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Abstract: In this study, the nanoscale transformation of the polylactic-co-glycolic acid (PLGA) internal
structure, before and after its supercritical carbon dioxide (sc-CO2) swelling and plasticization,
followed by foaming after a CO2 pressure drop, was studied by small-angle X-ray scattering (SAXS)
for the first time. A comparative analysis of the internal structure data and porosity measurements
for PLGA scaffolds, produced by sc-CO2 processing, on a scale ranging from 0.02 to 1000 µm, was
performed by SAXS, helium pycnometry (HP), mercury intrusion porosimetry (MIP) and both “lab-
source” and synchrotron X-ray microtomography (micro-CT). This approach opens up possibilities
for the wide-scale evaluation, computer modeling, and prediction of the physical and mechanical
properties of PLGA scaffolds, as well as their biodegradation behavior in the body. Hence, this
study targets optimizing the process parameters of PLGA scaffold fabrication for specific biomedical
applications.

Keywords: PLGA scaffolds; supercritical fluid processing; internal structure; porosity; small-angle
X-ray scattering; helium pycnometry; mercury intrusion porosimetry; X-ray microtomography

1. Introduction

Nowadays, biocompatible polymer materials, as well as polymer-based structures,
play a pivotal role in the intensive research and extensive development of advanced
biomedical devices and pharmaceutical formulations [1,2]. Biodegradable polymers, e.g.,
aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA) and their
copolymer polylactic-co-glycolic acid (PLGA), which can “dissolve” at specific rates in the
human body, are of particular interest for modern biomedical products (suture threads,
stents, custom-designed implants, scaffolds for tissue engineering, etc.) [3–5] and controlled
drug release carrier [6,7] fabrication.

The physical–mechanical properties of aliphatic polyesters are considered to be among
the key parameters when choosing them as row materials for specific biomedical appli-
cations where they must mimic the mechanical strength of the living tissue targeted to
be replaced or regenerated [8]. For example, PLA and PLGA display significant tensile
stress (ca. 50 MPa) and favorable ultimate elongation at breakage (from 3% up to 200%,
depending on chemical structure and molecular weight distribution) properties, enabling
their broad application in the fabrication of products that are designed for use under
constant tensile stress and high elongation conditions [9,10].

There are a large number of chemical and structural characteristics that affect the
properties of polymeric materials and their behavior under various functional conditions.
The chemical composition, molecular weight distribution, degree of polymer crystallinity,
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and crosslinking determine the melting points and glass transition temperatures, density,
stiffness, strength, ductility, and biodegradation of polymeric materials [11].

The biodegradation rate of aliphatic polyesters is an important parameter that de-
termines the conditions of their behavior in the living body and, as a result, the niche
of their research and clinical applications, as well as the design of various devices and
pharmaceutical formulations [12,13]. The main chemical route for the degradation of these
polymers is hydrolysis, which results in the formation of water-soluble monomers and low-
molecular-weight oligomers from their respective large macromolecules [14]. There are two
major types of such hydrolysis: (1) heterogeneous, when degradation of the polymer begins
near the surface and slowly spreads downwards; (2) autocatalytic, when the produced
acid ester monomers and low-molecular-weight oligomers decrease the pH of the internal
volume, accelerating polymer decomposition [15]. Autocatalysis is more efficient within a
sample, whereas the surface layer of the polymer sample may persist for a long period of
time without visible changes. However, autocatalysis may slow down if acidifying agents
can easily leave the polymer due to diffusion (e.g., through the pores or void volume) into
the outer (water-containing) medium [16]. All these processes lead to a gradual change in
the functional properties of polymeric materials and biodegradable polymeric products.
To predict the characteristics and parameters of these changes, it is crucially important
to identify the major factors and gather all of the available data related to the intrinsic
physical–chemical properties of initial polymers that affect such phenomena.

