope of training data. This problem is common
to virtually any classification scheme and is primarily an issue of
modeling. Such issues have been explored in a previous manuscript,
to which we refer the reader [5]. We note here, however, that model-
form errors may introduce uncertainty on the order of a few percent
in the conditional probability densities. Thus, it is likely that modeled
estimates of accuracy will be incorrect by a proportional amount. This
is seen, for example, in the holdout domain computed in Fig. 5. How-
ever, Section 6.2 provides means of ensuring that the indeterminate
domains are recomputed to satisfy any constraints on empirical esti-
mates of accuracy. We also note that approaches that do not explicitly
account for prevalence and/or conditional probabilities are likely to
have significantly more model-form errors than estimates based on our
approach.

Regarding the indeterminate analysis, Eqs. (13a)–(14) and the gen-
eralization considered in Section 6.2 may be a challenging optimization
problem to solve, although the solution could be extremely useful
for satisfying regulatory and/or public health requirements. Moreover,
formalizing the algorithm described in that section and studying its
properties relative to the optimal solution may be useful.

A practical limitation of our analysis is the definition of assay
performance, provided we allow for variable, prevalence-dependent
classification domains. Current standards advocate using sensitivity and
specificity estimated for a single validation population having a fixed
prevalence. To realize the full potential of our analysis, it is necessary to
(i) estimate assay accuracy and uncertainty therein, (ii) characterize the
admissible classification domains, and (iii) compute sensitivities and
specificities, all as a function of the variable prevalence. While such
issues have been partly considered in [5], and deeper investigation of
this uncertainty quantification is necessary for widespread adoption of
these techniques.
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Appendix A. Proof of main result

Lemma 1. Assume that 𝑃 (𝐫) and 𝑁(𝐫) are summable functions on 𝛺 and
that the measure of any point 𝐫 is zero with respect to all distributions. Also
assume that L[𝐷⋆

𝑃 , 𝐷
⋆
𝑁 ] < 𝑋 and that there exists a set of non-zero measure

for which 𝑍(𝐫) > 𝑋. Then the sets defined by Eqs. (13a)–(14) minimize
q. (10) subject to Eq. (11).

We first show that Eq. (14) defines 𝑍0(𝑋) and C(𝑋). Let 1∕2 ≤ 𝜁 ≤ 1
nd define

Dℎ(𝜁 ) = {𝐫 ∶ 𝑍⋆(𝐫) < 𝜁} (31a)

D𝑃 (𝜁 ) = 𝐷⋆
𝑃 ∕Dℎ(𝜁 ) (31b)

𝑁 (𝜁 ) = 𝐷⋆
𝑁∕Dℎ(𝜁 ). (31c)

q. (14) motivates the function

(𝜁 ) =
[

∫D𝑃 (𝜁 )∪D𝑁 (𝜁 )
d𝐫𝑄(𝐫)

]−1 [

∫D𝑃 (𝜁 )∪D𝑁 (𝜁 )
d𝐫 [𝑍⋆(𝐫) −𝑋]𝑄(𝐫)

]

, (32)

hich is a monotone increasing function of 𝜁 satisfying the inequalities
(1∕2) < 0 and 𝐼(𝜁 ) > 0 for some 𝜁 > 1∕2. Thus, there exists a unique
alue of 𝑍0(𝑋) for which one of two situations holds: either (I) the
unction 𝐼(𝜁 ) is continuous at 𝑍0(𝑋) and 𝐼(𝑍0(𝑋)) = 0, which directly
mplies Eq. (14); or (II) 𝐼(𝜁 ) suffers a discontinuity, so that 𝐼(𝑍0(𝑋)) < 0
nd 𝐼(𝑍0(𝑋) + 𝜖) > 0 for any positive 𝜖. The latter case occurs when
= {𝐫 ∶ 𝑍⋆(𝐫) = 𝑍0(𝑋)} has non-zero measure, and we may set C

o be any subset C ⊂ S provided Eq. (14) is satisfied. The existence of
uch a C is guaranteed by the linearity of integration, which implies
hat

̂(𝐶) =

[

∫D𝑃 (𝑍0)∪D𝑁 (𝑍0)∪𝐶
d𝐫𝑄(𝐫)

]−1 [

∫D𝑃 (𝑍0)∪D𝑁 (𝑍0)∪𝐶
d𝐫 [𝑍⋆(𝐫) −𝑋]𝑄(𝐫)

]

s a continuous, monotone increasing function of the measure of 𝐶 ⊂ S

hat passes through zero. Any zero of 𝐼(𝐶) implies Eq. (14) and defines
n appropriate C.

