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Background: The long noncoding RNA actin filament associated protein 1 antisense
RNA1 (AFAP1-AS1) is a critical player in various cancers. However, the clinical value and
functional mechanisms of AFAP1-AS1 during the tumorigenicity of nasopharyngeal
carcinoma (NPC) remain unclear. Here, we investigated the clinical application and
potential molecular mechanisms of AFAP1-AS1 in NPC tumorigenesis and progression.

Methods: The expression level of AFAP1-AS1 was determined by qRT-PCR in 10 paired
fresh human NPC tissues and adjacent normal tissues. RNAscope was performed on 100
paired paraffin-embedded NPC and adjacent nontumor specimens. The biological
functions of AFAP1-AS1 were assessed by in vitro and in vivo functional experiments.
RNA-protein pull-down assays were performed to detect and identify the AFAP1-AS1-
interacting protein KAT2B. Protein-RNA immunoprecipitation (RIP) assays were
conducted to examine the interaction of AFAP1-AS1 and KAT2B. Chromatin
immunoprecipitation (ChIP) and luciferase analyses were utilized to identify the binding site
of transcription intermediary factor 1 alpha (TIF1a) and H3K14ac on the RBM3 promoter.

Results: AFAP1-AS1 is upregulated in NPC and is a poor prognostic indicator for survival
in NPC patients. AFAP1-AS1 was required for NPC proliferation in vitro and tumorigenicity
in vivo. Mechanistic investigations suggested that AFAP1-AS1 binds to KAT2B and
promotes acetyltransferase activation at two residues (E570/D610). KAT2B further
promotes H3K14 acetylation and protein binding to the bromo domain of TIF1a.
Consequently, TIF1a acts as a nuclear transcriptional coactivator of RBM3
transcription, leading to YAP mRNA stabilization and enhanced NPC tumorigenicity.
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Conclusions: Our findings suggest that AFAP1-AS1 functions as an oncogenic
biomarker and promotes NPC tumorigenic ity through enhanced KAT2B
acetyltransferase activation and YAP mRNA stabilization.
Keywords: lncRNA AFAP1-AS1, KAT2B, YAP, nasopharyngeal carcinoma, nasopharyngeal carcinoma tumorigenicity
INTRODUCTION

Nasopharyngeal carcinoma (NPC), a common head and neck
malignancy, has a high incidence rate in Southern China (1–3).
Although radiotherapy is one of the most effective treatments for
NPC patients (4, 5), recurrence and local advancement often lead
to treatment failure. Therefore, understanding the potential
molecular mechanisms underlying NPC pathogenesis is urgent.
The identification of novel therapeutic targets can help in the
development of new therapeutic programs that will improve the
overall survival rates of patients with NPC. Increasing evidence
suggests that long noncoding RNAs (lncRNAs) play important
roles in NPC tumorigenicity (6–8). However, the mechanisms
through which NPC tumorigenicity is regulated remain
poorly understood.

Actin filament associated protein 1 antisense RNA1 (AFAP1-
AS1) is an oncogenic lncRNA associated with the pathogenesis of a
variety of cancers. AFAP1-AS1 was first mapped to the antisense
strand of AFAP1 DNA (9). Studies have shown that AFAP1-AS1 is
upregulated in esophageal cancer (9), lung cancer (10),
hepatocellular carcinoma (11), pancreatic cancer (12), colorectal
cancer (13), and nasopharyngeal carcinoma (14). Recently, it was
shown that higher AFAP1-AS1 expression levels are associated with
a poor prognosis in NCP patients (15, 16). Recent evidence suggests
that AFAP1-AS1 binds to and promotes EZH2 methyltransferase
activity in colorectal cancer (13). AFAP1-AS1 has also been linked
to regulation of the Rho/Rac pathway via competition with
endogenous miR-423-5p (14). Interestingly, AFAP1-AS1 has been
shown to influence both KRT1 and AFAP1 expression via both
trans- and cis-regulatory mechanisms (17). Furthermore, AFAP1-
AS1 was also shown to be a direct downstream gene target for
c-Myc (18). However, the function of AFAP1-AS1 in NPC
tumorigenicity remains largely unknown.

In this study, we used RNA-Seq and liquid chromatography–
tandem mass spectrometry (LC-MS/MS) assays to evaluate NPC
cell lines. Through our study, we identified a new molecular
mechanism underlying the role of AFAP1-AS1 in NPC
tumorigenicity. We found that AFAP1-AS1 enhances KAT2B
acetyltransferase activation, which upregulates H3K14ac activity
against TIF1a, resulting in enhanced RBM3 transcription and
subsequent stabilization of YAP mRNA, inducing AFAP1-AS1-
driven NPC tumorigenicity.
MATERIALS AND METHODS

Clinical Specimens
Ten pairs of freshly frozen NPC tumor and adjacent nontumor
specimens were obtained from Zhongshan City People’s
2

Hospital. We also collected an additional 100 pairs of
formalin-fixed paraffin-embedded NPC tumor and adjacent
nontumor specimens from Zhengjiang Provincial People’s
Hospital. None of the samples were collected from patients
undergoing chemo- or radiotherapy at the time of biopsy.
Written ethics consent (No:2020QT254) was obtained from
the Institutional Ethical Review Board of the Zhengjiang
Provincial People’s Hospital before the samples were analyzed.

