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Correlations as a resource in quantum
thermodynamics
Facundo Sapienza1, Federico Cerisola 1,2 & Augusto J. Roncaglia1,2

The presence of correlations in physical systems can be a valuable resource for many

quantum information tasks. They are also relevant in thermodynamic transformations, and

their creation is usually associated to some energetic cost. In this work, we study the role of

correlations in the thermodynamic process of state formation in the single-shot regime, and

find that correlations can also be viewed as a resource. First, we show that the energetic cost

of creating multiple copies of a given state can be reduced by allowing correlations in the final

state. We obtain the minimum cost for every finite number of subsystems, and then we show

that this feature is not restricted to the case of copies. More generally, we demonstrate that

in the asymptotic limit, by allowing a logarithmic amount of correlations, we can recover

standard results where the free energy quantifies this minimum cost.
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Quantum thermodynamics is a growing field aiming to
extend thermodynamics to the limit of few number of
systems in the quantum domain1,2. This quest has been

motivated by the theoretical interest in understanding the fun-
damental limitations of thermodynamic transformations, and
from a practical point of view it has been driven by the current
technologies that allow to reach an incredible level of control of
individual quantum systems. Among the different approaches
that have been put forward to analyze thermodynamics in this
regime, a recent perspective to study non-equilibrium transfor-
mations of small number of systems in contact with a thermal
bath, the so-called resource theory of thermodynamics3–6, has
gained a lot of interest7–24. This framework captures the funda-
mental concepts of thermodynamics with an operational
approach to physics25: by defining a set of operations an agent is
allowed to perform on a physical system, it characterizes the set of
attainable transformations. The resource-theoretic approach to
thermodynamics, while consistent with classical thermodynamics,
has interesting properties that depart significantly from the
standard framework. In fact, in the single-shot regime thermo-
dynamic transformations must satisfy a family of constraints26,
including the standard second law as a particular case. Further-
more, it naturally leads to a fundamental notion of irreversibility,
since in general the amount of deterministic work required to
perform a given transformation is greater than the work that can
be drawn from the reverse process5,6.

One of the main challenges in this field is to elucidate the role
of properties such as quantum coherences and correlations in
thermodynamic transformations. Several works address the
influence of coherence12,14,15,27,28 and correlations7,19,29–38 in
thermodynamic transformations in different scenarios. In gen-
eral, the creation of correlations is associated to some energetic
cost and strategies to optimally extract work from them have been
put forward33–38. On the other hand, it has been demonstrated
that in the single-shot regime, by allowing auxiliary correlated
catalytic systems7 or correlations with catalytic systems19, it is
possible to enlarge the set of achievable transformations.

In this article, we study how inner correlations can affect
certain fundamental processes that take place in contact with a
thermal reservoir. In particular, we consider the processes of state
formation and work extraction in the single-shot regime. That is,
a Gibbs state is transformed into some out-of-equilibrium state
using deterministic work, and deterministic work is drawn from
an inverse transformation. We start our analysis by concentrating
on the work of formation of a finite set of locally identical
quantum systems. We find that by allowing correlations in the
final state this energetic cost can be reduced (Fig. 1). This is in
strike contrast with standard scenario where arbitrary large
fluctuations of work are allowed, and the creation of correlations
requires some extra energy. While for uncorrelated copies most of
these processes are shown to be irreversible, here we show
that the degree of reversibility in the correlated scenario increases
with the number of copies. Then, we show that in the asymptotic
limit the optimal collective process can be accomplished with
correlations per particle that are vanishing small, and the work of
formation per particle equals the free energy difference. Finally,
we generalize these results for an arbitrary set of local systems.

Results
Overview. In standard thermodynamics, the transformations
between states that occur in contact with a thermal reservoir are
governed by the Helmholtz free energy

FðρÞ ¼ hEðρÞi � kBTSðρÞ; ð1Þ

where 〈E(ρ)〉 is the mean energy of the system in state ρ, S(ρ) is

the entropy, kB is Boltzmann’s constant, and T is the temperature
of the thermal reservoir. Transitions between states are allowed
provided that the free energy of the final state is lower than at the
beginning. In fact, the difference in free energy is equal to the
amount of average work that can be extracted during the process,
and is also equal to the work that should be invested in the
reverse process. This formulation was developed for macroscopic
systems where, due to the large number of particles, energy
fluctuations become negligible. On the other hand, if one wishes
to understand thermodynamic transformations of a small num-
ber of non-equilibrium systems, the size of these fluctuations
become important as they could be of the order of the value of
work. Recently, an approach that addresses thermodynamic
transformations in this regime has been developed, and condi-
tions on state transitions have been identified3–6. Below, we
briefly introduce the formalism to study thermodynamic trans-
formations in the single-shot regime, and review the main results
relevant to this work.