Porosity is one of the key structural parameters of the scaffolds to be considered for
tissue engineering constructions (TECs) [17]. These scaffolds, after implantation in the
body (or being placed into a bioreactor) play the role of providing a three-dimensional
framework for primary cell attachment, growth, and proliferation, permitting native
extracellular matrix formation [18]. Their interconnected structure facilitates the transport
of the necessary nutrients and removal of the toxic products of cell metabolism. For these
specific applications, total porosity alone does not have a direct impact on the features
of the scaffold. Pore size and pore interconnectivity are more important. However, in
many cases, polymer scaffolds might contain both closed (isolated) and open (connected)
pores [19]. Moreover, high total porosity and the presence of non-controlled structural
defects often result in poor mechanical properties of the final product. Thus, for almost
all types of living tissues (connective, cartilaginous, bone, etc.), optimal scaffold porosity
is usually considered to be in the range of 40% to 80%, with an average pore size of 50 to
700 microns [5,17].

A deep understanding of the internal architectonics of the biomedical product and
controlled drug release carrier, based upon detailed structural data at scales ranging from
the intermolecular interactions of the starting materials (ca. 1 nm) to the typical pore size
of custom-designed implants or scaffolds for TEC (0.1–1 mm), is imperative to predict the
behavior and changes in the physical, chemical and mechanical properties of such biomedi-
cal products over the course of their interaction with the surrounding biological medium.
Many analytical techniques and types of measuring equipment exist that enable the high-
quality acquisition of the structural data mentioned above [20]. In the context of the present
study, such techniques include: small-angle X-ray scattering (SAXS) [21], helium pycnome-
try (HP) [22,23], mercury intrusion porosimetry (MIP) [24,25] and X-ray microtomography
(micro-CT) [26]. All these techniques, with some reservations (especially when we are
talking about polymeric materials and structures), can be considered non-destructive. Each
one has its own range of measurements, applications, and limitations.

In general, all fundamental properties of a material, one way or another, are related
to the structure and arrangement of domains at the nanoscale. There are several classical
methods, such as atomic force-, transmission electron- and scanning electron microscopy
(TEM and SEM, respectively), which are used to characterize materials at this scale. How-
ever, SEM and TEM mainly allow for 2D measurements in a limited field of view and
are, therefore, inadequate at investigating the pore interconnectivity of 3D specimens.



Polymers 2021, 13, 1021 3 of 14

These methods also have the disadvantage that the averaged results of a sample can rarely
be obtained.

Ideally, SAXS is used in complement to microscopic methods since it provides repre-
sentative structural information about a large sample area and its signal can be observed
whenever a material contains structural features typically in the range of 1–100 nm. HP
measures the true (absolute) volume and skeletal density of the sample. MIP has been
routinely used to evaluate the pore-size distribution of powdered and bulk materials with
open and interconnected pore structures at a scale ranging from a few nanometers to
hundreds of micrometers. However, to analyze the “left end” of this range (pore diameter
less than 10 nm), one needs to apply an intrusion pressure above 100 MPa. Furthermore,
the destructive features of MIP cannot be ignored in this case, particularly for fragile or
highly porous polymer scaffolds. In case of SAXS and micro-CT analysis it is always
necessary to keep in mind X-ray intensity- and doze-dependent polymer degradation due
to radiation-induced macromolecule scission.

Supercritical carbon dioxide (sc-CO2) swelling and plasticization of amorphous poly-
mers, followed by the foaming of said polymers, represents just one of many methodologies
for the fabrication of porous structures with a predetermined porosity [27]. Nevertheless,
this approach has unambiguous advantages over conventional techniques for porous
polymer production, such as solvent casting, particulate leaching, phase separation, and
freeze-drying [28]. These advantages are based on its “solvent-free” nature, providing
an absence of toxic organic solvent residues and retention of the bioactivity of the active
and/or thermally labile components in the pharmaceutical formulations and bioactive
scaffolds. Such qualities result from the fact that the critical temperature for carbon diox-
ide is Pcr = 31 ◦C and all processes can be performed at near ambient (around 40 ◦C)
temperatures [29–31].

