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Abstract: Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been 
found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti- 
cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is 
associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in 
treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the 
reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in 
inflammatory diseases and provide references for the clinical application of metformin.
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Introduction
In the 19th century, metformin (1,1-dimethylbiguanide hydrochloride) was discovered, which is a biguanide derivative 
extracted from the plant Galega officinalis (French lilac).1 By promoting the binding of insulin and receptors, metformin 
accelerates glucose utilization in the body, reduces the output of liver sugar, improves insulin resistance, and achieves the 
therapeutic effect of controlling blood sugar.2 With its economy, safety, and effectiveness advantages, it has become the 
first-line drug for type II diabetes. In recent years, several experimental studies and epidemiological data have shown 
that, in addition to hypoglycemic effects, long-term use of metformin may exert anti-inflammation,3 avoid age-related 
diseases,4 prevent tumors,5 and reduce the occurrence and development of various metabolic diseases.6 Notably, given its 
potential anti-inflammatory properties, metformin is now receiving increasing attention.

Inflammation is a defense mechanism against various noxious stimuli triggered by exogenous stimuli, such as 
infections7 or endogenous sterile injuries.8 Overactive inflammatory responses, however, can be harmful to the body. 
Studies have found that inflammation is related to the development of numerous diseases. Chronic inflammation can 
induce senescence,9 tissue destruction,10 immunosuppression,11 and cancer.12

Although metformin is widely used in the clinic, especially for controlling inflammatory diseases, and has made 
promising progress, the mechanisms behind its anti-inflammatory effects are still poorly understood. Hence, in this 
review, to clear the way for possible targets for therapeutic use, we will concentrate on current developments in research 
on the function of metformin in various inflammatory illnesses and its underlying mechanisms of action.

Adenosine Monophosphate-Activated Protein Kinase (AMPK)-Dependent Pathways
Metformin is a medication often prescribed for individuals with diabetes. It works to reduce the production of glucose in 
the liver through both AMPK-dependent and AMPK-independent pathways.13 Similarly, metformin also inhibits 
inflammation in an AMPK-dependent14 and AMPK-independent manner.
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AMPK is a heterotrimeric serine/threonine protein kinase consisting of three subunits. It serves as a crucial metabolic 
sensor linking cellular energy homeostasis to the regulation of inflammatory signaling.15–17 Indeed, AMPK is activated 
when energy is deficient, with an increase in the adenosine monophosphate (AMP)/ adenosine triphosphate (ATP) ratio 
being the activation signal.18 To ensure metformin’s effectiveness, activating the AMPK system is vital. By inhibiting 
complex I of the mitochondrial respiratory chain, also known as the electron transport chain (ETC), metformin inhibits 
transmembrane electron flow and membrane potential formation, thereby reducing mitochondrial oxygen consumption 
and inhibiting the production of ATP, increasing the AMP/ATP ratio and thereby activating AMPK.19,20

Through activation of AMPK, energy homeostasis is restored by promoting catabolic pathways, which cause ATP 
synthesis, and inhibiting anabolic ways that consume it. In addition, metformin suppressed inflammatory cytokine 
production by promoting macrophage polarization to the anti-inflammatory M2 type via activating AMPK-1α 
phosphorylation.21 Besides, its anti-inflammatory properties appear related to its inhibitory effect on nuclear factor- 
kappaB (NF-κB), the most common transcription factor for inflammatory responses. Moreover, activating AMPK 
facilitates the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and increases the expression of 
heme oxygenase-1 (HO-1) to counteract lipopolysaccharide (LPS)-induced cellular damage.22,23

To date, various models have been used to assess the metformin effects on renal inflammation. AMPK activation 
appears to be a key mechanism behind many of these renoprotective effects.24–29 Moreover, in an experimental study of 
myocardial ischemia-reperfusion (I/R) injury, the metformin treatment increased the phosphorylation of AMPK, 
decreased pro-inflammatory cytokines, and suppressed NLRP3 inflammasome activation. Then all led to a significant 
reduction in myocardial infarction size, apoptosis attenuation, and myocardial fibrosis inhibition. Significantly, the 
observed effects were reversed upon inhibition of AMPK phosphorylation by Compound C (CC).30 As shown in 
a mouse model, metformin significantly reduced lung inflammation in SiO2-instilled mice at the fibrotic stages, which 
can be exacerbated by inflammatory mediators, including interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF- 
α).31 Besides, metformin attenuated oxidative stress-induced cell toxicity, the epithelial-mesenchymal transition process 
in epithelial cells, and inhibited inflammation response in macrophages via an AMPK-dependent pathway.32 Another 
AMPK-dependent effect of metformin shown in research was interrupting the priming signal for NLRP3 inflammasome 
activation via blockade of Toll-like receptor 4 (TLR4)/NF-κB signaling pathway, resulting in the inhibition of bioactive 
forms IL-1β and IL-18 as well as the pyroptosis process.33

Additionally, it was discovered that metformin could induce autophagy through AMPK activation, resulting in an 
increase of Beclin-1 and a decrease of p62/SQSTM1, ultimately leading to the degradation of a critical inflammatory 
mediator, NLRP3.33 This is similar to the findings of Fei et al.34 In another study, metformin could decrease STAT3 
phosphorylation through an increase in AMPK activity, which in turn inhibited differentiation of monocyte to macro-
phage and eventually suppressed proinflammatory responses. Moreover, by this mechanism, metformin attenuated aortic 
atherosclerotic lesions induced by AngII and aneurysm in ApoE−/− mice.35

Collectively, evidence suggested that metformin exerts remarkable anti-inflammatory and immunosuppressive effects 
in inflammatory/autoimmune models. A vital component of this process was enhancing the AMPK pathway.