At the core of the theory is the identification of a set of allowed
operations, which model the most general transformation in this
framework4,5,26. Let us consider a system with Hamiltonian HS

and an arbitrary thermal reservoir R in a Gibbs state τR ¼
e�βHR= tr½e�βHR � with Hamiltonian HR, and β= 1/kBT. System
and reservoir are allowed to interact via a unitary evolution U that
preserves the total energy [U, HS+HR]= 0, and then it is
possible to perform a partial trace over S and R. Given the system
in an initial state, the allowed transformations are called thermal
operations and they define a set of reachable states. In contrast to
other frameworks, where just the conservation of the mean
energy is imposed39, these conditions give a strong conservation
of energy (first law of thermodynamics). Thus, given two states
ρ and σ, we say that σ can be reached from ρ, ρ→σ, if there exists a
thermal operation that implements such transformation. A
necessary condition for thermodynamic state transitions is called
thermo-majorization5, that is sufficient for diagonal states, i.e.,
[ρ, HS]= 0, which is also the case we will consider here. Although
the thermal operations appear potentially very complex, since
they allow any energy conserving interaction between state and
bath, it has been shown that they can always be achieved as
sequences of elemental operations that have a simple form and
physical interpretation40.

More generally, one can consider transformations that also
allow the presence of an additional system that acts as a catalyst
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Fig. 1 Correlations as a resource. In the single-shot regime, the creation of
N correlated copies of a given state has a smaller work cost than creating N
independent copies. In the asymptotic limit, this energetic cost per copy
converges to the standard non-equilibrium free energy difference
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of the transformation, and is returned in the same state. These
type of transformations enlarge the set of reachable states, and
the necessary and sufficient conditions for diagonal states can be
written as an infinite set of inequalities26. In this case, a
transformation from an initial state ρ to a final state σ can
be done provided Fα(ρ) ≥ Fα(σ) for all α∈R, where Fα are the
α-free energies defined in terms of Rényi divergences Dα(ρ||τS) as
Fα(ρ)= kBTDα(ρ||τS)− kBTlogZS, with τS ¼ e�βHS=ZS the ther-
mal state of the system. Thus, this is the family of inequalities that
govern thermodynamic transformations in this regime26. The
standard second law is contained as a particular case for α= 1.

In the single-shot scenario, the notion of deterministic work
can be considered by introducing an auxiliary two-level systemW
with Hamiltonian HW=W|W〉〈W|W, called work qubit or wit,
that acts as a battery which can store or inject energy into the
system5. In particular, we will be interested in the energetic cost
of obtaining a state ρ out from a thermal state. This work cost can
be evaluated by studying the following transformation:

τS � WihWj jW! ρ� 0ih0j jW: ð2Þ
The smallest possible value of such W is defined as the work of

formation5, and gives the minimum amount of deterministic
work required in the transformation. For diagonal states it is
given by

WformðρÞ ¼ kBT D1ðρ k τSÞ; ð3Þ
which is also equal to kBT log maxE,g{λE,g eβE ZS}, where λE,g are
the eigenvalues of ρ, gS(E) the degeneracy, and g= 1, ..., gS(E).
Notice that the work of formation is in general greater than the
free energy difference. Similarly, one can define the extractable
work as the maximum work that can be stored in the work qubit
starting from a state ρ, and its expression for diagonal states is
given by5

WextðρÞ ¼ kBT D0ðρ k τSÞ: ð4Þ
The addition of a catalyst to the process of state creation or

work extraction does not modify these values of work. Finally, let
us mention an important feature of this theory that is also
relevant to our work: in general the extractable work is smaller
than the work of formation, thus there is an inherent
irreversibility in thermodynamic transformations in this
regime5,26. However, when correlated catalysts are allowed, the
transformations become ruled by just the usual free energy
difference7,19.

