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In the last years the use of a multistarter fermentation process has been proposed to
improve the organoleptic characteristics of wines. In the present study the fermentation
performances and the interactions of mixed and sequential cultures of Hanseniaspora
uvarum, Candida zemplinina, and a strain of Saccharomyces cerevisiae isolated from
organic musts were investigated. To evaluate the oenological performances of the tested
strains microvinifications in pasteurized red grape juice from Montepulciano d’Abruzzo cul-
tivar were compared. The course of fermentation has been controlled through classical
determinations (CO2 evolution, ethanol, glycerol, pH, total titratable acidity, sugar con-
tent, free sulfur dioxide (SO2), dry extract, sugars, organic acids, and volatile compounds).
Moreover, the yeast population was determined by both culture-dependent and indepen-
dent approaches. In particular, the pure culture of H. uvarum and C. zemplinina did not end
the fermentation. On the contrary, when S. cerevisiae was added, fermentations were
faster confirming that yeast interactions influence the fermentation kinetics. Moreover, C.
zemplinina showed a good interaction with S. cerevisiae by increasing the fermentation
kinetic in high gravity Montepulciano must, with low ethyl acetate and acetic acid produc-
tion.This study confirmed that non-Saccharomyces yeasts play a crucial role also in organic
wines and their activity could be modulated through the selection of appropriate strains
that correctly interact with S. cerevisiae.
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INTRODUCTION
Over the last decade, the phenomenon of organic products has
taken hold of large segments of consumers. At its most basic level,
organic wine is made from grapes that have been grown with as
little human impact as possible. Organic wine is a wine obtained
from organically growing grapes without the help of or need for
synthetic fertilizers, synthetic plant treatments, or herbicides (Tri-
oli and Hofmann, 2009). Accurate studies have been carried out on
soil and vineyard management in organic wine making whereas, as
far as we know, no or few data are available on microbial popula-
tions of grape berries from organic vineyard as well as of those
from organic wines. In a previous paper (Tofalo et al., 2011)
the yeast populations present on grape berries and must from
organic vineyards of red Montepulciano d’Abruzzo and white
Trebbiano cultivars were studied. In particular non-Saccharomyces
(NS) wine yeasts were identified at species level. Moreover the
strains were typed and characterized for some oenological parame-
ters. In recent years, a lot of studies evaluated the NS species present
in wine ecosystem, and demonstrated the impact of grape condi-
tions on NS populations (Fernández et al., 2000; Raspor et al., 2006;
González et al., 2007). The role of NS yeasts in wine production has
been debated extensively and several researchers have shown that
NS yeasts survive during fermentation and could reach cell con-
centrations similar to those reached by Saccharomyces cerevisiae
106–108 cells/ml (Fleet et al., 1984; Gafner and Schultz, 1996).

In fact, as suggested by several authors (Zironi et al., 1993; Gil
et al., 1996; Lema et al., 1996; Toro and Vazquez, 2002; Ciani et al.,
2006; Viana et al., 2008), there is growing evidence that NS yeasts
play an important role in wine quality. Fleet (2008) discussed
the possibilities of using yeasts other than those from the genus
Saccharomyces for future wine fermentations and the commercial
viability of mixed cultures, because NS species have great potential
to introduce appealing characteristics to wine that may improve
its organoleptic quality. Consequently, the impact of NS yeasts
on wine fermentation cannot be ignored. The major NS yeasts
present during organic must fermentation of Trebbiano and Mon-
tepulciano cultivars were Hanseniaspora uvarum, Metschnikowia
fructicola and Candida zemplinina, representing 43, 31 and 11%,
respectively, of the total NS population isolated. Although the pop-
ulation size of these species was reduced throughout the wine
fermentations, their growth was not completely suppressed and
NS yeasts were still present at the end of the fermentation process
(Tofalo et al., 2011). These yeasts from organic wine shared many
characteristics which suggest that the strong selection pressure
exerted by farming system and vine variety could have generated
variability at different levels. Knowledge about the biodiversity
of native yeasts is essential for the preservation and exploitation
of the oenological potential of wine grape growing regions. The
use of a selected multistarter (controlled mixed cultures) was pro-
posed several years ago. In the middle of the last century, to reduce
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the acetic acid content of wine, Cantarelli (1955), Castelli (1969)
encouraged the sequential use of Torulaspora delbrueckii (formerly
known as Saccharomyces rosei) and S. cerevisiae. Later on, mixed
cultures were proposed also for other objectives such as the bio-
logical deacidification of must or increase the glycerol content but
one of the most investigated uses of mixed cultures relates to con-
fer greater complexity to a wine, enhancing its organoleptic profile
(Ciani et al., 2010). Several studies on mixed fermentations con-
taining S. cerevisiae and NS wine yeasts have been carried out to
evaluate the possibility of using controlled multistarter cultures to
improve wine quality (Mora et al., 1990; Zironi et al., 1993; Toro
and Vazquez, 2002; Ciani et al., 2006; Andorrà et al., 2010). For this
purpose different NS species were used to study mixed fermenta-
tion such as Hanseniaspora guilliermondii, H. uvarum, Candida
pulcherrima (Metschnikowia), Pichia kluyveri, Pichia fermentans,
Candida cantarellii, T. delbrueckii, Kluyveromyces thermotolerans,
Candida stellata (recently reclassified as Starmerella bombicola).
The yeasts present on grape berries and must from organic vine-
yards could have a unique composition and these indigenous yeasts
impart distinct regional and desired characteristics to wines. In this
context, autochthonous NS strains could be selected to conferment
organic musts alongside S. cerevisiae.