Over the last two decades, almost all possible analytical techniques (except SAXS)
have been applied to characterize both the surface and internal structures of porous
biodegradable PLA and PLGA porous structures for TEC [32,33], including scaffolds
fabricated with the use of supercritical carbon dioxide [34,35]. However, at least two
questions still remain: (1) what kind of raw polymer internal structure transformation
can one expect at the nanoscale after processing this material with sc-CO2; (2) how do the
results collected with the help of these techniques complement and/or (arguably more
importantly) correspond one to another?

The goals of the present work are to perform a SAXS analysis of the nanostructure
transformation of polylactoglycolide, before and after processing with sc-CO2 and to
comparatively study the internal structure assessment and porosity measurements for
PLGA scaffolds (performed by SAXS, HP, MIP and micro-CT techniques).

2. Materials and Methods

Medical-grade polylactic-co-glycolic acid Purasorb PDLG7502 (Purac Biochem bv, Gor-
inchem, The Netherlands) with an inherent viscosity of C = 0.2 g/dL and a lacticto/glycolic
acid monomer ratio of 75:25 was used as the raw polymer material. Chemically pure
carbon dioxide (99.998% grade, NIIKM Ltd., Moscow, Russia) was applied as a plasticizing
and foaming agent.

In our experiments, carbon dioxide gradually diffused into the polymer volume
during the CO2 exposure time. The polymer swelled and intermolecular bonds were
weakened. As a result, the polymer transformed into a liquid-like (plasticized) state and
was ready for further foaming at the depressurization stage. Consequently, carbon dioxide
plays a dual role as a plasticizing agent at the preliminary stage of the process and a
foaming agent during the main stage (described in detail elsewhere [36]).

The initial PLGA granules (2 ÷ 3 mm in diameter) were ground by a rotational
cryomill (LZM-1M, OLIS Ltd., Russia), followed by their consecutive sieving through a set
of calibrated sieves (Grokhot GR30, Vibrotechnic Ltd., Saint Petersburg, Russia) with mesh
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sizes of 50 × 50 µm2 and 100 × 100 µm2 in order to select the fraction with particle sizes of
≤100 µm.

Next, a certain amount (ca. 600 mg) of finely dispersed PLGA powders was carefully
loaded into a revolving type aluminum mold, comprising 12 cylindrical Teflon inserts
(5 mm in diameter and 5 mm in height each). This mold was put into a high-pressure
chamber which was further sealed and then purged (to remove atmospheric air), and
gradually filled with carbon dioxide using a high-pressure pump (PN 101, NWA GmbH,
Lörrach, Germany) at a predetermined pressure and temperature—10.0 MPa and 40 ◦C,
respectively. The whole system was kept at these conditions for 1 h. After termination of the
process, CO2 pressure was released up to the atmospheric value through the needle valve
over the course of 30 s. Then, the molds and their contents were kept under room conditions
for 24 h, as required for the complete removal of CO2 from the polymeric scaffolds and
their final hardening. Porous cylindrical samples were removed from the mold inserts and
put into plastic containers where they were stored at −18 ◦C until further analysis.

The morphology of the surface and internal structure of the scaffolds were studied
via optical microscopy (performed with Bresser Advance ICQ stereoscopic microscope
(Bresser, Broken, Germany) equipped with a Levenhook C510 camera (Levenhook, Tampa,
FL, USA) and scanning electron microscopy ((SEM) using Phenom ProX scanning electron
microscope (Phenom, Eindhoven, The Netherlands)). The accelerating voltage used to
obtain the desired images was either 5 or 10 kV, with the magnification scale increasing
from 50 to 1000. Prior to the studies, all samples were fixed to the microscope stage
with conductive carbon tape, with no current-conducting (metallic) material having been
deposited on them.

The measurements of the scaffold gravitational mass were carried out on VIBRA
AF-R220CE balance (Shinko, Tokyo, Japan). The skeletal density of the polymer structures
was measured by HP at room (20 ◦C) temperature using a pycnometer Pycnomatic ATC
(Thermo Fisher Scientific, Milan, Italy).