Work of formation of correlated copies. Let us consider a
situation where a finite set of particles is prepared in the same
reduced diagonal state ρ. This could be for instance the first step
of a given task. What is the minimum work cost of producing
such N-partite ensemble if one is able to interact with a thermal
reservoir? There are many multipartite states compatible with this
situation, since it is only defined by some reduced state and
number of particles, but these states have a different work cost. If
we allow arbitrary large fluctuations of work11, creating a corre-
lated state ρ(N) out of a thermal one is useless. The average work
cost associated to correlated copies of N systems with Hamilto-
nian HS is given by the standard non-equilibrium free energy
difference hWi � FðρðNÞÞ � Fðτ�N

S Þ which can be expressed as

hWi ¼ NΔFðρÞ þ kBT IðρðNÞÞ; ð5Þ
where ΔFðρÞ ¼ FðρÞ � FðτSÞ, and

IðρðNÞÞ � D1 ρðNÞ k ρ�N
� �

ð6Þ
is a measure of the total correlations41, with D1(⋅||⋅) the relative
entropy. This average work cost has two components: the energy

required to obtain N uncorrelated copies NΔF(ρ) and the energy
associated to the correlations which is also positive. Therefore the
above expression tells us that correlations are costly, if unboun-
ded fluctuations of work are allowed, the work cost of this task
cannot be reduced by creating correlations between subsystems.
In what follows, we will show that in the single-shot scenario a
collective action provides an advantage, and in fact the minimum
work cost of this task is achieved with correlated copies.

Let us consider N identical D-dimensional quantum systems
S with Hamiltonian HS. Given a reduced state
ρ ¼ PD

d¼1 pd EdihEdj j, we are interested in studying the following
transformation:

τ�N
S � WihWj j ! ρðNÞ � 0ih0j j; ð7Þ

where with an amount of deterministic work W a multipartite
state ρ(N) is created, subject to the local condition

tr�iðρðNÞÞ ¼ ρ 8i ¼ 1; 2; ¼N; ð8Þ
with tr−i(⋅) the partial trace over all the systems except the ith
subsystem. Notice that we are considering exact transformations
for every N and, as said before, we are not allowing fluctuations in
the values of work11. Let us call Cðρ;NÞ the set of all the diagonal
states which satisfy the partial trace condition of Eq. (8). We can
now define the c-work of formation Wformðρ;NÞ as the minimum
work cost of this transformation over all the states in Cðρ;NÞ:

W formðρ; NÞ ¼ min
ρðNÞ2 Cðρ;NÞ

WformðρðNÞÞ: ð9Þ
In what follows we will show that it is possible to find this

minimum work cost and characterize a set of states that achieve
this bound.

In order to carry out the minimization, first notice that the c-

work of formation is always minimized by a state ρðNÞ
min that is

maximally mixed in each populated subspace of energy (see
Supplementary Note 1 for details). Thus, one can reduce the set
Cðρ;NÞ, where the minimization is done, to a smaller subset of
states. These states are such that λE,g= pE / gN(E)≡ λE, where pE is
the occupation of the subspace of energy E 2 EN , EN is the
spectrum of the N-partite system and gN(⋅) is the degeneracy.
Therefore, each element of the subset is determined by just
specifying the corresponding distribution λE. Notably, the
minimization in Eq. (9) can be written as an optimization
problem subject to linear constraints:

min
fλEgE2EN

kBT log max
E

λEe
βEZN

S

� �� �

s:t:
P
E2EN

gN�1ðE � EdÞ λE ¼ pd 8d ¼ 1; ¼ ;D

λE � 0 8E 2 EN :

ð10Þ

Moreover, this system of equations can easily be transformed
into a linear optimization problem42. Both constraints define a
bounded and non-empty convex set, and therefore there exists at
least one optimal feasible solution. Since the optimization
problem is linear there is an efficient algorithm, known as the
simplex algorithm, that allows to solve the problem numerically.
Furthermore, we will show how to fully characterize Wformðρ; NÞ
and the energy distribution λE that solves the minimization
problem for every local state ρ and number of copies N.

For simplicity, we will first present our results for the particular
case where each subsystem has dimension D= 2. However, our
findings can be generalized to subsystems of arbitrary dimension,
although the mathematical treatment is more involved. Without
loss of generality we will consider HS= E0|1〉〈1| as the
Hamiltonian of each subsystem, and a general diagonal local
state ρ= (1− p)|0〉〈0|+ p|1〉〈1|. In this way, the local thermal
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Gibbs state is defined as the state with p= pβ, where
pβ ¼ ð1þ eβE0Þ�1, and partition function ZS ¼ trðe�βHSÞ. Our
first result shows the analytical solution to the optimization
problem of Eq. (10).