The aim of this research is to evaluate the fermentation perfor-
mance and the interactions of mixed and sequential cultures of
H. uvarum and C. zemplinina and a strain of S. cerevisiae isolated
from organic must. The results of fermentation kinetics, secondary
compound formation and sensorial analysis could be useful to
formulate mixed starter cultures.

MATERIALS AND METHODS
YEAST STRAINS
Non-Saccharomyces strains (C. zemplinina STS12 and H. uvarum
STS45) have been isolated in a previous study from spontaneous
fermentation of organic Montepulciano d’Abruzzo and Trebbiano
grapes (Tofalo et al., 2011). All of the strains have been previ-
ously analyzed by sequencing the approximately 600 bp D1/D2
region of the large (26S) ribosomal subunit using primers NL1
and NL4. These natural wine strains belong to the culture col-
lection of the Food Science Department (University of Teramo,
Italy). An autochthonous starter culture S. cerevisiae (STS1) was
also used as starter culture (Tofalo et al., 2011). The strains were
maintained at −80˚C in glycerol 20% (v/v) and, in parallel, on agar
slants under paraffin oil at 4˚C.

MICROVINIFICATIONS
To evaluate oenological performances, the strains were tested in
microvinification trials using pasteurized must without grape skin
from Montepulciano d’Abruzzo cultivar (280 g/l fermentable sug-
ars, 7.4 g/l titratable acidity (TTA) and a pH 3.2). Fermentations
were conducted using several combinations of the strain S. cere-
visiae STS1 with strains C. zemplinina STS12 and H. uvarum
STS45. The musts were inoculated with 106 cells/ml as follows: S.
cerevisiae (S), C. zemplinina (C), H. uvarum (H), C. zemplinina/S.
cerevisiae (CS), H. uvarum/S. cerevisiae (HS), C. zemplinina/H.
uvarum/S. cerevisiae (CHS), moreover the must was inoculated
with all the three strains as follows C. zemplinina/H. uvarum/S.
cerevisiae (RCHS) ratios of 25:25:50. A sequential fermentation

(QS) was inoculated with 106 cells/ml C. zemplinina/H. uvarum
and after 48 h S. cerevisiae was added for each strain.

The must samples (95 ml) were inoculated with 5 ml of a pre-
culture grown for 48 h in the same must, as described by Tofalo
et al. (2011). Fermentations were carried out in duplicate for
each strain at a controlled temperature of 25˚C. The kinetic fer-
mentations were monitored daily by gravimetric determinations,
evaluating the loss of weight due to the production of CO2. When
the CO2 evolution stopped (i.e., at constant weight), the samples
were refrigerated for 2 days at 4˚C, racked, and stored at −20˚C
until analysis. Non-inoculated must was used as negative control.

DETERMINATION OF MICROBIAL GROWTH AND DIFFERENTIAL
ENUMERATION
From each flask, samples were taken along the fermentation
process to evaluate viable cell counts of the inoculated species.
One hundred microliters aliquots of serial dilutions of each sample
were plated on Lysine Agar (LA medium; Oxoid Unipath, Hamp-
shire, UK) and Wallerstein Laboratory nutrient agar medium
(WLN medium; Oxoid; Pallmann et al., 2001) to estimate the
NS yeast and the total yeast population, respectively. Moreover, a
culture-independent approach was used. S. cerevisiae, H. uvarum,
C. zemplinina specific quantitative PCR (qPCR) tests were carried
out according Hierro et al. (2007) and Zott et al. (2010), respec-
tively. DNA was extracted using the DNA PowerSoil® Isolation
Kit (Mobio Laboratories, Inc.) according to the manufacturer’s
instructions.