Determination of the volume and pore size in the range of 1 to 100 nm was carried out
by the small-angle X-ray scattering method on an automatic small-angle X-ray diffractome-
ter “AMUR-K” [37] with a single-coordinate position-sensitive detector OD3M, at a fixed
radiation wavelength λ equal to 0.1542 nm (CuKα line of a fine focus tube with a copper
anode, a pyrolytic graphite monochromator) and a Kratky collimation system. The X-ray
beam cross-section was 0.2 × 8 mm, and the scattering angle region corresponded to the
range of the scattering vector modulus 0.1 < s < 1.0 nm−1 (|s| = 4π·sin θ

λ , 2θ is the scattering
angle). The measurements were carried out in an evacuated chamber with a sample-
detector distance of 700 mm. The measurement time for each sample was 20 min. Residual
scattering by the empty chamber was subtracted from the scattering data of the samples.
The measurement procedure was carried out according to the certified method [38].

To calculate the size distributions of inhomogeneities (in our case, pores dominated,
which will here be called “particles”), we used MIXTURE software [39], which is freely
available in the ATSAS small-angle scattering data processing software package [40], and
the POLYMIX version of the software, which uses a rather more efficient minimization
algorithm. As an alternative method, a direct nonparametric search for the distribution his-
togram from the scattering data (VOLDIS program) was used. In the first case, the scattering
intensity from a multicomponent system of particles is represented as a linear combination
of the contributions of scattering from K components, with each component being a system
of particles with a (partial) size distribution described by the analytical expression:

I(s) =
K

∑
k=1

[
ρ2

kvk

]
· Ik(s) (1)

where νk is the relative volume fraction of the k-th component, ρk is the average contrast of
the electron density (if only the shape of the distribution is of interest, then the contrast is
assigned as being equal to 1.0), Ik(s) is the scattering intensity of the k-th component, which
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depends on the type of the distribution function DVk (r) and the given form factor of the
particles I0k (s, r):

Ik(s) =
∫ Rmax

Rmin

DVk (r) · I0k (s, r) · Fk(s) · dr (2)

where r is the particle size and Fk(s) is the structure factor that takes into account interpar-
ticle interference in cases where they are densely packed. The result is a linear combination
of partial distributions:

DV(r) = ∑K
k=1 vkDVk (r) (3)

In MIXTURE software, to minimize the quadratic discrepancy between the experimen-
tal and theoretical (1) scattering curves, the variable metric method with simple restrictions
on the parameters is used in the programs POLYMIX and VOLDIS and a modified version
of the Levenberg–Marquardt algorithm is implemented. The unknowns are the parameters
of the partial distributions (mean and half-width) and their contributions in Equation (3).
The Schultz–Zimm distribution was used as the partial analytical expression, as described
in [41].

Measurements of the scaffold volume and pore sizes in the range of 100 nm to 100 µm
were carried out by MIP using the Pascal 140 (for determining the bulk density) and
Pascal 240 (for determining the apparent density) (Thermo Fisher Scientific, Milan, Italy)
porosimeters. Briefly, MIP is based on the properties of mercury as a non-wetting liquid
in relation to many solid materials, due to which, mercury penetrates into the open pores
of a solid sample with increasing pressure. The pore volume distribution is calculated
from the experimental data on the amount of mercury that has penetrated into the pores
of the sample and the equilibrium pressure at which the penetration phenomenon occurs.
The calculations are usually based on the following assumptions: (1) the surface tension
of mercury and the contact angle of the solid material are constant during the analysis;
(2) the penetration pressure must be in equilibrium; (3) the pores are cylindrical; (4) solid
materials do not deform under high pressure.