Theorem 1. Given an integer N and a state ρ which satisfies [ρ,
HS]= 0, there exists a subset of energies Eρ

N � EN , a constant s∈
(0, 1], and at most a single energy ε 2 EN such that the state ρðNÞ

min
is defined by the distribution:

λE ¼
e�βE

γ if E 2 Eρ
N

s e
�βε

γ if E ¼ ε

0 otherwise

8>><
>>:

; ð11Þ

with γ a normalization constant. Furthermore, the work of

formation and the extractable work of the optimal state ρðNÞ
min are

given by

W formðρ; NÞ ¼ kBT log
ZN
S

γ

� �
; ð12Þ

Wextðρ; NÞ ¼ kBT log
ZN
S

Z

� �
; ð13Þ

respectively, where Z is the partition function of a system in a
thermal state at temperature T with spectrum given by the set
Eρ
N ∪ fεg, and γ= Z− (1− s)gN(ε)e−βε.
Proof. See Supplementary Note 2.
The structure of the optimal states is simple: except for the

occupation of a single level with energy ε, ρðNÞ
min is a Gibbs thermal

state over a reduced support of energies Eρ
N which depends upon

the local state ρ and the number of copies N. The optimal states
do have correlations that are the result of removing the
population of some energy levels from the thermal state. Notice
that a typical approximation that is usually done when one deals
with large number of identical systems is similar to what is
obtained in Eq. (11), i.e., discard tails of the energy distribution4.

In this way, Eq. (12) gives the optimal work cost for creating a
set of N particles in a given local state. Example calculations of the
c-work of formation per copy W form=N , the work of formation of
a single copy Wform, and the amount of correlations in the
optimal state for N= 3 are shown in Fig. 2a. The c-work of
formation per copy lies below the work of formation of a single
copy. The difference between these two curves is precisely the
energy per copy that is saved in the process of formation due to
the collective action. Figure 2b further stresses the difference
between the c-work of formation per copy and the work of
formation of a single copy. In fact, one can notice that there exist
extreme cases, near the thermal state, where this ratio is minimal:
W formðρ; NÞ ¼ WformðρÞ. These states are such that the work of
formation of a single copy is equal to the amount of work one
should invest to obtain N correlated copies, but on the other hand
one cannot extract any deterministic work from them (for a more
detailed explanation of these states, see Supplementary Note 4).

We have seen that the work of formation can be reduced if one
acts collectively and creates correlations in the final state. This
property appears when work is not allowed to fluctuate and thus
the work of formation is greater than the free energy difference.
However, not always the presence of correlations will help in the
process. Notably, there is an upper bound on the amount of
correlations that can be built up while reducing the work of
formation:

1
N
IðρðNÞÞ � β δQ; ð14Þ

where δQ≡Wform(ρ)− ΔF(ρ) is called the dissipated work, the
difference between the deterministic work of formation of a single
copy with the free energy difference (see Supplementary Note 3
for a proof of the bound). Thus, correlations greater than NβδQ
are costly, since collective operations cannot outperform the
single copy creation.
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Fig. 2Minimum work of formation of three correlated copies for the different local qubit states. a Different measures of work as a function of the local qubit
state, ρ= (1− p)|0〉〈0|+ p|1〉〈1|, parametrized by the excited state probability p. For one copy, the work of formation Wform(ρ) (gray dash-dotted lines) is
bigger than the standard free energy difference ΔF (gray dashed lines). On the other hand, the minimum work of formation of correlated copies (c-work of
formation) per copy, Wformðρ;NÞ=N (blue solid line), is smaller than or equal to Wform(ρ) but still greater than ΔF(ρ). Wextðρ;NÞ=N (red solid line) is the
extractable work per copy of the optimal correlated state ρðNÞmin . While in general all the correlated states are irreversible, Wextðρ;NÞ<Wformðρ;NÞ, there are
states (dots) whose ρðNÞmin satisfies Wextðρ;NÞ ¼ Wformðρ;NÞ, this is the set of R	-states (reversible optimal states). The green region represents the total
correlations per copy IðρðNÞminÞ=N present in each multipartite state. b Ratio between the c-work of formation and the work of formation of a single copy.
Creating the correlated state ρðNÞmin costs less work than N uncorrelated copies. There are some extreme cases (red) around the thermal state pβ where the
work of formation of a single copy equals the work of formation of N correlated copies
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Reversibility. A key result in the single-shot regime is the
appearance of an intrinsic irreversibility: the extractable work is
in general smaller than the work of formation. Thus, in general,
one cannot extract the same amount of energy invested in the
process of creation. However, it can be easily seen that there are
families of states whose work of formation and extractable work
coincide, and in this sense these states are reversible. Theorem
1 shows that, in fact, reversibility appears naturally in our fra-
mework. The states we define are such that in general the c-work
of formation is greater than the extractable work, and the dif-
ference between these values is the irreversible work:

W irrðρ; NÞ ¼ kBT log Z=γ½ �: ð15Þ
For s ≈ 1 the irreversible work is W irrðρ; NÞ 


ð1� sÞgNðεÞe�βε=Z. Remarkably, there is a subset of reduced

states ρ	k for which their corresponding ρðNÞ
min is a thermal state

over the reduced support Eρ
N ∪ fεg (i.e., s= 1). These states are

such that their work of formation is equal to the extractable work,
and in this sense they are strictly reversible, i.e., W irrðρ	k;NÞ ¼ 0.
On the other hand, the irreversibility increases as s→ 0.

We call the set of local states whose ρðNÞ
min are reversible

R	-states. This set is composed by the states that match the break
points in the curves of Fig. 2. In Supplementary Note 4 it is shown
that there are 2N+ 1 of such states ρ	k ¼ ð1� p	kÞ 0ih0j j þ
p	k 1ih1j j with k= 1, 2, …, 2N+ 1 (see Fig. 2a). Furthermore,
for these states the work (either of formation or extractable) can
be expressed as

Wðρ	k; NÞ ¼ NΔFðρ	kÞ þ kBT I k; ð16Þ
where I k is the amount of total correlations present in the
optimal state. Thus, work is the sum of two contributions: the
classical value of work, given by the free-energy difference, plus
the energy associated to the creation of correlations, but still
Wformðρ	k; NÞ � NWformðρ	kÞ. This shows that collective opera-
tions allow us to perform reversible transformations using
deterministic work. Moreover, in the optimal process it is the
energy of the correlations that fills the gap between the standard

work of formation of independent copies and the c-work of
formation (see Fig. 2a). Furthermore, as we will see below, these
states have other interesting properties that will allow us to
recover standard results from thermodynamics in the large
N limit.

Finite-N behavior and thermodynamic limit. We have estab-
lished that the c-work of formation represents the minimum
amount of energy that is necessary to produce N correlated copies
of a state ρ in a deterministic process. The natural question that
follows is how these results behave as the number of copies
increases. Figure 3a illustrates the behavior of the c-work of
formation per copy for a few values of N. There, it is shown that
the c-work of formation per copy approaches the free energy
difference as N increases. In addition, the set of R	-states
increases linearly with N.

Further insight can be gained if one considers the density of
reversible states. In Supplementary Note 4 we show that
for any local state ρ and ε > 0, there exists a number of copies
N ¼ Oð1=εÞ and an R	-state with density matrix ρ*(ε) that
satisfies ||ρ− ρ*(ε)|| < ε. This means that the set of R	-states is
dense in the space of states with the local constraint (Eq. (8)).
Moreover, since the irreversible work per copy goes to zero with
N, for a large number of copies the process of formation is almost
reversible. Thus, in the thermodynamic limit, we recover the
standard results from thermodynamics:

Theorem 2. Let ρ be any diagonal local state of a system S.
Then

Wðρ; NÞ
N

!N!1
ΔFðρÞ ð17Þ

where W refers to either the c-work of formation or the
extractable work of the optimal states, ΔF(ρ)≡ F(ρ)− F(τS) is the
standard nonequilbrium free energy difference, and the rate of
convergence is OðlogN=NÞ.

Proof. See Supplementary Note 5.
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Fig. 3 Asymptotic behavior of the minimum work of formation of correlated copies as the number of copies increases. a The minimum work of formation of
correlated copies (c-work of formation) per copy Wform=N is plotted in color for different values of N (solid lines) as a function of the local reduced state,
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work (nearest point to the left), decreases with N. b Illustration of the results obtained for correlated copies. As N increases the work of formation per copy
approaches the free energy difference and furthermore the irreversible work per copy goes to zero; thus recovering reversibility
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As it is illustrated in Fig. 3b by increasing the number of
correlated copies we approach standard thermodynamics.
Additionally, for large N the total correlations in the optimal
state are of order:

IðρðNÞ
minÞ � OðlogNÞ; ð18Þ

meaning that the amount of correlations per particle IðρðNÞ
minÞ=N

is negligible in the thermodynamic limit. These results establish
that asymptotically the work per copy required to form N
correlated states is exactly what we expect when unbounded
fluctuations are allowed, with an amount of correlations that
increases sublinearly with the number of copies. Previous analysis
of the thermodynamic limit4,43, considered interconversion rates
of product states in the limit of large number of particles using
approximate transformations. Here, we consider locally exact
transformations, and find the solution that ranges from small
number of systems to arbitrary large ones. In this way, by
obtaining the exact minimum work cost for every N we could
evaluate the deviation from standard results in every instance.
More importantly, we have shown that in this approach the
creation of correlations is the physical mechanism that leads to
the emergence of the standard scenario.