Real-time amplifications were carried out in a 25 μl reaction
volume, using 1× 2XIQ SYBR Green PCR Supermix (Bio-Rad,
Hercules, CA, USA), 0.2 μM of each primer and 5 μl of DNA
suspension. All amplifications were carried out in optical-grade
96-well plates on a Cycle IQ system (Bio-Rad). The qPCR thresh-
old cycle (C t) was determined automatically by the instrument.
Samples with known quantities of yeast cells were prepared to
generate standard curves. Sterilized grape juice was inoculated
with the yeast strains, plated on WLN media for viable counts.
The counted samples were immediately extracted (triplicate), as
described above. The DNA obtained was used to prepare ser-
ial dilutions, from 108 to 10 cell/ml. The correlation coefficient
between C t and count values was analyzed and interpreted using
the appropriate Microsoft Excel function. Each C t was the average
of four measures obtained by amplifying four DNA extracts from
the same artificially inoculated sample. In all PCR runs, nega-
tive controls (sterilized water), positive controls, and samples were
run in triplicate. Sensitivity of qPCR assays was evaluated with
reference to other reports (Hierro et al., 2006).

PHYSICO-CHEMICAL DETERMINATIONS
The main products (ethanol, glycerol, pH, TTA, sugar content, free
sulfur dioxide (SO2) and dry extract of wine), and must under
fermentation were determined on samples taken at the end of
fermentation following the official International Organization of
Vine and Wine (2011) methods of analysis. Organic acid, glucose,
and fructose concentrations were determined according to Tofalo
et al. (2011) and Lopez-Tamames et al. (1996), respectively. Bio-
genic amines production was determined according to Tofalo et al.
(2007). All analyses were performed in triplicate.
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SOLID PHASE MICROEXTRACTION–GAS CHROMATOGRAPHY
ANALYSIS OF VOLATILE COMPOUNDS
Five milliliters of wine samples were placed in 10 ml glass vials with
1 g NaCl and 10 μl of 4-methyl-2-pentanol (final concentration
4 mg/l) were added as internal standard. Both equilibration and
adsorption phases were carried out by stirring for 30 min at 40˚C.
A carboxen–polydimethylsiloxane-coated fiber (85 μm) was used
(Sigma-Aldrich, St. Louis, MO, USA). Under the extraction condi-
tions described above, the recovery of the volatile compounds was
between 88.9 and 103.5%. For quantitative determination, a CP
380 capillary gas chromatograph equipped with a 8200 autosam-
pler SPME III (Varian, Italy) was used. The fused silica capillary
column was a CP-Wax 52 CB (50 m × 0.32 mm) by Crompack
(Netherlands), coated with polyethylene glycol (film thickness
1.2 μm), as stationary phase. The injector and FID temperature
was 250˚C. After extraction, the fiber was placed in the injector of
the GC for 15 min. The temperature program was the following:
initial temperature (50˚C) held for 2 min; first ramp, 1˚C min to
65˚C (0 min hold); second ramp, 10˚C min to 150˚C (10 min hold);
third ramp 10˚C min to 200˚C (1 min hold). The carrier gas (N2)
flow rate was 2.5 ml/min. The aroma compounds were identified
by comparing the retention time of standards and their identi-
fication was confirmed by using GC–MS. GC–MS analysis was
performed using a GC–mass spectrometer Finnigan Trace DSQ
Quadrupole (Thermo Finnigan, San Jose, CA, USA). Mass spec-
trometer conditions were: Ion Source: electron ionization (EI), Ion
Polarity: POS, Ion Source Temperature: 250˚C, MS transfer line:
220˚C, Turbomolecular Pump: 70 l/s, Acquisition: full Scan, Mass
range: 30–400 m/z, Carrier gas: He. The data were processed using
Xcalibur Data System Software 1.4.1 SP3 (Thermo Finnigan, San
Jose, CA, USA). The quantitative analysis of wine aroma com-
pounds was carried out on the basis of the relative peak area (Qi)
calculated from head space SPME (HS/SPME) gas chromatograms
after addition of know amounts of analyte standards, as well as the
internal standard according to De la Calle-Garcia et al. (1998). The
chemical analyses were carried out in the same period of the sen-
sory analysis. Each determination was carried out in duplicate. The
data presented are the means of three determinations. All reagents
were purchased from Sigma-Aldrich (St. Louis, MO, USA), with a
purity greater than 99%.