Cell Culture
HNE-1, C666-1, SUNE-1, CNE-1, CNE-2, and NP69 cell lines
were all procured from the Cell Bank of the Chinese Scientific
Academy (Shanghai, China). NPC cell lines were maintained in
Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented
with 10% fetal bovine serum. NP69 was cultured in DMEM/F12
supplemented with epidermal growth factor (20 ng/mL), cholera
toxin (100 ng/mL), insulin (10 mg/mL), penicillin–streptomycin
(100 mg/mL), hydrocortisone (0.5 mg/mL), and horse serum
(5%). All cells were cultured in an incubator with CO2 (5%) at
37°C. STR DNA fingerprinting was performed by the Shanghai
Biowing Applied Biotechnology Co., Ltd. (Shanghai, China) to
confirm identity before the start of the study.

Quantitative Reverse Transcriptase
PCR Analysis
Quantitative reverse transcriptase PCR (qRT-PCR) was
performed as previously described (6). Briefly, total RNA was
isolated from NPC cell lines and the collected specimens using
TRIzol reagent (Invitrogen), followed by reverse transcription
using reverse transcriptase (Promega). Finally, the QuantiTect
SYBR Green PCR Kit (Thermo Fisher) was used to perform qRT-
PCR. mRNA quantification was normalized to b-actin. All the
primers used in this study are listed in Supplementary Table 1.

Immunoprecipitation and Western
Blotting Assays
Immunoprecipitation (IP) and Western blotting (WB) assays were
conducted as previously described (19). The specific antibodies used
were as follows: KAT2B (#3378, 1:1000, Cell Signaling Technology),
H3K9ac (#9649, 1:1000, Cell Signaling Technology), H3K14ac
(#26828, 1:1000, Cell Signaling Technology), H3K9ac (#9649,
1:1000, Cell Signaling Technology), Histone H3 (#4499, 1:1000,
Cell Signaling Technology), TIF1a (ab38264, 1:1000, Abcam),
TIF1b (#4124, 1:1000, Cell Signaling Technology), TIF1g (#13387,
1:1000, Cell Signaling Technology), NCOA1 (#20301, 1:1000, Cell
Signaling Technology), NCOA2 (#96687, 1:1000, Cell Signaling
Technology), NCOA3 (#2126, 1:1000, Cell Signaling Technology),
RBM3 (ab211356, 1:1000, Abcam), YAP (#14074, 1:1000,
Cell Signaling Technology), Flag M2 antibody (#14793, 1:1000,
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Cell Signaling Technology), HA antibody (#2367, 1:1000, Cell
Signaling Technology), and b-actin (#4970, 1:1000, Cell
Signaling Technology).

Colony Formation and Cell
Proliferation Assays
To perform the colony formation assay, cells were seeded into
six-well plates with DMEM supplemented with 10% fetal bovine
serum and cultured (as described in the “Cell Culture” section)
for approximately 10 days. The cell colonies were then fixed,
stained, and counted. For the cell proliferation assays, cells were
seeded into DMEM containing 10% fetal bovine serum,
passaged, and finally detected using a WST-1 assay kit.

RNA Pull-Down and RNA
Immunoprecipitation Assays
RNA pull-down and RNA immunoprecipitation (RIP) assays were
performed as previously shown (20). The specific antibodies used
were as follows: KAT2B (#3378, 1:1000, Cell Signaling
Technology) and Flag M2 antibody (#14793, 1:1000, Cell
Signaling Technology).

Chromatin Immunoprecipitation-qPCR
We first performed chromatin immunoprecipitation (ChIP) using
the Chromatin Immunoprecipitation Kit (Millipore-17-408) in
accordance with the manufacturer’s instructions. Then, we
purified the immunoprecipitated DNA using the phenol
extraction method and quantified the relevant DNA using qPCR.
All the primers used in this study are listed in Supplementary
Table 1.

Promoter Reporter and Dual-Luciferase
Assays
The RBM3 promoter was amplified from NP69 cells using PCR
and then subcloned into an empty pGL3 vector. Renilla luciferase
reporter plasmid was also transfected as a normalization control.
Dual-luciferase assays were performed using a dual-luciferase
assay kit (#E1910, Promega) according to the manufacturer’s
instructions. The details of the primers used to clone the RBM3
promoter are described in Supplementary Table 1.