In the range of 100 µm to 1 mm, measurements of the pore volume and sizes of PLGA
scaffolds were performed using X-ray microtomography. The tomographic method makes
it possible to compute a three-dimensional voxel model of the object under study. This
can then be used not only to estimate the integral porosity of the matrix (as traditional
sorption methods do), but also to estimate the spatial distribution of the pores, as well as
their size distribution. X-ray computer microtomography (micro-CT) measurements were
performed on a laboratory microtomograph, TOMAS (at the Federal Scientific Research
Center “Crystallography and Photonics” Russian Academy of Sciences) [42]. The values
for the accelerating voltage and current were 40 kV and 20 mA, respectively. The probing
energy was 17.5 keV (a pyrolytic graphite crystal was used as a monochromator). For
each measurement, 400 radiographic projections were collected in the angular range of
200 degrees with a step of 0.5 degrees. The measurements were carried out according
to the parallel scanning scheme. The XIMEA xiRAY11 detector used had a pixel size of
9 × 9 microns, and the total scanning time was 120 min. The spatial resolution was 15 µm.
The algebraic coupled gradient method (CGLS) was used for tomographic reconstruction.

A preliminary analysis of porous PLGA samples—using synchrotron radiation phase-
contrast tomography (SR-XPCT)—was performed at the Diamond-Manchester Imaging
Branchline I13-2 [43,44] at the Diamond Light Source synchrotron, UK. A filtered poly-
chromatic “pink” beam (8–30 keV) of parallel geometry was generated by an undulator
with a 5 mm gap. For each tomogram, 4001 projection images were acquired at equally
spaced angles over 180◦ of continuous rotation. Images were collected by a pco.edge
5.5 Camera Link detector (PCO AG, Germany) mounted on a visible light microscope of
variable magnification. A 4× objective, coupled to a 500 µm LuAG:Ce scintillator, mounted
ahead of a 2× lens, provided a total magnification of 8× g, a field of view of 2.1 × 1.8 mm
(2560 × 2160 pixels) and an effective pixel size of 0.8125 µm. A propagation distance of
approximately 390 mm was used. Data were reconstructed using a filtered back projection
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algorithm in Savu [45], incorporating flat- and dark-field corrections, optical distortion
correction [46] and ring artefact suppression [47].

3. Results and Discussions

A typical general view and SEM images of the porous cylindrical PLGA scaffolds
with a mean (averaged over 12 samples) weight of 0.0476 g, produced by sc-CO2 swelling,
plasticization, and foaming are presented in Figures 1 and 2, respectively.
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3.1. Small-Angle X-ray Scattering (SAXS)

Small-angle scattering was used to assess the porosity of the cylinders and the initial
polymer granules. The volume fraction of inhomogeneities in the large sizes region for the
initial sample was significantly lower than for the porous cylinder images (Figure 3). It
should be noted that the amplitude of the structure factor in Equation (2) did not exceed
2% of the scattering intensity, which indicates significant distances between the pores and,
consequently, their closed nature. The distribution shapes are shown in Figure 3.
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3.2. Helium Pycnometry and Mercury Intrusion Porosimetry

The results of the HP and MIP measurements of the PLGA scaffolds—the average
values for the skeletal, volumetric (external volume), and apparent (calculated volume of
penetrated mercury) densities—are presented in Table 1.

Table 1. Skeletal, bulk, and apparent densities, and mass of PDLG 7502 porous cylinders.

Sample Mass, g Skeletal Density,
g/cm3 Bulk Density, g/cm3 Apparent Density,

g/cm3

0.0476 0.7891 0.5012 1.0353

The apparent density is different from the skeletal density of the material. When
comparing the porosity results measured by two different methods—helium pycnometry
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and mercury porosimetry—the values were 32.64% and 54.90%, respectively. The difference
of 22.26% indicates the presence of closed pores that are inaccessible to helium and open up
when a high pressure of ca. 20 MPa is applied. However, simultaneously with the opening
of the closed pores, a strong compression of the material is observed (this is evidenced by
the negative value of the difference in porosity measured by the two methods). It is not
possible to accurately determine the proportion of closed pores due to sample compression.