Liver Kinase B1 (LKB1)
LKB1 is a serine/threonine kinase encoded by the tumor suppressor STK11 gene, and it plays a vital role in energy 
metabolism through phosphorylating AMPK at position Thr 172 as a major upstream kinase of AMPK.36,37 Recent 
studies have shown that LKB1 exerts a certain anti-inflammatory activity.38,39 For instance, after the knockout of LKB1, 
levels of inflammatory cytokines, including TNF-α, IL-1β, major intrinsic proteins 2 (MIP2), and interferon-beta (IFN-β) 
induced by LPS, significantly increased in bone marrow-derived macrophages.40 In T cells, LKB1 loss led to decreased 
AMPK phosphorylation and increased mammalian target of rapamycin complex 1 (mTORC1) activation, leading to 
T-cell activation and high levels of inflammatory cytokine.41

Metformin induces the activation of LKB1. Subsequently, it enhances the LKB1/AMPK pathway, which plays a vital 
role in various physiopathological processes.42 In streptozotocin (STZ) and LPS-induced inflammation in mouse lungs,43 

metformin increased the expression of LKB1, phosphor-AMPK, and phosphor-ACC. It markedly decreased the levels of 
pro-inflammatory cytokines such as TNF-α, IL-lβ, monocyte chemotactic protein-1 (MCP-1), and interleukin-1β (IL-6). 
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In addition, to investigate whether this protective effect is mediated explicitly via the AMPK pathway, another AMPK 
activator, AICAR, was introduced into LPS-induced inflammatory peritoneal macrophages under high glucose condi-
tions. It also inhibited the generation of inflammatory cytokines.

Collectively, the aforementioned studies suggest that the LKB1-AMPK-dependent pathway may play a role in 
mediating metformin’s anti-inflammatory effects.

Acetyl-CoA Carboxylase (ACC)
ACC, one of the target molecules of AMPK, is a rate-limiting enzyme in fatty acid synthesis.44 The AMPK/ACC 
signaling pathway plays a crucial role in regulating fatty acid oxidation, according to several studies.45,46

In TNF-α-induced lipid accumulation in human hepatoma G2 (HepG2) cells, co-treatment with metformin or AICAR 
decreased the intracellular triglyceride and increased AMPK and ACC phosphorylation.47 In obese mice, metformin 
increased levels of phosphorylated AMPK and its downstream target ACC and attenuated pulmonary eosinophilic 
inflammation.48 High-fat diets induced metabolic disturbances, renal damage, increased adipokine expression, and 
macrophage infiltration in mice. Metformin administration exerts protective effects via augmentation of AMPK and 
ACC activation.49 Chung et al50 also verified that metformin alleviated AGE-induced inflammatory responses through 
AMPK-associated suppression of the inhibitor of kappaB kinase (IKK), NF-κB, inducible nitric oxide synthase (iNOS), 
and cyclooxygenase-2 (COX-2) levels, and it negatively regulated the expression of inflammatory cytokine expression in 
human neural stem cells (hNSCs), and the transcript and protein expression levels of ACC were also rescued.

Mammalian Target of Rapamycin (mTOR)
mTOR is a serine/threonine protein kinase found in two complexes, mTORC1 and mTORC2. The mTOR signaling 
pathway is implicated in cell growth, metabolism, energy balance, protein turnover, and autophagy and plays a critical 
role in inflammatory diseases, autoimmune disorders, and diabetes.51–53 There is some evidence that metformin inhibits 
the mTOR pathway both with and without activating AMPK.54,55 The latter will be discussed in a later section (Figure 1). 
Metformin inhibits mTORC1 activity dependent on AMPK, tuberous sclerosis complex 2 (TSC2), and AMPK-mediated 
phosphorylation of Raptor.56

Among patients with polycystic ovary syndrome (PCOS), metformin reduced the high levels of TNF-α in B cells. 
Also, it improved PCOS phenotypes induced by dehydroepiandrosterone (DHEA) in mice through the AMPK/PI3K/ 
mTOR signaling pathway.57 One recent study by Mohamed et al58 shows that metformin treatment of diabetic 
epileptic rats reduced the rise in pro-inflammatory cytokines and apoptotic markers and improved the histopathological 
results of model rats. Such effects were closely correlated with increased ATP/ADP ratio and reduced death-associated 
protein (DAP) and mTOR. Besides, a previous clinical experiment demonstrated that metformin had positive effects in 
reducing inflammation in the colons of people living with HIV (PLWH) undergoing antiretroviral therapy (ART). This 
effect is achieved through the inhibition of mTOR phosphorylation.59 Altogether, these suggest the pharmacologic 
intervention of mTOR may have therapeutic value in diseases characterized by inflammatory responses (Table 1).

NF-κB
NF-κB is a major transcription factor that regulates inflammatory processes, and AMPK modulates NF-κB-dependent 
inflammation as well.69,70 In a wide variety of inflammatory disorders, such as atherosclerosis, osteoarthritis, and 
rheumatoid arthritis (RA), NF-κB is activated.71,72 Transfection of AMPK α1 siRNA in vascular endothelial cells 
significantly suppressed AMPK expression and reversed inhibition of NF-κB activation and various adhesion molecules 
expression induced by vaspin. All these data strongly suggested that AMPK activation is responsible for the inhibition of 
NF-κB activation.73

Activation of the NF-κB signaling pathway contributes to neuronal pathology in response to LPS and cognitive 
impairments by accumulating inflammatory mediators. It could be achieved through metformin blocking NF-κB 
pathway.74 In a study of the streptozotocin-induced-induced diabetic rat models accompanied by evident infiltration of 
inflammatory cells, phosphor-AMPK was upregulated, and NF-κB p65, as well as the anti-oxidation factors, such as 
Nrf2, HO-1, and SOD2, were downregulated as compared to model rats not receiving metformin.75 Notably, no 
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significant drop in blood glucose level was observed after metformin treatment, suggesting that metformin ameliorated 
meibomian gland dysfunction (MGD) by regulating the AMPK/NF-κB axis instead of reducing blood glucose.