STATISTICAL ANALYSIS
The mean and S.D. were calculated for each experimental para-
meter. Principal component analysis (PCA) was performed using
statistical software STATISTICA for Windows (STAT. version 8.0,
StatSoft Inc., Tulsa, OK, USA).

RESULTS
COURSE OF FERMENTATION AND DEVELOPMENT OF YEASTS DURING
FERMENTATIONS
The course of fermentation rates with pure, mixed, and sequential
cultures is given in Figure 1. The pure culture of H. uvarum was
unable to finish fermentation according to the poor fermentative
capacity of this species, but also the pure culture of C. zemplin-
ina did not end the fermentation. The yeast interactions had a
clear impact on the fermentation kinetics and the presence of S.
cerevisiae gave faster fermentations.

FIGURE 1 | Fermentation kinetics of pure, mixed, and sequential

starter cultures in Montepulciano d’Abruzzo musts. C, C. zemplinina; S,
S. cerevisiae; H, H. uvarum; CS, C. zemplinina/S. cerevisiae; HS, H.
uvarum/S. cerevisiae; CHS, C. zemplinina/H. uvarum/S. cerevisiae; RCHS,
C. zemplinina/H. uvarum/S. cerevisiae; QS, sequential fermentation.

In fact, fermentation kinetics of mixed cultures, HS, CHS,
RCHS were comparable to those of S. cerevisiae pure culture. Only
the trial CS showed a great improvement of fermentation kinetic
during the first 15 days of fermentation highlighting the good asso-
ciation between C. zemplinina and S. cerevisiae. The RCHS trial,
characterized by the inoculum of C. zemplinina and H. uvarum
together with S. cerevisiae, showed a worst fermentation kinetic
than CS trial probably for the lower proportion of cells of the two
NS with respect to S. cerevisiae. The sequential trial QS presented
a dramatic decrease of fermentation rate probably because S. cere-
visiae was inoculated 48 h after the inoculum of C. zemplinina and
H. uvarum.

The viable counts of yeast populations of the eight trials are
reported in Table 1. The yeast populations of pure cultures of S.
cerevisiae and C. zemplinina were similar, reaching maximum pop-
ulation around 107 CFU/ml after 48 h. In the case of H. uvarum
pure culture the maximum population (around 106 CFU/ml) was
reached after 48 h, but starting from the 14th day it started to
decrease at 105 CFU/ml and was not more countable on the 24th

day. Regarding the mixed fermentations HS and CS, NS yeasts were
not found at the 14th day, whereas S. cerevisiae delayed the reaching
of maximum population. As regards the viable cells of the three
species during mixed fermentation CHS and RCHS, differences
were observed only in the latest one. In fact H. uvarum disappeared
after 48 h, whereas C. zemplinina increased up to 105 CFU/ml and
S. cerevisiae reached maximum population of about 107 CFU/ml
on the 14th day. In general, S. cerevisiae quickly reached its max-
imum population and kept stable during the vinifications, with
the exception of sequential fermentation QS during which S. cere-
visiae was not able to grow after the 48 h growth of NS wine yeast.
In fact, the number of viable cells of S. cerevisiae decreased up
to 105 CFU/ml at 24th day. H. uvarum and C. zemplinina reached
the maximum population of 107 CFU/ml instead after 48 h, but
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Table 1 |Yeast counts (log CFU/ml) and quantification by qPCR (in brackets) in pure, mixed, and sequential fermentation of organic

Montepulciano d’Abruzzo musts.

Trial Time (days) Strains

S. cerevisiae C. zemplinina H. uvarum

C 0 6.79 ± 0.05*

2 7.09 ± 0.04

14 7.36 ± 0.04

24 5.64 ± 0.06

S 0 6.88 ± 0.03

2 7.21 ± 0.03

14 7.27 ± 0.01

24 7.15 ± 0.04

H 0 6.68 ± 0.02

2 6.87 ± 0.03

14 5.32 ± 0.03

24 nd

CS 0 6.82 ± 0.04 6.85 ± 0.02

2 6.50 ± 0.02 6.08 ± 0.11

14 6.74 ± 0.07 nd

24 7.11 ± 0.04 nd

HS 0 6.89 ± 0.04 6.68 ± 0.02

2 6.67 ± 0.02 5.32 ± 0.03

14 7.08 ± 0.02 nd

24 6.78 ± 0.014 nd

CHS 0 6.88 ± 0.03 (6.98 ± 0.03) 6.81 ± 0.02 (6.34 ± 0.03) 6.67 ± 0.01 (6.45 ± 0.0.4)