In Situ Hybridization
In situ hybridization analysis of AFAP1-AS1 interactions was
performed on paraffin-embedded sections using the RNAscope
2.5 HD Detection Reagent-BROWN kit (ACDBio). All analyses
were carried out according to the manufacturer’s instructions
using an AFAP1-AS1–specific probe purchased from ACDBio.

Plasmids
AFAP1-AS1, KAT2B, TIF1a, and RBM3 transcripts from NP69
cells were amplified using RT-PCR, sequenced, and then
subcloned into the pcDNA3.0 or pLVX-Puro vector
(Clontech). AFAP1-AS1 or TIF1a-truncated constructs were
generated using PCR with AFAP1-AS1 or TIF1a-pcDNA3.0 as
templates and inserted into pcDNA3.0. KAT2BE570A/D610A and
TIF1aF979A/N980A point mutations were generated using a PCR-
Frontiers in Oncology | www.frontiersin.org 3
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manufacturer’s instructions.

shRNA Knockdown and Transfection
shRNA-knockdown and transfection assays were performed as
previously described (21). shRNA sequences were purchased from
Shanghai Biogene Co., Ltd. (Shanghai, China). These sequences and
the packaging plasmids were transfected into HEK293 cells and used
to generate viral particles. The supernatants were collected at 48 and
72 hours posttransfection and filtered through a 0.22 µm membrane
(Millipore). The viruses were then concentrated. HNE-1 and CNE-2
cells were infected with these shRNA or shGFP control viruses in the
presence of 8 µg/mL polybrene. Infected cells were enriched by
selection with 5 mg/mL puromycin 48 hours after infection.
Multiple monoclonal cultures were screened for shRNA integration
and activity using WB and RT-PCR.

RNA-Seq and Differentially Expressed
Gene Analysis
RNA-Seq and differentially expressed gene analysis were
performed as previously described (6). RNA-Seq data
generated in this study are available from the NCBI BioProject
database (http://www.ncbi.nlm.nih.gov/bioproject) under
Bioproject ID: PRJNA594347.

Mass Spectrometry of AFAP1-AS1-
Associated Proteins
AFAP1-AS1 and its antisense plasmid were cut, transcribed, and
biotin-labeled in vitro with Bio16-UTP (Life Technologies) using
a MAXIscript T7 Transcription Kit (Life Technologies). Protein–
RNA interactions in HNE-1 cell lysates were analyzed using a
Pierce Magnetic RNA-Protein Pull-Down Kit (Life
Technologies). The retrieved proteins were then subjected to
WB analysis or resolved by gradient gel electrophoresis and
subjected to LC-MS/MS sequencing and data analysis.

Immunohistochemical Staining
Immunohistochemistry (IHC) was performed using an anti-
KAT2B antibody (#3378, 1:1000, Cell Signaling Technology).
Each sample was assigned a score according to the intensity of
the KAT2B staining (0 = no staining, 1 = weak staining, 2 =
moderate staining, and 3 = strong staining) and the proportion
of stained cells (0 = 0%, 1 = 1%–25%, 2 = 25%–50%, 3 = 50%–
75%, 4 = 75%–100%). Negative control slides without primary
antibodies were included as a reference. The core staining was
scored as negative (0) when <10% tumor cells showed KAT2B
expression. The stained tissues were scored by three individuals
blinded to the clinical parameters.

Tumorigenesis Studies
To evaluate NPC tumorigenicity, four-week-old female BALB/c
nude mice, maintained in a mouse-specific pathogen-free (SPF)
facility, were injected subcutaneously with HNE-1 cells (2 × 106).
All experimental procedures were performed in accordance with
the Animal Care and Use Committee of Chinese Academy of
Medical Science guidelines.
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Statistics
All statistical analyses were performed using GraphPad Prism
version 5.0 software. Survival rates were determined using the
Kaplan-Meier method, and significance was determined using
multiple comparison tests. A P value < 0.05 was considered
statistically significant.
RESULTS

lncRNA AFAP1-AS1 Expression
Is a Biomarker of Poor Prognosis
in NPC Patients
To determine the roles of AFAP1-AS1 in NPC progression,
we first evaluated changes in AFAP1-AS1 expression in
HNE-1, C666-1, SUNE-1, CNE-1, CNE-2 NPC, and NP69
nasopharyngeal epithelial cells. As shown in Figure 1A,
AFAP1-AS1 expression was higher in all five NPC cell lines
than in the NP69 control, and its expression was the highest in
HNE-1 and CNE-2 cells. To elaborate on these results, we
examined AFAP1-AS1 expression in 10 pairs of freshly frozen
NPC tumor and adjacent nontumor specimens using qRT-PCR.
Interestingly, AFAP1-AS1 expression was significantly higher in
NPC tumors than in their adjacent nontumor pair (Figure 1B).
RNA in situ hybridization was then used to analyze AFAP1-AS1
expression in 100 pairs of paraffin-embedded NPC tumor and
adjacent nontumor specimens, which revealed that AFAP1-AS1
expression was higher in NPC tumors (Figures 1C, D),
confirming the aforementioned qRT-PCR result.