Signal Transducer and Activator of Transcription 3 (STAT3)
A master transcriptional regulator named STAT3 plays an essential role in cell survival, proliferation, differentiation, and 
inflammatory signaling cascade.76 Persistent STAT3 activation has been observed in several inflammatory diseases.77–79 

Therefore, the most effective way of targeting STAT3 might be an attractive therapeutic strategy for suppressing the 

Figure 1 Metformin inhibits mTOR both with and without activating AMPK. There are two ways that metformin could inhibit mTORC1 downstream: (1) After AMPK 
activity is activated, the TSC1/TSC2 complex (which can inhibit the activity of Rheb) is activated, and then the action of mTORC1 activity is inhibited. (2) Metformin inhibited 
Rag GTPase activity in an AMPK-independent manner, thereby inhibiting mTORC1. mTOR has two complexes, mTORC1 and mTORC2, which have important regulatory 
effects on inflammation, gene transcription, protein translation, etc. 
Abbreviations: AMPK, adenosine monophosphate-activated protein kinase; mTOR, mammalian target of rapamycin; PRAS40, proline-rich Akt substrate 40; TSC, tuberous sclerosis 
complex; RICTOR, rapamycin-insensitive companion of mTOR; Rheb, ras homolog enriched in the brain; mLST8, mammalian lethal with sec-13 protein 8; Raptor, regulatory associated 
protein of mTOR; Deptor, DEP domain-containing mTOR-interacting protein; mSIN1, mammalian stress-activated protein kinase (SAPK)-interacting protein 1.

Table 1 Effects of Metformin Targeting mTOR on Inflammatory Diseases

Disease Subjects Pathways Effects Reference

Scleroderma Mice mTOR-STAT3 

signaling

↓IL-6, IL-1β, IL-17, TNF-α, TGF-β, Col1a, Th17 

↑p-AMPK

[60]

Silica-induced 

pulmonary fibrosis

Human and rats AMPK-mTOR 

signaling

↓TGF-β1, TNF-α, IL-1β, α-SMA, p62 

↑E-cadherin, p-AMPK, autophagy

[61]

Thyroid-associated 

ophthalmopathy

Human AMPK-mTOR 

signaling

↓IL6, IL-8, CXCL1, CXCL2, CCL2, HA,α-SMA, 

ITGA5, COL1A1, COL2A1, COL3A1, FN1, ITGB1, 

and p-Smad2 
↑Autophagy

[62]

Gout Human mTOR signaling ↓The rate of monocyte death, inflammation, and 
frequency of gout flares 

↑Autophagy

[63]

(Continued)
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inflammatory response and keeping homeostasis. Through STAT3 inhibition and promoting STAT5 signaling, metformin 
could alleviate T-cell-mediated inflammation by regulating the balance between Th17s and Tregs.80,81 More specifically, 
this may be due to STAT3 and STAT5 competing for the same IL-17 promoter binding site.82 However, another study 
showed that inflammatory injury during sepsis in mice could not be relieved or even worsened after STAT3 inhibition, 
and obesity amplified this effect.76 One possible explanation for the mechanism is the interaction between STAT3 and 
leptin, which are affected during sepsis. Future studies are required to understand the impact of STAT3 activation on 
inflammatory diseases. Overall, the current understanding of the mechanism by which metformin regulates T cell 
function in autoimmune diseases is partly through AMPK/STAT3 signaling.

Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)
An essential transcription factor, Nrf2, is a basic leucine zipper transcription factor.83 As well documented, Nrf2, 
a central factor for regulating the antioxidant and cytoprotective gene expression, is indispensable for controlling 
inflammatory responses.84,85 The loss of Nrf2 in the skin prolonged the inflammatory response after wounding, and Nrf2- 
knockout mice were significantly more likely to develop multi-tissue inflammation than normal mice.86,87 In line with the 
unequivocal role of the Nrf2-pathway in reactive oxygen species (ROS) detoxifying and inflammation suppression, the 
potential crosstalk between AMPK and Nrf2 signaling pathways has been noted.17 A natural antioxidant has been 
reported to provide therapeutic neuroprotection against inflammation and oxidative stress caused by cerebral ischemia- 
reperfusion via activating the AMPK/Nrf-2 pathway.88

Thus, what is the exact role of the Nrf2-related pathway in metformin-induced effects? In primary bovine mammary 
epithelial cells (PBMECs), metformin was shown to reduce proinflammatory cytokine secretion. In addition to the anti- 
inflammatory effect, metformin exhibited antioxidant properties through activation of the Nrf2 pathway, and this 
activation is significantly AMPK-dependent.89 Moreover, metformin could dramatically improve the condition of chronic 
obstructive pulmonary disease (COPD) by reducing the inflammatory response and oxidative stress as well as reducing 
pathological injury. The molecular mechanism may be related to the Nrf2/HO-1 activation and subsequently activating its 
downstream target MRP1, then alleviating the glucocorticoid resistance.90

Table 1 (Continued). 