The proof that Eqs. (13a)–(14) minimize Eq. (10) relies on the
bservation that any 𝑍⋆(𝐫) < 𝑍 (𝑋) is farther from the mean value
0
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𝑋 than any 𝑍⋆(𝐫) > 𝑍0(𝑋). Thus, it ‘‘costs additional probability’’ to
swap points between the indeterminate region and D⋆ = D⋆

𝑃 ∪ D⋆
𝑁

while satisfying the constraint. To see this mathematically, let D be any
ther union of positive and negative classification domains satisfying
q. (11). We do not consider any domains D that consist only of
hoosing a different subset C ⊂ S while maintaining Eq. (14). By
q. (11) one find

D∕D⋆
d𝐫𝑄(𝐫)[𝑋 −𝑍⋆(𝐫)] − ∫D⋆∕D

d𝐫𝑄(𝐫)[𝑋 −𝑍⋆(𝐫)] = 0 (33)

e can further expand the second term as

∫D⋆∕D
d𝐫 𝑄(𝐫)[𝑋 −𝑍⋆(𝐫)]

= ∫Z+∕D
d𝐫𝑄(𝐫)[𝑋 −𝑍⋆(𝐫)] + ∫Z−∕D

d𝐫𝑄(𝐫)[𝑋 −𝑍⋆(𝐫)] (34)

here Z+ = {𝑟 ∶ 𝑍⋆(𝐫) > 𝑋} and Z− = {𝑟 ∶ 𝑍0(𝑋) < 𝑍⋆(𝐫) < 𝑋}.
Clearly the first term on the RHS of Eq. (34) is negative, whereas the
second term is positive. Noting that 𝑍⋆(𝐫 ∈ D⋆) > 𝑍⋆(𝐫 ∈ D⋆

ℎ ), one
finds by inserting Eq. (34) into Eq. (33) that the latter can be expressed
in the form

∫D∕D⋆
d𝐫𝑄(𝐫)𝐴(𝐫) = ∫Z+∕D

d𝐫𝑄(𝐫)𝐵(𝐫) + ∫Z−∕D
d𝐫𝑄(𝐫)𝐶(𝐫) (35)

where 𝐴(𝐫) > 0, 𝐵(𝐫) < 0, and 0 < 𝐶(𝐫) < 𝐴(𝐫). This implies that

∫D∕D⋆
d𝐫𝑄(𝐫) < ∫D⋆∕D

d𝐫𝑄(𝐫) ⟹ ∫Dℎ∕D⋆
ℎ

d𝐫𝑄(𝐫) > ∫D⋆
ℎ ∕Dℎ

d𝐫𝑄(𝐫). (36)

Consider now the difference of objective functions

𝛥H = H[Dℎ] −H[D⋆
ℎ ] = ∫Dℎ

d𝐫𝑄(𝐫) − ∫D⋆
ℎ

d𝐫𝑄(𝐫)

= ∫Dℎ∕D⋆
ℎ

d𝐫𝑄(𝐫) − ∫D⋆
ℎ ∕Dℎ

d𝐫𝑄(𝐫). (37)

By inequality (36), we see that 𝛥H > 0. Moreover, note that 𝑍(𝐫, 𝐷𝑃 ,
𝐷𝑁 ) ≤ 𝑍⋆(𝐫) for any classification domains associated with the binary
problem. Clearly any choice besides 𝐷⋆

𝑁 and 𝐷⋆
𝑃 entails increasing the

measure of Dℎ to ensure that the constraint is satisfied. □

Remark. Lemma 1 is distinct from Theorem 1.14 of Ref. [15] in several
subtle ways. The latter minimized a functional L[𝑔(𝑧)𝑓 (𝑧)] of a product
of two functions, where 𝑓 (𝑧) is arbitrary and 𝑔(𝑧) satisfies the inequality
0 ≤ 𝑔(𝑧) ≤ 1 for 𝑧 ∈ 𝛺 (𝑧 plays the role of our 𝐫 and 𝛺 has the
same meaning as in our work). This objective is supplemented with
the constraint that the expectation value of 𝑔(𝑧) be a constant. The
corresponding bathtub principle identifies an optimal 𝑔(𝑧) as either an
indicator function or a sum of two indicator functions. In the former
case, 𝑔(𝑧) defines an analog of our optimal domain. However, the
structure of the constraint in Theorem 1.14 fixes the measure of the
domain and only allows its shape to vary. In contrast, we minimize the
measure of the holdout domain subject to an auxiliary constraint, which
is a conditional expectation value. Doing so allows both the shape and
measure of the holdout domain to vary. We refer the reader to Theorem
1.14 of Ref. [15] for more in-depth comparison. The reader may also
verify that 𝑔(𝑧) being a sum of two indicator functions does not alter
the interpretation above.