To reveal the clinical significance of AFAP1-AS1 expression
in NPC, we analyzed the correlation between AFAP1-AS1
expression and NPC patient survival rates. Kaplan-Meier
survival assays (Figure 1E) demonstrated that NPC patients
with higher AFAP1-AS1 expression levels had lower overall
survival rates than patients with lower AFAP1-AS1 expression
levels. Additionally, AFAP1-AS1 was shown to be expressed in
both the nucleus and cytoplasm of NPC (Figures 1C, F, G),
suggesting that AFAP1-AS1 may have multiple functions in both
the nucleus and cytoplasm of tumor cells. In conclusion, these
data suggest that AFAP1-AS1 expression is a good biomarker for
the prognosis of NPC patients.

AFAP1-AS1 Expression Is Important for
NPC Growth and Tumorigenicity
To reveal whether AFAP1-AS1 is important for NPC
tumorigenicity, we first depleted endogenous AFAP1-AS1 using
two different shRNAs in both HNE-1 and CNE-2 cell lines (Figure
2A). We then performed RNA-Seq to compare mRNA expression
profiles. Several differentially expressed genes (DEGs) were
identified (P < 0.05 and a fold change > 1.5) in AFAP1-AS1
knockdown-inhibited HNE-1 cells (Figure 2B). These DEGs were
then subjected to gene ontology (GO) analysis (Figure 2C), which
revealed that the majority of enrichment occurred in the cellular
proliferation pathways. These data suggest that AFAP1-AS1 may
play a vital role in NPC proliferation.
Frontiers in Oncology | www.frontiersin.org 4
To confirm the results of the RNA-Seq data, we evaluated the
effects of AFAP1-AS1 depletion using cellular proliferation
(Figures 2D, E) and colony formation (Figures 2F, G) assays in
both HNE-1 and CNE-2 cells. AFAP1-AS1 knockdown markedly
reduced HNE-1 tumorigenicity (Figures 2H, I). In contrast,
AFAP1-AS1 overexpression promoted cellular proliferation and
colony formation in NP69 cells (Supplementary Figure 1).
Collectively, these data suggest that AFAP1-AS1 is important for
NPC growth and tumorigenicity, and may be important in the
transition of normal cells to tumor precursors.

AFAP1-AS1 Enhances NPC Cellular
Proliferation via YAP
To understand the potential mechanisms by which AFAP1-AS1
enhances cellular proliferation, we first conducted Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis. This
analysis revealed that the Hippo signaling pathway was one of
the top differentially changed AFAP1-AS1–induced pathways
(Figure 3A). Furthermore, both mRNA and protein expression
of YAP, a vital regulator of the Hippo pathway, were inhibited by
AFAP1-AS1 depletion (Figures 3B, C), suggesting that YAP may
be a critical component of the AFAP1-AS1-mediated network.
Moreover, we found AFAP1-AS1 knockdown inhibited YAP
expression in vivo (Supplementary Figure 2).

Interestingly, we found that YAP mRNA degraded faster
upon AFAP1-AS1 knockdown in HNE-1 cells, which were
treated with the RNA synthesis inhibitor actinomycin D, and
analyzed at 0, 1, and 2 hours post-exposure (Figures 3D, E).
These results indicate that AFAP1-AS1 may play a vital role in
YAP mRNA stability.

To assess the role of YAP in AFAP1-AS1-regulated NPC
proliferation, we overexpressed YAP in AFAP1-AS1–depleted
HNE-1 and CNE-2 cells (Figure 3F). Exogenous YAP
overexpression rescued AFAP1-AS1 depletion-inhibited cell
proliferation (Figure 3G) and colony formation (Figure 3H).
Taken together, these results reveal that YAP is a downstream
effector of AFAP1-AS1–mediated NPC proliferation.