Disease Subjects Pathways Effects Reference

Polycystic ovary 

syndrome

Human and mice AMPK-PI3K-mTOR 

signaling

↓TNF-α, mitochondrial membrane potential (MMP), 

ROS 
Reverse ovulatory dysfunction, disturbed estrous 

cycle, and abnormal ovarian morphology, and restore 

the impaired glucose tolerance

[57]

Psoriasis HaCaT cells mTOR signaling ↓Proliferation, p-p70S6K, IL-6, TNF-α, and VEGF 

↑Apoptosis

[64]

Liver injury Rats mTOR-HIF-1α 
signaling

↓α-SMA, TIMP-1, hs-CRP, TNF-α, IL-6,ALT and AST [65]

Spinal cord injury Rats and microglial 

cells

AMPK-mTOR 

signaling

↓Apoptosis, inflammation 

↑Axon regeneration, M1 to M2 phenotype 
polarization, and autophagy

[66]

Intestinal injury HUVECs, HIECs, and 
BALB/c mice

mTOR signaling ↓Senescence, intestinal canal inflammation, and 
oxidative stress

[67]

Sepsis-associated 
myocardial injury

C57BL/6J mice and 
H9c2 cells

AMPK-mTOR 
signaling

↓Cardiac dysfunction, myocardial enzymes, and cardiac 
hydroncus 

↑Autophagy

[68]
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AMPK-Independent Pathways
However, several studies suggested that AMPK is not the only pathway for metformin’s beneficial anti-inflammation 
effects.91,92 Several lines of evidence indicate that some kinases and redox-related transcription factors are regulated by 
metformin via an AMPKα-independent pathway, including STAT3, mTOR, hypoxia-inducible factor-1α (HIF-1α), and 
SIRT1.93–96

For example, a study performed in murine burn models demonstrated that metformin prevented pathological 
browning and lipolysis, improving outcomes for burn patients. The reason for this could be metformin’s tissue-specific 
actions on murine and human burn white adipose tissue (WAT), which functioned via an AMPK-independent mechanism 
through protein phosphatase 2A (PP2A) activation. However, AICAR, another potent AMPK agonist, did not show this 
effect. In the adipocytes culture experiment, metformin was shown to significantly decrease the phosphorylated c-Jun 
N-terminal kinase (JNK) p46 and the mRNA levels of TNFα, IL-1β, and IL-6, as well as increased adipocyte expression 
of PFKFB3/iPFK2. Notably, treatment of adipocytes with metformin did not significantly alter the phosphorylation state 
of AMPK and failed to suppress the intracellular proinflammatory responses in PFKFB3/iPFK2-knockdown adipocytes 
effectively.97 These findings were consistent with a previous study.98 That is, metformin appears to suppress proin-
flammatory responses of adipocytes in a manner independent of AMPK.

It is widely recognized that the AMPK-mTOR pathway is indispensable in metformin exerts anti-inflammatory 
effects. Many reports still show that metformin inhibits inflammation by modulating mTOR independently of the AMPK 
pathway. Metformin has been reported to directly inhibit mTORC1 activation in a Rag GTPase-dependent manner rather 
than dependent on TSC1/2 or AMPK. These observations were consistent with two distinct pre-clinical models of cancer 
and diabetes. Thus, direct inhibition of mTORC1 inhibits inflammatory response.94 In HepG2 cells transfected with DN- 
AMPK, metformin was still effective in reducing ROS production, although not to the same extent as in control cells. It 
indicates metformin may work independently of AMPK as well as through it.99

In primary murine bone marrow-derived macrophages (BMDMs), metformin inhibited LPS-induced production of 
ROS and IL-1β and elevated levels of the anti-inflammatory cytokine IL-10. Furthermore, metformin could also exert 
a protective effect in AMKPα1- or AMPKβ1-deficient cells. These effects did not depend on AMPK activation and were 
possibly attributed to the inhibition of reverse electron transport.100

Similar effects have been demonstrated in wild-type (WT) and AMPKα2−/− mice exposed to PM2.5 every other day 
and subsequently received metformin. However, metformin therapy effectively attenuated lung injury and cardiac 
dysfunction caused by PM2.5 in both the WT and AMPKα2−/− mice. Furthermore, systemic and pulmonary inflammation, 
pulmonary and myocardial fibrosis, and oxidative stress were reduced in two mice models, suggesting that these effects 
are AMPK-independent.101

Mitochondrial Dysfunction
Mitochondria are the cell’s power stations and the source of various pro-inflammatory signals that activate the immune 
system and generate inflammatory responses. Mitochondrial damage can lead to mitochondrial dysfunction, oxidative 
stress, inflammation, inhibiting respiration, and decreasing membrane potential.102 It is also the primary subcellular target 
of metformin. Multiple studies have demonstrated that metformin can reduce mitochondrial respiration via inhibiting 
complex I of the electron transport chain, leading to an increase in the AMP/ATP ratio and activating AMPK, thereby 
alleviating the mitochondrial fragmentation, blocking the production of ROS produced by mitochondria, lessening 
activation of NLRP3 inflammasomes and the cytoplasmic release of mitochondrial DNA (mtDNA), thus reducing 
inflammation by downregulating the expression of inflammatory cytokines such as TNF-α, IL-6 and IL-1β.54,100,103,104

NLRP3
A growing body of evidence indicates that NLRP3 inflammasome regulates the innate immune system and induces 
inflammatory responses, which consists of caspase adaptor (ASC), pro-caspase-1, and NLRP3 protein, to activate 
caspase-1 and thus produce high numbers of mature IL-1β.105,106 Several studies have confirmed that mitochondrial 
dysfunction and consequent overproduction of ROS are necessary to activate the NLRP3 inflammasome.107,108

https://doi.org/10.2147/JIR.S436147                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2023:16 5550

Lin et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Yang et al109 have shown that metformin could inhibit the NLRP3 inflammasome by activating the AMPK/mTOR 
axis in diabetic mice and high glucose-treated cardiomyocytes, and AMPK inhibitor reversed the upregulation of NLRP3, 
caspase-1, and IL1-β expression. Besides that, another study also drew a similar conclusion.30 It reported that metformin 
inhibited NLRP3 by activating phosphorylated AMPK. At the same time, the expression levels of pro-inflammatory 
cytokines such as TNF-α, IL-6, and IL-1β as well as NLRP3, were decreased when treated with metformin, a special 
stimulator of NLRP3 (nigericin), abolished the protective effects of metformin in neonatal rat ventricular myocytes. 
Additional studies have indicated that the NLRP3 inflammasome is an essential inflammatory target in several brain 
disorders, including depression.110,111 A recent study found that metformin could act as an antidepressant partly by 
suppressing peripheral and central NLRP3 inflammasome activation, subsequent caspase-1 cleavage, and interleukin-1β 
secretion.112