Generalizations. These results were presented using the simplest
example given by local systems of dimension D= 2. In fact, more
complex systems can be considered by increasing D, and we can
show that these ideas also hold for arbitrary local dimension D
(see Supplementary Note 6). The main difference with respect to
the case D= 2 is that instead of having a single energy ε (see

Theorem 1), each optimal state ρðNÞ
min is obtained by considering a

set of energies εi and parameters si∈ (0,1], with i= 1, ..., D− 1.
The results concerning the thermodynamic limit have the
same form.

Up to now, we have focused on the situation where all
subsystems have the same Hamiltonian and same reduced state.
A natural extension of our findings is to consider a non-
symmetric case, where each subsystem is different. There, one can
also show that correlations reduce the work of formation, and
that the optimal state has a thermal-like distribution similar to the
one in Theorem 1 (see Supplementary Note 7). Furthermore, by
allowing correlations it is possible to recover standard results in
the thermodynamic limit for a general configuration in our
framework, that is for a set of different diagonal states with vector
probabilities p(i) and Hamiltonians Hi taken from an arbitrary
distribution D.

Theorem 3. Let ðpð1Þ; Eð1ÞÞ; ðpð2Þ; Eð2ÞÞ; ¼ ; ðpðNÞ; EðNÞÞ 2 R
2D
�0

an i.i.d. sample with arbitrary distribution D and WN the c-work
of formation of a system with diagonal reduced states ρi defined
by the probability vector p(i) and Hamiltonian with energies E(i).
Then,

WN

N
!N!1 hΔFiD; ð19Þ

where the mean in ΔF is with respect to D and the convergence is
almost surely.

Proof. See Supplementary Note 7.
In this case the c-work of formation WN can be thought as a

random variable since the state of the N subsystems is chosen
randomly following the distribution D. For instance, if D has
density f taking values in Ω, then

hΔFiD ¼
Z

Ω

ΔF p; Eð Þf ðp; EÞdp dE: ð20Þ

When dealing with copies the distribution is defined by f(p, H)=
δ(p− ~p)δ(E− ~E), where δ(⋅) is the Dirac delta distribution. Thus,

our approach can be directly extended to more general settings
including the asymmetric case.

Discussion
We have presented a framework to study how the presence of
correlations affects thermodynamic processes taking place in the
single-shot regime. By first considering the formation of locally
equivalent states, we show that the creation of correlated systems
provides an advantage, since in this case the energetic cost of the
process is lower than in the uncorrelated scenario. This is a fea-
ture that appears when fluctuations of work are constrained.
Although we focused most of our analysis on the creation cor-
related of copies, we have shown that the same ideas could be
extended to more general scenarios. Here, we have analyzed the-
creation of states that are diagonal in the energy eigenbasis.
Creation of states with coherence in this scenario is
strictly impossible, a source of coherences is required4,15. We
think that these ideas could also be extended to this situation, as
the amount of coherences can be reduced when one acts collec-
tively. If independent copies require an amount of coherences of
order OðNÞ, a collective action reduces this requirement to
Oð ffiffiffiffi

N
p Þ4,15.
The description we provide is compatible with standard results

of thermodynamics in the large N limit. In fact, we have shown
that this mechanism leads to the emergence of reversibility when
the minimum work cost is considered. Unlike previous approa-
ches, here we consider that the final state is correlated but all
transformations and work extraction are exact and deterministic.
Interestingly, we have also shown that an amount of correlations
per copy that is vanishing small is sufficient to recover standard
results in the large N limit. Therefore, we can identify a physical
mechanism, related with the creation of correlations, that allows
to continuously approach standard results in the thermodynamic
limit. Furthermore, we have also shown that classical results can
also be recovered in the large N limit with more general settings.
We expect our work sheds light on the role of correlations in
thermodynamic transformations of microscopic systems and its
connection with the emergence of standard results.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon request.
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