AFAP1-AS1 Physically Binds to KAT2B
Increasing evidence suggests that lncRNAs can exert their
function through binding histone acetyltransferase proteins,
including the KAT family proteins (6, 22). We hypothesized
that AFAP1-AS1–mediated proliferation may rely on its
association with certain KAT family proteins. As shown in
Figures 4A, B, we used biotin-labeled RNA pull-down and
mass spectrometry to establish that KAT2B was significantly
associated with AFAP1-AS1. Thus, we selected KAT2B as the
effector protein for all our downstream analyses. First, we
validated the AFAP1-AS1/KAT2B association using an RNA
pull-down and RNA Immunoprecipitation assay (Figures 4B,
C), which also confirmed that AFAP1-AS1 did not bind to other
KAT family proteins (KAT2A, KAT3A, KAT3B, KAT6A,
KAT6B, KAT7, KAT8) (Supplementary Figure 3A). KAT2B is
also a proven oncogene that activates gene transcription in
medulloblastoma and glioblastoma (23). Second, we found that
KAT2B was higher in NPC tumor tissues than in their adjacent
November 2020 | Volume 10 | Article 601055
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FIGURE 2 | AFAP1-AS1 is important for NPC growth and tumorigenicity. (A) qRT-PCR analysis of AFAP1-AS1 knockdown by two shRN
(B) Scatter plot of gene expression in HNE-1 cells transfected with AFAP1-AS1 shRNA (y-axis) compared with the control (x-axis). Green
knockdown. Red dots, genes that are significantly upregulated following AFAP1-AS1 knockdown. Black dots, genes with no change in e
knockdown-associated biological process signaling pathways. (D, E) AFAP1-AS1 depletion-inhibited cellular proliferation in HNE-1 and C
(G) Quantification of colony formation in (F). (H) Representative bioluminescence images following AFAP1-AS1 depletion suppressing HN
activity in (H). Error bars represent standard deviation. *P < 0.05. **P < 0.01. ***P < 0.001. The data represent three independent experim
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nontumor tissues (Supplementary Figure 3B, C). Taken
together, these data indicate that AFAP1-AS1 directly binds to
KAT2B, which then modulates histone modification.

To further validate these findings, we performed deletion
mapping followed by a pull-down to reveal KAT2B associations
with specific regions of AFAP1-AS1 (Figures 4D, E). As shown
in Figure 4E, a region covering 0–1500 nucleotides at the 5′ end
of AFAP1-AS1 is critical for KAT2B binding. A Flag-MS2bp-
MS2bs system used in conjunction with immunoprecipitation
assays demonstrated similar results (Figures 4F, G), suggesting
that this was a valid observation and not the result of the assay
design. Finally, AFAP1-AS1 depletion inhibited the KAT2B
association in RIP qRT-PCR assays (Figure 4H).

AFAP1-AS1 Promotes YAP mRNA
Stability via KAT2B
As YAP is an important downstream effector of AFAP1-AS1 and
since AFAP1-AS1 is bound to KAT2B, we hypothesized that
AFAP1-AS1 promotes YAP mRNA stability via KAT2B
regulation in NPC cells. We first downregulated AFAP1-AS1
expression and found that both YAP mRNA and protein
expression were also inhibited (Figures 5A, B). Moreover,
KAT2B overexpression restored AFAP1-AS1 depletion-
inhibited YAP protein (Figure 5C) and mRNA expression
(Figure 5D) as well as improved its mRNA stability (Figure
5G) in NPC cells. Both cellular proliferation and colony
formation were also rescued following KAT2B overexpression
in AFAP1-AS1–depleted HNE-1 and CNE-2 cells (Figures
5E, F).

To evaluate the mechanisms underlying the AFAP1-AS1/
KAT2B/YAP associations, we constructed full length AFAP1-
AS1 WT, n-AFAP1-AS1 mutant, and c-AFAP1-AS1 mutant
plasmids (Figure 5H) and designed specific qRT-PCR primers
to detect their transcripts (Figure 5I). As shown in Figure 5J–M,
n-AFAP1-AS1, which contains the AFAP1-AS1/KAT2B
association domains, promoted YAP mRNA and protein
expression, cell proliferation, and colony formation. The same
was not true for the c-AFAP1-AS1 mutant, which lacked this
functional domain. Taken together, our results suggest that
AFAP1-AS1 promotes YAP mRNA stability by binding
to KAT2B.

KAT2B Acetyltransferase Activity
Promotes AFAP1-AS1–Induced
Stabilization of YAP
As AFAP1-AS1 stabilized YAP mRNA by binding to KAT2B, we
further explored the potential molecular mechanisms underlying
this observation. To do this, we evaluated histone H3 acetylation
levels in NPC cell lines. We found that the acetylated levels of
H3K9 and H3K14, the proven targets of KAT2B (24), were
upregulated in the presence of AFAP1-AS1. As shown in Figure
6A, AFAP1-AS1 knockdown decreased H3K9 and H3K14
acetylation, but did not impact KAT2B protein expression.
When histone H3 acetylation marks were compared, H3K14
acetylation levels were particularly inhibited by AFAP1-AS1
Frontiers in Oncology | www.frontiersin.org 9
depletion in both HNE-1 and CNE-2 cells (Figure 6A). These
results indicate that AFAP1-AS1 may promote KAT2B
acetyltransferase activity.