Appendix B. On PDFs with Dirac masses

Fig. 1 illustrates that biological phenomena may generate a signal
so strong that the instrument saturates, i.e. it reaches a limit 𝑥max
above which it cannot distinguish different measurement values. This
saturation effectively rounds the ‘‘true’’ measurement down to the 𝑥max.
The only conclusion we can draw about a reported value 𝑥max is that
the true value 𝜒 satisfies the inequality 𝜒 ≥ 𝑥max. Similarly there
exists a lower limit 𝑥 up to which smaller measurements values are
min
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rounded. The goal of this section is to incorporate such information into
probability modeling.

For concreteness, we restrict ourselves to the one dimensional mea-
surements 𝑥 associated with the total IgG assay. We assume that were
the optical photodetector not restricted to the range [𝑥min, 𝑥max], the
recorded measurement would have been 𝜒 returned on the domain
−∞ < 𝜒 < ∞. Because the measurements have been transformed
to a logarithmic coordinate system, 𝜒 → −∞ is meaningful. Without
additional information about probability of total IgG antibody levels,
we make a minimal assumption that 𝜒 is described by a Gaussian
distribution with an unknown mean 𝜇 and variance 𝜎2. Thus, on the
open domain (𝑥min, 𝑥max), assume that 𝑥 = 𝜒 , so that the probability of
measuring 𝑥 is

𝑃0(𝑥) =
1

√

2𝜋𝜎
𝑒−

(𝑥−𝜇)2

2𝜎2 , 𝑥min < 𝑥 < 𝑥max. (38)

However, on the boundaries 𝑥min and 𝑥max, we only know that the
true values are below and above the respective thresholds. Thus, the
probabilities of measuring 𝑥min and 𝑥max are given by

𝑃𝑙 = ∫

𝑥min

−∞
𝑃0(𝜒|𝜇, 𝜎2) d𝜒 (39)

̂𝑟 = ∫

∞

𝑥max

𝑃0(𝜒|𝜇, 𝜎2) d𝜒 (40)

here 𝑃0(𝜒|𝜇, 𝜎2) is the same as Eq. (38), but with 𝑥 replaced by 𝜒 . We
ay then write the full probability model for 𝑥 as

𝑃 (𝑥) = 1
√

2𝜋𝜎
𝑒−

(𝑥−𝜇)2

2𝜎2 I(𝑥, 𝑥min, 𝑥max)

+ 𝛿(𝑥 − 𝑥𝑚𝑖𝑛)𝑃𝑙 + 𝛿(𝑥 − 𝑥max)𝑃𝑟. (41)

here I(𝑥, 𝑎, 𝑏) is the indicator function that 𝑥 is in the open set (𝑎, 𝑏).
Eq. (41) motivates a generalization of the MLE. Define the likelihood

unction

(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑃0(𝑥) 𝑥min < 𝑥 < 𝑥max

𝑃𝑙 𝑥 = 𝑥min

𝑃𝑟 𝑥 = 𝑥max.

(42)

o determine the values of 𝜎 and 𝜇, we maximize with respect to these
arameters the product of 𝑁 likelihoods given by

like(𝐱) =
𝑁
∏

𝑗=1
𝐿(𝑥𝑗 ), (43)

r alternatively, we minimize the negative log of Llike(𝐱). To construct
he two-dimensional PDF associated with Eq. (15), we assume a corre-
ponding probability model for the SARS-CoV-2 IgG measurements and
se standard MLE to identify the distribution parameters. The full PDF
or training data is then given by the product of the corresponding PDFs
or total IgG and SARS-CoV-2 measurements and has the form given by
q. (15).

Note that Eq. (15) does not require modification of the proof in
he previous section, since any point (𝑥, 𝑦) is a set of measure zero,
rovided that P𝑙(𝑦) and P𝑟(𝑦) (and their negative counterparts) are
ounded functions of 𝑦. However, we do require care in defining the
ocal accuracy and classification domains 𝐷⋆

𝑁 and 𝐷⋆
𝑃 . Let

+ = {𝐫 ∶ 𝑝P0(𝐫) > (1 − 𝑝)N0(𝐫), 𝑥min < 𝑥 < 𝑥max} (44a)

𝐵+ = {𝐫 ∶ 𝑝P𝑙(𝑦) > (1 − 𝑝)N𝑙(𝑦), 𝑥 = 𝑥min} (44b)

𝐶+ = {𝐫 ∶ 𝑝P𝑟(𝑦) > (1 − 𝑝)N𝑟(𝑦), 𝑥 = 𝑥max} (44c)

from which we construct 𝐷⋆
𝑃 = 𝐴+ ∪ 𝐵+ ∪ 𝐶+ and the analogous

definition for 𝐷⋆
𝑁 . Note that any point for which the prevalence-

weighted probabilities of being negative and positive are identical can
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be assigned to either class. The corresponding definition of 𝑍⋆(𝐫) is
given by