Oxidative Stress
Oxidative stress is an imbalance between the formation of oxidative free radicals, also known as reactive oxygen species 
(ROS), and defense mechanisms by antioxidants.113 It is well-recognized that inflammation is closely associated with 
oxidative stress. Oxidative stress can cause the activation of a variety of transcription factors, such as NF-κB, protein-1 
activator (AP-1), and hypoxia-inducible factor-1 (HIF-1), leading to the expression of various genes involved in 
inflammatory pathways.114–116 The inflammation triggered by constant oxidative stress is the cause of the development 
of many chronic diseases. During atherosclerosis, oxidative damage increases endothelial permeability, resulting in 
lipoproteins being released into the subendothelial space and inflammation.117

Metformin has been proposed to exert an anti-inflammatory effect through its antioxidant activity.118 Metformin could 
suppress the CEBP-homologous protein (CHOP), an endoplasmic reticulum stress (ERS) marker, thus serving cardio-
protective roles by attenuating ERS.119 Araújo et al120 found that metformin restored the marker of antioxidant genes 
expression such as malondialdehyde (MDA), a major end product of lipid peroxidation, and superoxide dismutase (SOD) 
(involved in the neutralization of ROS) in a rat model of periodontitis, implied a strong antioxidant effect, thus caused 
significant reductions in the expression of pro-inflammatory factors such as IL-1β and TNF-α as well as COX-2 
immunostaining. In vitro and in vivo experiments indicated that metformin ameliorated aldo+salt-induced oxidative 
stress by inhibiting TRAF3IP2 activation, which is an oxidative stress-responsive cytoplasmic adapter molecule, and 
finally inhibited inflammatory cell infiltration and the pro-inflammatory factors expression such as IL-6, IL-17, and IL- 
18.121 Metformin relieved oxidative stress by reducing ICAM1 and COX-2 expression and reducing prostaglandin E2 
(PGE2) and endogenous mitochondrial ROS production at μM concentrations, thereby inhibiting subsequent inflamma-
tory signaling and metastatic progression in breast cancer cells.122 Moreover, a randomized clinical trial indicated that 
metformin was more efficient in reducing oxidative stress and restoring antioxidant reserves than lifestyle modification 
alone in patients newly diagnosed with type 2 diabetes.123

Nevertheless, numerous studies have suggested that high doses of metformin may compromise mitochondrial 
function and induce oxidative stress.124,125 As a case in point, Picone et al125 observed that ROS production level 
increased in the human lymphocytes by treatment of metformin at a range of concentrations (5, 10, 20 mM), higher than 
the regular dose. Hence, different concentrations of metformin application may lead to other, even divergent results. For 
this reason, concomitant medication should be strictly controlled in future studies.

Mitochondrial DNA (mtDNA)
In mitochondria, extrachromosomal circular DNA is found as mtDNA.126 In recent years, mtDNA has been recognized 
as a biomarker of oxidative stress.127 Increased oxidative stress directly attacks mtDNA, compromising mitochondrial 
physiology and leading to mitochondrial dysfunction, resulting in an inflammatory response.128,129 Mutations, deletions, 
and depletions of mtDNA have been observed in several diseases and pathological disorders.130,131 The released mtDNA 
could act as endogenous damage-associated molecular patterns (DAMPs) and induce subsequent inflammation by 
directly activating the inflammasomes such as NLRP3 and AIM2.129,132,133 The above research suggested that the 
accumulation of dysfunctional mitochondria and the release of mtDNA after mitochondria damage play a critical role in 
the inflammatory response.

Journal of Inflammation Research 2023:16                                                                                          https://doi.org/10.2147/JIR.S436147                                                                                                                                                                                                                       

DovePress                                                                                                                       
5551

Dovepress                                                                                                                                                               Lin et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Due to the inhibition of mtATP production and the LPS-induced ATP-dependent synthesis of the NLRP3 ligand 
mtDNA, metformin could reduce Ox-mtDNA generation, thus attenuating acute respiratory distress syndrome (ARDS), 
which is an inflammatory condition and is associated with high mortality rates.92 Moreover, metformin treatment 
profoundly abrogated mtDNA-ATP-induced mitochondrial ROS production, NLRP3 and caspase-1 activation, the release 
of IL-1β and IL-18 in the RAW264. 7 macrophages.34

Immune Cell Populations
Monocytes-Macrophages
Macrophages are well known that play a pivotal role in inflammatory responses. They recognize pathogen-associated 
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) via pattern-recognition receptors 
(PRRs) such as Toll-like receptors (TLRs) to initiate rapid protective immune responses, serving as the first line of 
defense against invading pathogens.134,135 However, when macrophages are activated, excessive inflammatory factors are 
released, aggravating the injured tissues and triggering inflammation.136

Metformin has anti-angiogenic and antitumor properties, and these effects have been demonstrated to be closely 
associated with the suppression of M2-like polarization of tumor-associated macrophages (TAMs).137 It has been 
previously shown that in the intestine, the ability of monocytes differentiate into macrophages was inhibited by a supra- 
pharmacological dose of metformin via AMPK induction, resulting in decreased inflammatory cytokine production. In 
addition, it activated macrophage polarization into anti-inflammatory phenotypes of M2.138 It has similarly been shown 
in ApoE−/− mice as an atherosclerosis model.35 In addition, metformin has been reported to improve inflammation at 
a low level in obesity by modulating macrophage polarization to anti-inflammatory M2 type partly via activation of the 
AMPK pathway.139 Similar findings have been demonstrated in mice with the multiple sclerosis model autoimmune 
encephalomyelitis. In addition, another clinical study concerning pancreatic cancer also found that metformin could alter 
the tumor-educated macrophage polarisation and reduce the tumor cell invasion.140 Numerous studies have indicated that 
metformin alleviates inflammatory response in macrophages, generally through AMPK activation, with subsequent 
inhibition of the production of mitochondrial ROS (mtROS).141,142 While apart from affecting macrophage polarization, 
metformin could play an anti-inflammatory role by inhibiting the fatty acid synthesis and Akt palmitoylation in 
macrophages.143