As the roles of H3K14 acetylation modulated by AFAP1-AS1
in NPC remain poorly understood, we sought to determine how
H3K14ac modulation affects the function of AFAP1-AS1–
regulated NPC cell proliferation. To assess whether KAT2B
acetyltransferase activity promoted the function of AFAP1-
AS1–stabilized YAP, we created a KAT2B acetyltransferase
activity-deficient mutant, KAT2AE570A/D601A (25), and checked
whether AFAP1-AS1 could bind to these KAT2B peptides
(Figure 4B). Next, we hypothesized that the E570/D610
residues of KAT2B were critical for AFAP1-AS1–driven YAP
stabilization. As shown in Figure 6B, n-AFAP1-AS1, but not c-
AFAP1-AS1, mutants could rescue AFAP1-AS1 depletion-
inhibited YAP expression. Exogenous KAT2BWT, but not the
KAT2BE570A/D601A mutant, restored KAT2B depletion-regulated
changes in YAP expression (Figure 6C). Furthermore, YAP
expression (Figure 6D), cell proliferation (Figure 6E), and
colony formation (Figure 6F) abilities in AFAP1-AS1–depleted
HNE-1 cells were suppressed by the overexpression of
KAT2BWT, but not the KAT2BE570A/D601A mutant. These data
support our hypothesis that residues E570/D610 are required for
AFAP1-AS1–modulated YAP stabilization.

Next, we evaluated whether the YAP inhibitor verteporfin
mediates AFAP1-AS1–induced or KAT2B-induced NPC cellular
proliferation. As shown in Figure 6G, verteporfin significantly
decreased YAP expression in AFAP1-AS1-WT–overexpressed
HNE-1 cells compared with that in c-AFAP1-AS1 or empty
vector-overexpressing HNE-1 cells. We then observed that
verteporfin markedly suppressed YAP expression (Figure 6H),
cellular proliferation (Figure 6I), and colony formation (Figure
6J) in HNE-1 cells transfected with KAT2BWT compared with
cells transfected with KAT2BE570A/D601A or empty vector
controls. This led us to conclude that KAT2B acetyltransferase
activity promotes AFAP1-AS1–mediated stabilization of YAP
and cellular proliferation.

Binding of TIF1a to H3K14ac Is Required
for AFAP1-AS1–Driven YAP Stabilization
Recent evidence has shown that H3 acetylation of the
transcription intermediary factor (TIF) family of proteins is
important for cell proliferation in a number of different
cancers (26–29). We hypothesized that KAT2B enhanced
H3K14 acetylation of TIF proteins, which then acted as
transcriptional activators enhancing downstream gene
expression, resulting in improved YAP stability and promoting
NPC proliferation. To validate this hypothesis, we used
immunoprecipitation to show that TIF1a, TIF1b, and TIF1g,
but not NCOA1, NCOA2, or NCOA3, bind to H3K14ac
(Supplementary Figure 4A). Further investigations revealed
that TIF1a, but not TIF1b or TIF1g, rescued AFAP1-AS1
depletion-inhibited YAP mRNA stability (Supplementary
Figure 4B). Thus, we focused on TIF1a for further
investigation. To determine which region of TIF1a is critical
November 2020 | Volume 10 | Article 601055
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FIGURE 5 | AFAP1-AS1 promotes YAP mRNA stability via KAT2B. (A, B) AFAP1-AS1 depletion inhibited YAP protein (A) and mRN
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FIGURE 6 | KAT2B acetyltransferase activity promotes AFAP1-AS1 stabilization of YAP. (A) Effects of AFAP1-AS1 depletion on the
AFAP1-AS1 wild-type, but not c-AFAP1-AS1 deletion mutants, rescues AFAP1-AS1 depletion-suppressed YAP expression. (C) Effe
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for the TIF1a association with H3K14ac, we created deletion
mutants removing various functional regions of the protein
(Figure 7A) and then transfected them into HNE-1 cells. As
shown in Figure 7B, D2 and D3 mutants, but not the D1 mutant,
without PHD and bromodomain domains could not associate
with H3K14ac. This demonstrated that amino acids 824–1050 in
TIF1a are critical for the interaction between TIF1a and
H3K14ac. Next, we revealed that AFAP1-AS1 depletion
suppressed the TIF1a association with H3K14ac, while
exogenous KAT2B expression restored it (Figures 7C, D). We
also found that KAT2BWT overexpression restored AFAP1-AS1–
mediated interference between TIF1a and H3K14ac binding, but
that KAT2BE570A/D601A overexpression could not (Figure 7E). A
recent study reported that residues F979/N980 in TIF1a are
required for its association with H3K9ac (23), and we
hypothesized that TIF1a binds to H3K14ac via F979/N980. To
test this hypothesis, we generated one TIF1aF979A/N980A mutant
in which the binding between H3K14ac and TIF1a was
disrupted. As shown in Figure 7F, overexpression of TIF1aWT