Based on the mercury intrusion data (the dependence of the mercury volume inside
the sample on the pressure applied) presented in Figure 4a (blue line), the specific pore
volume, specific pore surface area, and average pore diameter (defined as four times the
pore volume, divided by the surface area) were determined. Here, we assumed that all
pores were cylindrical, and median pore diameter is defined as the pore size calculated at
50% of the total pore volume (Table 2).

Polymers 2021, 13, x FOR PEER REVIEW 8 of 14 
 

 

mercury porosimetry—the values were 32.64% and 54.90%, respectively. The difference 
of 22.26% indicates the presence of closed pores that are inaccessible to helium and open 
up when a high pressure of ca. 20 MPa is applied. However, simultaneously with the 
opening of the closed pores, a strong compression of the material is observed (this is evi-
denced by the negative value of the difference in porosity measured by the two methods). 
It is not possible to accurately determine the proportion of closed pores due to sample 
compression. 

Based on the mercury intrusion data (the dependence of the mercury volume inside 
the sample on the pressure applied) presented in Figure 4a (blue line), the specific pore 
volume, specific pore surface area, and average pore diameter (defined as four times the 
pore volume, divided by the surface area) were determined. Here, we assumed that all 
pores were cylindrical, and median pore diameter is defined as the pore size calculated at 
50% of the total pore volume (Table 2). 

Table 2. Porosity data of polylactic-co-glycolic acid (PLGA) scaffolds. 

Specific Pore Volume, 
mm³/g 

Specific Pore Surface Area, 
m²/g 

Average Pore Diameter, 
μm 

Median Pore Diameter, 
μm 

1033.58 3.538 1.1686 20.2424 

Нistograms of the pore size distribution in the volume of the scaffold and the specific 
surface area distribution by pore size are shown in Figure 4a, b, respectively. 

  
(a) (b) 

Figure 4. (a) Pore diameter distribution in the PLGA scaffold volume (blue line—curve of mercury intrusion into the 
sample volume at pressure ranging from 0 to 30 MPa); (b) distribution of specific surface area by pore sizes. 

3.3. X-ray MicroCT 
To calculate the structural geometric parameters of the studied object, it is necessary 

to binarize the image, i.e., to separate the material matrix from the voids. Qualitative im-
plementation of such a procedure is hindered by the measurement of noise. For this pur-
pose, the “random walking” binarization technique was used [48]. This method requires 
one to define some points in the voids and in the matrix. Here, the 20th and 80th percen-
tiles of pixel intensity as levels of the initial approximation of the voids and matrix have 
been applied. A small variation in these parameters slightly changes the result of binari-
zation, showing that the algorithm is stable. A visualization of the binarized volume is 
shown in Figure 5. 
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Table 2. Porosity data of polylactic-co-glycolic acid (PLGA) scaffolds.

Specific Pore
Volume, mm3/g

Specific Pore Surface
Area, m2/g

Average Pore
Diameter, µm

Median Pore
Diameter, µm

1033.58 3.538 1.1686 20.2424

Histograms of the pore size distribution in the volume of the scaffold and the specific
surface area distribution by pore size are shown in Figure 4a,b, respectively.

3.3. X-ray MicroCT

To calculate the structural geometric parameters of the studied object, it is necessary
to binarize the image, i.e., to separate the material matrix from the voids. Qualitative
implementation of such a procedure is hindered by the measurement of noise. For this
purpose, the “random walking” binarization technique was used [48]. This method requires
one to define some points in the voids and in the matrix. Here, the 20th and 80th percentiles
of pixel intensity as levels of the initial approximation of the voids and matrix have been
applied. A small variation in these parameters slightly changes the result of binarization,
showing that the algorithm is stable. A visualization of the binarized volume is shown in
Figure 5.
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The analysis of the binarized volume connectivity showed that almost all pores visible
via computed tomography (over 10 µm in diameter) were open and connected. The volume
fraction of closed pores was just 0.38%.