𝑍⋆(𝐫) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max[𝑝P0(𝐫),(1−𝑝)N0(𝐫)]
𝑝P0(𝐫)+(1−𝑝)N0(𝐫)

𝑥min < 𝑥 < 𝑥max

max[𝑝P𝑙(𝑦),(1−𝑝)N𝑙 (𝑦)]
𝑝P𝑙 (𝑦)+(1−𝑝)N𝑙(𝑦)

𝑥 = 𝑥min

max[𝑝P𝑟(𝑦),(1−𝑝)N𝑟(𝑦)]
𝑝P𝑟(𝑦)+(1−𝑝)N𝑟(𝑦)

𝑥 = 𝑥max

(45)

here N𝑙(𝑦) and N𝑟(𝑦) are the analogous of P𝑙(𝑦) and P𝑟(𝑦) for the
negative PDF.

Appendix C. On the point-swap derivatives

To justify the use of Eq. (19), return to Eq. (11) and consider a set
D and its complement Dℎ. Consider balls B = 𝐵(𝐫, 𝜖) and B′ = 𝐵(𝐫′, 𝜖′)
having radii 𝜖, 𝜖′ and centered about 𝐫 and 𝐫′. Let these balls be entirely
contained in Dℎ and D, respectively. Momentarily assume that the
PDFs do not contain Dirac masses. Define D′

ℎ and D′ to be the sets
where B and B′ have been interchanged without violating Eq. (11).
Taking the difference of Eq. (11) defined relative to D and D′ yields

∫B
d�̂�[𝑍(�̂�) −𝑋]𝑄(�̂�) − ∫B′

d�̂�[𝑍(�̂�) −𝑋]𝑄(�̂�) = 0. (46)

Assuming that 𝑍(�̂�) and 𝑄(�̂�) are sufficiently smooth, to leading order
in 𝜖, 𝜖′ one finds

𝜖𝑑 [𝑍(𝐫) −𝑋]𝑄(𝐫) = (𝜖′)𝑑 [𝑍(𝐫′) −𝑋]𝑄(𝐫′). (47)

where 𝑑 is the dimensionality of 𝐫. Rearranging this last equation yields

(𝜖′)𝑑𝑄(𝐫′)
𝜖𝑑𝑄(𝐫)

=
𝑍(𝐫) −𝑋
𝑍(𝐫′) −𝑋

. (48)

ote that 𝜖𝑑 and (𝜖′)𝑑 are proportional to the volumes of the respective
alls about the points 𝐫 and 𝐫′, so that the quantity (𝜖′)𝑑𝑄(𝐫′) is, for

example, proportional to the infinitesimal probability mass contained
in the corresponding ball. Thus, the given by Eq. (48) is the relative
change probability mass exchanged between D and Dℎ in swapping 𝐫
and 𝐫′.

If we change the class of 𝐫 (either from D𝑃 to D𝑁 or vice versa), it
may be necessary to hold out additional points 𝐫′, or it may be possible
to move points from the indeterminate into the classification domain.
In either case, letting B and B′ have the same definitions as before
and assuming Eq. (11) holds, one finds

∫B
d�̂�[2𝑍(�̂�) − 1]𝑄(�̂�) ± ∫B′

d�̂�[𝑍(�̂�) −𝑋]𝑄(�̂�) = 0, (49)

where B′ is the ball moved to (+) or from (−) the indeterminate
domain, depending on the sign of the first term; note that we also
require 𝑍 < 𝑋 inside B′. Again taking the limit that the respective
𝜖 are small, one finds

𝜖𝑑 [2𝑍(𝐫) − 1]𝑄(𝐫) = ±(𝜖′)𝑑 [𝑋 −𝑍(𝐫′)]𝑄(𝐫′) (50)

Dividing by ±[𝑋 − 𝑍(𝐫′)] yields the infinitesimal probability mass
moved to or from the indeterminate

(𝜖′)𝑑𝑄(𝐫′) = ±
𝜖𝑑 [2𝑍(𝐫) − 1]𝑄(𝐫)

𝑋 −𝑍(𝐫′)
. (51)

The LHS must be positive, and the denominator on the RHS is positive.
Thus, the + and - signs on the RHS occur when 𝑍(𝐫) > 1∕2 and 𝑍(𝐫) <
1∕2, corresponding to the situations in which probability moves to and
from the indeterminate region. Thus, in assessing when Dℎ grows, it is
ufficient to test the inequality 𝑍(𝐫) > 1∕2.

The analysis of this section is easily generalized to the case of
Eq. (15) by noting that for points on the lines 𝑥 = 0 and 𝑥 = 1, the
balls of radius 𝜖 should be taken as intervals on the line with length
2𝜖. This yields the appropriate generalization of probability associated
with those points.
11
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