rescued the AFAP1-AS1–mediated loss of TIF1a associated with
H3K14ac, while overexpression of TIF1aF979A/N980A did not.
Moreover, TIF1aWT overexpression, but not TIF1aF979A/N980A

overexpression, restored AFAP1-AS1 depletion-suppressed YAP
mRNA stability (Figure 7G), cellular proliferation (Figure 7H),
and colony formation (Figure 7I) in HNE-1 cells. Taken
together, our results suggest that the interaction between
TIF1a and H3K14ac is crucial for AFAP1-AS1–driven
YAP stabilization.

TIF1a/H3K14ac Complex-Activated RBM3
Transcription Is Required for the AFAP1-
AS1 Modulation of YAP Stability
Heatmaps of the RNA-Seq analysis revealed that RBM3 and its
downstream genes (28) were significantly affected by KAT2B
deletion (Figure 8A). RBM3 has been shown to stabilize YAP
mRNA expression during cold stress (30). We hypothesized
that activation of RBM3 transcription by the TIF1a/H3K14ac
complex might be required for AFAP1-AS1 modulation of
YAP stability. As shown in Figures 8B, C, KAT2B deletion
markedly decreased RBM3 mRNA and protein expression.
Overexpression of KAT2B restored AFAP1-AS1 knockdown-
inhibited RBM3 expression (Figure 8D). We also determined
that KAT2B bound to the RBM3 promoter at –879 to –634 bp
(Figure 8F), and KAT2B overexpression restored the promoter
activity of RBM3 suppressed by AFAP1-AS1 knockdown
(Figure 8E). Knockdown of RBM3 suppressed YAP protein
expression, mRNA expression, and mRNA stabil ity
(Supplementary Figure 5). Moreover, RBM3 overexpression
restored AFAP1-AS1 knockdown or KAT2B knockout-
suppressed YAP expression (Figures 8G, H). We further
found that overexpression of TIF1aWT restored the loss of
YAP expression caused by AFAP1-AS1 depletion, but
overexpression of TIF1aF979A/N980A did not alter the YAP
expression profile (Figure 8I). Consistent with these results,
exogenous TIF1aWT expression promoted TIF1a/H3K14ac
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binding to the RBM3 promoter, while exogenous expression
of TIF1aF979A/N980A did not (Figures 8J, K). These data
support our conclusion that activation of RBM3 transcription
by the TIF1a/H3K14ac complex is critical for AFAP1-AS1–
mediated YAP stability.
DISCUSSION

Our results show that AFAP1-AS1 binds to KAT2B and induces
KAT2B acetyltransferase activity in NPC cells. KAT2B-enhanced
H3K14ac, in turn, binds to TIF1a, leading to the upregulation of
RBM3 transcription, YAP mRNA stability, and increased NPC
tumorigenicity (Figure 8L).

Our results also suggest that AFAP1-AS1 acts as an
oncogene in NPC, which is in accordance with the results
of previous studies (14–16). Additionally, AFAP1-AS1
expression was upregulated in NPC tissues, and the high
level of expression was negatively associated with NPC
survival prognosis. The results of the RNA-Seq data
analysis show that AFAP1-AS1 is positively correlated with
cellular proliferation-associated pathways. Moreover,
AFAP1-AS1 is required for NPC cell proliferation and
colony formation in vitro and tumorigenicity in vivo. These
findings support our hypothesis that AFAP1-AS1 drives
NPC tumorigenicity.

Our data also support the hypothesis that YAP stability is
critical for AFAP1-AS1–driven cell proliferation in NPC.
Previous studies have reported that AFAP1-AS1 promotes cell
proliferation in non-small-cell lung cancer (31), colorectal cancer
(32), triple-negative breast cancer (33), and esophageal
squamous malignancies (34). However, the role and
mechanism of AFAP1-AS1 in NPC pathogenesis remain
poorly understood. AFAP1-AS1 has been reported to predict
NPC survival prognosis and promote NPC metastasis through
the inhibition of miR-423-5p (14). A study reported that AFAP1-
AS1 depletion significantly suppresses NPC migration and
invasion through the modification of the actin cytokeratin
signaling pathway (15).