Neutrophils
Neutrophils are critical inflammatory cells in the early inflammatory response of innate immunity. Neutrophils can be 
preferentially recruited to inflamed sites to exert their essential function.144 Activated neutrophils could release neutrophil 
extracellular traps (NETs) (which contain antimicrobial proteins and chromatin) as a form of non-apoptotic cell death 
termed “NETosis”,145 which is considered to be a host defense mechanism.146 NETosis not only rap and eliminates 
diverse pathogens1, but also degrades pro-inflammatory mediators, preventing the inordinate inflammatory response.147 

Indeed, NETosis-impaired individuals exhibit an overshooting inflammatory response.147 Excessive NETosis is also 
a hallmark of sepsis and may exert tissue damage and exacerbate pathological conditions.148,149

Metformin may alleviate inflammatory diseases with the mechanism by blunting the NETosis has been reported. For 
example, a randomized controlled trial by Menegazzo et al150 reported that metformin exerted a protective effect against 
NETosis to reverse the diabetic inflammatory milieu in vitro and in vivo. In some cases, the production of ROS is 
required for NETosis.151 By inhibiting complex I of the mitochondrial electron transport chain, metformin decreases ROS 
production.152 A significant role for NETs has been found in systemic lupus erythematosus (SLE) recently, as they 
promoted plasmacytoid dendritic cells (pDCs) activation and differentiation as well as mediated activation of the pDC- 
IFN-α pathway, which led to potentiate the autoinflammatory feedback loop.153,154 Metformin has been found to decrease 
PMA-induced NETosis, the generation of interferon-alpha (IFN-ɑ), and the NET-mtDNA copies, which are highly pro- 
inflammatory.155 Ultimately, metformin reduced disease activity through this treatment and improved survival in SLE 
patients.156
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T Cells, B Cells, and Dendritic Cells
Dysregulated immune cells such as T lymphocytes, B lymphocytes, and dendritic cells (DCs) cause autoimmune 
diseases, which have characteristics of both autoimmune diseases and autoinflammatory diseases.157

T cells are crucial in host immune defense and immune-mediated inflammatory diseases.158,159 Trafficking of T cells 
from peripheral blood and lymphoid tissues to sites of inflammation is a key regulatory component.160 The high-fat diet 
reduced T cell recruitment to the liver, but metformin treatment reversed this effect, and diet-enhanced inflammation was 
alleviated.161 Moreover, Th17 cells are a subset of CD4T cells that secrete proinflammatory cytokines, including IL- 
17.162 In a mouse model, metformin ameliorated scleroderma by inhibiting Th17 cells through mTOR-STAT3 
signaling.60 Similar findings have been demonstrated in a murine model with acute graft-versus-host disease 
(aGVHD). Researchers found that metformin could reduce the number of Th1 and Th17 cells and reciprocally upregulate 
Th2 cells and Treg. The outcomes were achieved via inhibiting the mTOR/STAT3 pathway and inducing autophagy.163

Apart from affecting T cells, metformin was also reported to protect women with polycystic ovary syndrome (PCOS) 
and PCOS mice induced by DHEA via inhibiting TNF-α production in pathological B cells.57 It was also shown in this 
study that metformin triggered metabolic reprogramming in B cells of PCOS patients, leading to alterations in 
mitochondrial morphology, a reduction in mitochondrial membrane potential (MMP), decreased generation of ROS, 
and reduced glucose uptake. Furthermore, metformin altered metabolic intermediates in splenic B cells from PCOS- 
model mice.

Accumulating evidence has indicated that autoantibodies derived from abnormal activated B cells contribute to the 
onset of SLE.164,165 Interestingly, a study in Roquinsan/san mice, a murine model of SLE, showed that metformin inhibited 
systemic autoimmunity by suppressing B cells differentiation into plasma cells and decreasing the number and size of 
germinal centers.166 Similar results were obtained in murine Sjögren’s syndrome.13

Dendritic cells (DCs) are the most efficient antigen-presenting cells (APCs) that can initiate and regulate T cells, 
B cells, and natural killer cells, leading to an adaptive immune response.167 Metformin has been demonstrated to reduce 
major histocompatibility complex (MHC) class I- and class II-restricted presentation of ovalbumin by decreasing co- 
stimulatory molecule expression.168

Gut Microbiota
The gut microbiota is a complex microbial community consisting of more than 100 trillion microorganisms in the 
gastrointestinal tract of humans, including bacteria, viruses, fungi, and protozoa.169 Mounting studies have demon-
strated that the alteration in gut microbiota composition has been correlated not only with the intestinal inflammatory 
disorder but also with numerous diseases characterized by systemic chronic inflammation and metabolic disorders,170 

such as allergy, asthma, obesity, and atherosclerosis.171–175 The induction of inflammatory processes perhaps linked to 
the translocation of microbial products into circulation.176 Recently, Yan et al177 discovered that the bacteria 
proportions were closely related to inflammatory indicators. The result was that the relative abundance of 
Firmicutes was positively correlated with TNF-α, whereas Bacteroidetes was inversely correlated with plasma TNF- 
α, aorta IL-1β, and IL-6. Moreover, the abundance of Proteobacteria was positively correlated with the levels of 
plasma TNF-α, IL-6, and aorta IL-6. Akkermansia was negatively related to plasma LPS and aorta IL-6. Similarly, 
a negative correlation existed between Bifidobacterium and plasma LPS, TNF-α, and aorta IL-1β. In contrast, 
a positive correlation existed between Romboutsia and plasma indicators of inflammation such as IL-6, IL-1β, and 
TNF-α resistance. Alternatively, the study revealed that the primary reason for the effectiveness of metformin 
treatment in anti-atherosclerosis might be alleviating macrophage-mediated inflammation via rectification of gut 
dysbiosis.