In Figure 6, it can be seen that pores, in general, have a convex shape. Therefore, in
the tomography analysis, we used an approximation of the spherical pores, unlike the
cylindrical approximation in mercury intrusion porosimetry, which is used for accounting
for the connectivity of the pores.
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To calculate the pore size distribution, taking into account the spherical pore approxi-
mation, the following algorithm was implemented:

(1) for each point belonging to the pores, the Euclidean distance Ed(x,y,z) to the nearest
matrix edge was calculated;

(2) to determine the radii of the pores (approximating that the pores are spherical), the
positions of local maxima of function Ed(x,y,z) were found (distance to the closest
border) and these values used as the radii of the pores. The coordinates of the maxima
were used as the centers inscribed in the spheres of the pores. This step is similar
to the approach implemented in [49], in which the method was used to analyze the
thickness of the wall, instead of the pore size, as is the case here;

(3) the “watershed search” segmentation method [50], with the starting points in the
positions of the local maxima identified earlier, was used for three-dimensional
segmentation;

(4) using a pseudo-random color scale, the three-dimensional segmented areas were
colored (Figure 6);

(5) for each segmented element, the volume and effective radius of the sphere was calculated.

It should be noted that X-ray microtomography, unlike other methods, makes it
possible not only to obtain numerical characteristics, but also to conduct a total visual
assessment of the sample structure and to detect various important features. For example,
in our study, we found that the apparent anisotropy of the scaffold volume—expressed as
the directional orientation of the polymer structures (Figure 7)—reflects the results of the
internal stress of the polymer plasticized by sc-CO2, at the final stages of its foaming and
solidification within the mold, during carbon dioxide pressure release.

Figure 8 shows a summary of the PLGA scaffold pore size distribution, calculated
from SAXS HP, MIP, micro-CT, and SR XPCT measurements.

Figure 8 shows that the size range from 10 to 30 µm still remains uncertain. The
combination of the methods allows us to estimate the fraction of open pores for the
different pore sizes. However, it is likely that the application of high-resolution synchrotron
microtomography can help to fill this gap.
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To prove this concept, we performed various preliminary experiments at the diamond
light source synchrotron to detect the pores inside our PLGA scaffolds with diameters
of less than 30 µm, using a high-resolution detector in combination with phase-contrast
imaging. The application of a high-resolution detector with an effective pixel size of 0.8 µm
at the beamline I13-2 allows us to increase the spatial resolution, and thus, to visualize
pores as small as 3 µm with a reasonable level of contrast (Figure 9). The spherical form
of the micropores identified in the micro-CT measurements confirms the suggestion that
in the analysis of small-angle scattering measurements, we can assume that pores have a
spherical form.
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To calculate the cumulative volume of the submicron pores under laboratory condi-
tions, monochromatic tomography can be used to determine the linear absorption coeffi-
cient µ [51]. This parameter µ and the chemical formula of PLGA help to calculate the real
density ρexp of the PLGA. The relation 1 − ρexp

ρtabulated
(where ρtabulated is the tabulated value
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of PLGA density) gives the cumulative volume of the submicron pores, which cannot be
determined via tomography images.

4. Conclusions

A multiscale analysis of the polylactic-co-glycolic acid (Purasorb PDLG 7502) internal
structure, before and after its supercritical fluid processing, was carried out using X-
ray small-angle scattering, helium pycnometry, mercury intrusion porosimetry, X-ray
microtomography, and—for the first time—the synchrotron light source. The proposed
approach allows one to study the porosity of polymer scaffolds in the range of 0.02 to
1000 µm. Here, we have shown that X-ray small-angle scattering can be effectively used
to study pores with a radius of less than 0.05 µm, while mercury porosimetry is not
suitable for such small pore sizes since it requires high pressures that can destroy the fragile
polymer walls. This approach opens up the possibilities for the wide-scale evaluation,
computer modeling, and prediction of the physical and mechanical properties of PLGA
scaffolds, as well as their biodegradation behavior in the body. Hence, this study has
contributed to optimizing the process parameters of PLGA scaffold fabrication for specific
biomedical applications.
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