The Hippo-YAP signaling pathway is significantly altered
after AFAP1-AS1 knockdown, as shown by the KEGG analysis
performed using our RNA-Seq data. This links YAP signaling
with NPC tumorigenesis, a finding consistent with those of
previous reports (35). LncRNA THOR has also been reported
to regulate YAP (36). This suggests that our AFAP1-AS1 model,
which shows that lncRNA modulates YAP signaling, leading to
enhanced NPC cell proliferation, may be feasible. Furthermore,
YAP is reported to be a critical effector in the Hippo-YAP
signaling pathway (37), and we observed that AFAP1-AS1
knockdown inhibited YAP expression. Additionally, lncRNA
B4GALT1-AS1 enhanced YAP mRNA stability and promoted
cell stemness and migration in osteosarcoma (38). We also found
that AFAP1-AS1 stabilized YAP mRNA. In addition, RBM3, an
RNA-binding protein, has been shown to function as an
oncogene in many cancers (39, 40) and promote YAP mRNA
November 2020 | Volume 10 | Article 601055
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FIGURE 7 | Binding of H3K14ac to TIF1a is required for AFAP1-AS1–driven YAP stabilization. (A) Schematics of TIF1aWT and variou
residues 824–1050. (C) AFAP1-AS1 depletion inhibited TIF1a interaction with H3K14ac. (D) Effects of KAT2B overexpression on AFA
KAT2B wild-type and E570A/D610A mutant overexpression on AFAP1-AS1 knockdown suppressed the binding of H3K14ac to TIF1
AFAP1-AS1 knockdown- suppressed binding of H3K14ac with TIF1a (F), YAP mRNA stability (G), cellular proliferation (H), and colon
The data represent three independent experiments.
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FIGURE 8 | TIF1a/H3K14ac complex activation of RBM3 transcription is required for AFAP1-AS1–modulation of YAP stability. (A) Heat
KAT2B sgRNA or a control sgRNA. (B, C), KAT2B knockout inhibits RBM3 mRNA (B) and protein (C) expression. (D, E) Effects of KAT
expression (D) and RBM3 promoter activity (E). (F) ChIP-qPCR assay of KAT2B binding at different loci within the RBM3 promoter. IgG
knockdown-mediated suppression of YAP. (H) Effects of RBM3 overexpression on KAT2B knockout-mediated YAP repression. (I) TIF1a
knockdown-suppressed YAP expression in HNE-1 cells. (J, K) Effect of TIF1a wild-type and F979A/N980A mutant overexpression on A
RBM3 promoter. (L) A working model for AFAP1-AS1–mediated NPC tumorigenicity. Error bars represent the standard deviation. *P < 0
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stability (30). Using RNA-Seq analysis, we showed that RBM3
expression was downregulated due to KAT2B deletion. We also
noted that AFAP1-AS1 stabilized YAP mRNA, which could be
rescued by RBM3 overexpression. In conclusion, our results
support the hypothesis that AFAP1-AS1 regulates NPC cellular
proliferation through the stabilization of YAP mRNA.

Our study demonstrates that AFAP1-AS1 binds to KAT2B
and enhances its acetyltransferase activity, which, in turn,
upregulates TIF1a/H3K14ac complex formation and RBM3
transcription, thus leading to increased YAP mRNA stability.
Previous studies have revealed that the KAT family protein
KAT2A can bind to the lncRNAs GClnc1 and PVT1 in gastric
cancer and NPC, respectively (6, 22). However, the specific KAT
family protein member that binds to AFAP1-AS1 was unknown.
Herein, we provide data suggesting that AFAP1-AS1 binds to
KAT2B and validated these interactions using a KAT2B E570A/
D610A mutant that suppressed AFAP1-AS1–enhanced KAT2B
acetyltransferase activity. In accordance with previous reports on
KAT2B histone acetylation modifications (30), our results
revealed that KAT2B increased H3K14ac levels in NPC cells,
while an F979A/N980A mutant in the bromodomain domain of
TIF1a impaired TIF1a binding to H3K14ac, and inhibited
AFAP1-AS1– induced and KAT2B-induced NPC cell
proliferation. Moreover, the binding of TIF1a to H3K14ac was
important for AFAP1-AS1–mediated YAP mRNA stabilization.
We also determined that RBM3 expression stabilized YAP, and
its overexpression rescued YAP stability that was inhibited by
AFAP1-AS1 knockdown or KAT2B knockout. TIF1a and
H3K14ac can directly bind to downstream gene promoters and
enhance their expression (6, 30). We showed that TIF1a
and H3K14ac directly promoted RBM3 transcription by
binding to its promoter. These data help identify the
mechanism of AFAP1-AS1–driven YAP mRNA stabilization as
being mediated by KAT2B acetyltransferase activity and TIF1a/
H3K14ac complex-promotion of RBM3 transcription inducing
NPC cell proliferation

In conclusion, our data demonstrate that AFAP1-AS1 is a
potential target for the development of novel therapeutic
interventions in NPC. We uncovered a novel molecular
mechanism wherein the KAT2B/H3K14ac/TIF1a/RBM3/YAP
signaling pathway is important for AFAP1-AS1–driven NPC
tumorigenicity. This information may contribute to the creation
of personalized treatments for NPC patients.
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