Chronic low-grade inflammatory response involves metabolites such as endotoxin derived from the gut flora.178 It has 
been discovered that non-alcoholic fatty liver disease (NAFLD), which includes a variety of pathological changes such as 
no-alcoholic steatohepatitis (NASH), is linked to an increase in gut permeability that is associated with increased levels 
of small intestine bacterial overgrowth in humans.179 Along a similar line, endogenous gut-derived bacterial endotoxin is 
considered a vital cofactor mediating the pathogenesis of NASH.180,181 Thus, the primary source of circulating endotoxin 
among nonseptic individuals is bacterial endotoxin translocation through a weakened gut barrier. In one study, mice’s fat- 

Journal of Inflammation Research 2023:16                                                                                          https://doi.org/10.2147/JIR.S436147                                                                                                                                                                                                                       

DovePress                                                                                                                       
5553

Dovepress                                                                                                                                                               Lin et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


, fructose- and cholesterol-rich diet (FFC) feeding were used to model NAFLD.182 The mice were fed a metformin diet 
for six weeks, and the markers of inflammation, liver health, intestinal barrier function, and microbiota composition were 
analyzed. The markers of the inflammation and lipid peroxidation were significantly decreased following metformin 
treatment. Compared to the NAFLD mice model, intestinal microbiota composition in the proximal small intestine was 
also changed in metformin-fed mice. These data confirm that metformin exerts anti-inflammatory effects partly by 
regulating gut microbiota function.

In a dextran sulfate sodium-induced ulcerative colitis (UC) murine model, metformin treatment exerted anti- 
inflammatory and mucus-protective effects by changing the gut microbiota by increasing the abundance of 
Akkermansia muciniphila and Lactobacillus, both of which possess anti-inflammatory property.183 Additionally, 
a clinical study confirmed that metformin could regulate the gut microbiota in patients with type 2 diabetes, which 
may explain the beneficial pleiotropic effects of metformin.184 Moreover, AMPKα1 activation by metformin has been 
shown to counteract the effect of the intestinal barrier dysfunction in promoting inflammation which was triggered by 
C-Jun N-terminal kinase (JNK).185

Autophagy
Autophagy is a multi-step, intracellular lysosomal degradation pathway that degrades or removes damaged proteins and 
organelles in the cytoplasm.186 Thus, steady-state autophagy is essential for preserving cell homeostasis, while additional 
autophagy induced by environmental stress may be beneficial for protecting cells.187,188 Some studies have shown that 
inflammation is tightly related to autophagy, and enhanced autophagy can regulate inflammatory reaction.189

Autophagy can be categorized into macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). 
Among these, macroautophagy (hereafter autophagy), mediated by organelles known as autophagosomes, is the most 
well-studied and most relevant to inflammasome studies.190,191 Most reported inhibitory effects on inflammation have 
been associated with macroautophagy, while the implications of other types of autophagy remain unclear.192 The multi- 
step process of autophagy requires the collaboration of a variety of autophagic proteins. So far, over 30 autophagy-related 
proteins (ATGs) are involved in autophagy regulation.193 Among these, microtubule-associated protein light chain 3 
(LC3), Beclin1, and autophagy-degrading substrate SQSTM1/p62 are the most widely studied autophagy-related 
proteins.194 It has been suggested that autophagy-related proteins regulate NALP3-dependent inflammation by maintain-
ing mitochondrial integrity.195 Mechanistically, autophagy could decrease NLRP3 activation via diverse mechanisms, 
including increasing the p-AMPK levels196 and suppressing the mTOR signaling pathway,197 and continuously clearing 
various endogenous inflammasome agonists and components, such as ROS and damaged mitochondria.107,198 Kabat 
et al199 also found that selective deletion of Atg16l1 in T cells in mice resulted in increased pro-inflammatory cytokine 
production in the gut. As a result, the mice developed spontaneous intestinal inflammation and secreted antibodies 
against gut bacteria and food, indicating the critical role of autophagy in suppressing intestinal inflammation.

Pharmacological modulation of autophagy is an attractive therapeutic target against inflammatory diseases with 
metformin treatment (Figure 2). In a Kawasaki disease (KD) vasculitis model, cardiovascular lesions were associated 
with activation of NLRP3, high ROS levels, and increased systemic 8-OHdG release. Damage induced by ROS and 
impaired autophagy/mitophagy deteriorated the development of murine KD. In this study, metformin treatment relieved 
inflammatory response from lactobacillus casei cell wall extract (LCWE), reduced cardiovascular lesions, and enhanced 
autophagic flux significantly, indicating its potential in treating inflammation diseases. These effects were realized by 
metformin reducing ROS and activating autophagy through the AMPK axis.200

The expression of p-AMPK and the autophagy-related protein LC3 II and p62 were upregulated, and mTOR levels 
were downregulated by metformin treatment.34 These changes were reversed after treatment with AMPK inhibitor 
Compound C. What’s more, using the autophagy inhibitors chloroquine (CQ) and 3-methyladenine (3-MA) and knocking 
down or knocking out Atg5 (autophagy-related gene 5) led to the counteraction of the inhibitory effects of metformin on 
NLRP3 inflammasome activation induced by hydrogen peroxide and mtDNA-ATP, as well as the release of IL-1β, IL-18 
and ROS production in RAW264. 7 macrophages.34

Autophagy has a crucial role in cardiovascular homeostasis.201 Accumulating evidence indicated that inflammatory 
mediators could be therapeutic targets for heart failure treatment.202,203 Further, a growing body of research suggests that 
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metformin exerts cardiovascular protection irrespective of glucose change and associated effects.109,204–206 Metformin 
has been reported to regulate autophagy in various cardiovascular diseases, including heart failure, I/R injury, and 
diabetic cardiomyopathy. However, it has been demonstrated that autophagy activated by I/R appears to act as 
a compensatory protective mechanism for I/R injury.207

Interestingly, there were almost opposite conclusions about autophagy’s value in I/R injury. A previous study reported 
that the metformin-driven cardioprotection function involves a decreased level of autophagy and restores the impairment 
of autophagosome processing, ultimately reducing myocardial inflammation. The study further indicated that metfor-
min’s beneficial effect was mediated by down-regulating the autophagy caused by the Akt signaling pathway.208 

Obviously, there is still controversy regarding the role of autophagy in I/R injury.209–211

Of note, over-induction of autophagy leads to inflammatory increases have also been reported. A recent study on 
periodontal ligament stem cells (PDLSCs) suggested that force-stimulated PDLSC autophagy differentiates macrophages 
into the M1 phenotype by suppressing the AKT signaling pathway, aiding the inflammatory bone remodeling and tooth 
movement process.212 Besides, another study indicated that ER stress-induced autophagy may exacerbate the severity of 
inflammatory bowel diseases.213 Moreover, a recent randomized controlled clinical study found that inhibiting macro-
phage autophagy by combining corticosteroids and statins enhanced IL-10 production, thereby controlling asthma 
inflammation.214 Therefore, autophagy is a “double-edged sword” in inflammation.215 Metformin has been shown to 
down-regulate autophagy by reducing glutamine metabolism and ammonia accumulation at micromolar 
concentrations.216

However, most of the literature focused on the promoting effect of metformin in autophagy. There are studies 
indicating otherwise. Whatever the case, metformin’s effect on autophagy activation could be dose-dependent and cell- 
type specific. More research is needed to elucidate the role of metformin in autophagy further.

Figure 2 Metformin reduces inflammation by regulating the autophagy process. TLR family members activated by PAMPs or DAMPs initiate the innate immune response as 
a response to infection or injury. Then, it activates NF-kB and further activates the NLRP3 inflammasome. Upon NLRP3 activation, pro-IL1-β and pro-IL18 were cleaved into 
mature and active IL1-β and IL18. These cytokines are subsequently released, initiating an inflammatory response. Metformin activates AMPK, inhibits mTOR, and activates 
the ULK complex, thus inducing autophagy and further blocking the activation of NLRP3, inhibiting inflammation. Autophagy involves the formation of autophagosomes, 
fusion of autophagosomes with lysosomes, and degradation of the autophagy-lysosomes. Metformin could also scavenge mtDNA and mtROS through mitophagy induction 
via the inhibition of mitochondrial complex I, inhibiting NLRP3 inflammasome activation, thus eventually inhibiting inflammation.
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Aging
Aging is often accompanied by a state of chronic, low-grade systemic inflammation, which is a major risk factor 
associated with high levels of mortality and morbidity.217 Many age-related diseases, such as atherosclerosis,218,219 

rheumatoid arthritis,220 and Alzheimer’s disease,221 are associated with senescence-associated inflammation caused by 
pro-inflammatory molecules. Senescent cells occur and accumulate in-vivo, which could increase the production of pro- 
inflammatory cytokines, including TNFα and IL-6, and matrix metalloproteins, as well as angiogenic factors, creating 
a secretory profile called Senescence-Associated Secretory Phenotype (SASP), which could result in immune system 
dysregulation and induce inflammation and senescence.222–225 Therefore, treatment strategies can target cellular senes-
cence to relieve inflammation.

Accumulating evidence demonstrates an anti-inflammatory role of metformin in aging-related inflammation via 
removing senescent cells and regulating the SASP. Metformin was shown to trigger a DNA damage response that 
induced senescent cells’ immune clearance via the activation of ATM.226,227 Moreover, mechanisms that metformin 
accelerate self-renewal include autophagy and prevent several pathologic and destructive changes. In many senescence 
models, metformin alleviated cellular senescence in a DICER1-dependent mechanism. It reduced the expression of the 
p16 and p21 proteins and the content of the inflammatory cytokines that are hallmarks of the SASP.228 Similarly, it has 
been shown that the effects of metformin on preterm birth due to LPS could be alleviated through slowing premature 
decidual senescence that led to the loss of placenta/fetus attachment to the maternal decidua.229 Furthermore, 
a randomized controlled trial by Long et al230 demonstrated that metformin could enhance the response of older adults 
to resistance exercise training by alleviating inflammation in muscle tissue, highlighting the role of metformin in 
inhibiting aging-related inflammation.

Although studies have shown that elderly patients, especially those with inflammatory diseases, appear less sensitive 
to metformin, there are some additional benefits. Additional studies are needed to determine whether metformin could 
reduce inflammation and relieve symptoms of inflammation-associated diseases by reversing the aging processes.

Conclusion
Metformin has been used as an anti-diabetic drug for decades.231 These years, abundant clinical and basic studies have 
shed light on various critical roles of metformin in various inflammatory diseases. Most studies have focused on targeting 
AMPK and inhibiting mitochondrial ETC complex I.232 There are still many other possible mechanisms to investigate. 
Here, we summarize the latest research on the potential mechanisms of metformin in different inflammatory disorders. 
Gaining more insight into how metformin regulates inflammatory responses and characterizing the exact targets may be 
helpful in personalized therapy and the clinical use of metformin. The specific role and precise mechanisms of metformin 
under different physiological or pathological conditions need further study, and these efforts should be the focus of future 
research.
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