2 6.87 ± 0.03 (7.24 ± 0.01) 6.69 ± 0.03 (6.45 ± 0.09) 6.29 ± 0.02 (6.39 ± 0.01)

14 7.09 ± 0.04 (7.48 ± 0.04) nd (4.03 ± 0.03) nd (5.28 ± 0.01)

24 6.72 ± 0.03 (7.48 ± 0.01) nd (3.76 ± 0.01) nd (4.83 ± 0.02)

RCHS 0 6.88 ± 0.03 (6.98 ± 0.04) 3.84 ± 0.01 (3.36 ± 0.05) 3.68 ± 0.01 (3.50 ± 0.11)

2 7.08 ± 0.02 (7.24 ± 0.01) 5.06 ± 0.08 (5.01 ± 0.01) nd (3.58 ± 0.03)

14 7.44 ± 0.02 (7.48 ± 0.04) 5.04 ± 0.04 (5.09 ± 0.04) nd (5.60 ± 0.07)

24 7.46 ± 0.04 (7.48 ± 0.01) nd (4.91 ± 0.02) nd (5.40 ± 0.09)

QS 0 – 6.85 ± 0.02 (6.45 ± 0.02) 6.68 ± 0.02 (6.34 ± 0.03)

2 6.9 ± 0.01 (6.98 ± 0.01) 7.16 ± 0.03 (7.24 ± 0.01) 7.19 ± 0.01 (7.35 ± 0.02)

14 6.14 ± 0.04 (6.15 ± 0.02) 6.89 ± 0.01 (6.90 ± 0.04) nd (4.43 ± 0.01)

24 5.92 ± 0.04 (7.16 ± 0.01) 6.08 ± 0.02 (6.29 ± 0.01) nd (4.05 ± 0.1)

C, C. zemplinina; S, S. cerevisiae; H, H. uvarum; CS, C. zemplinina/S. cerevisiae; HS, H. uvarum/S. cerevisiae; CHS, C. zemplinina/H. uvarum/S. cerevisiae; RCHS, C.

zemplinina/H. uvarum/S. cerevisiae; QS, Sequential Fermentation.

*Data are expressed as average ± SD; nd, not inoculated.

during the progress of fermentation the first one was not more
countable whereas C. zemplinina decreased up to 106 CFU/ml.

QUANTIFICATION OF MULTISTARTER POPULATION DURING
FERMENTATION BY qPCR
As culture-dependent techniques can underestimate the size and
the diversity of a given population because they do not account
for non-cultivable populations, the data on S. cerevisiae and NS
populations during mixed fermentation obtained by plating were
compared with those obtained by qPCR, as reported in Section
“Materials and Methods.” In particular the trials CHS, RCHS, and
QS were analyzed by real-time PCR and the obtained results are
reported in Table 1. S. cerevisiae resulted to be always present

at high level (106–107 cells/ml), but also H. uvarum and C. zem-
plinina were found at the end of fermentation, generally at about
104 cells/ml. In particular H. uvarum at the end of fermentation of
trail CHS showed a C t value of 25, corresponding to 104 cells/ml
(data not shown).

MAIN FERMENTATION PRODUCTS AND VOLATILE COMPOUNDS
Table 2 reports some oenological parameters of the pure cul-
ture, mixed, and sequential fermentations. The pure cultures
of H. uvarum and C. zemplinina did not finish the fermen-
tations, leaving in the medium glucose and fructose, and only
glucose, respectively. Also trial QS had 50 g/l of residual glu-
cose, as expected by the analysis of fermentation kinetics. The
highest ethanol concentration was determined in pure culture of
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S. cerevisiae. All the multistarter fermentations reached a lower
ethanol concentration ranging from 8.34 to 9.38%. On the con-
trary the production of glycerol was greater by NS yeasts and
in mixed cultures. Despite the high production of acetic acid in
pure culture, H. uvarum did not increase volatile acidity in multi-
starter fermentations. No significant differences were found in the
other compounds. Some discrepancies were found among ethanol,
residual sugars, and other secondary metabolic compounds. What
is stricking in our experiments was that all the strains showed
an extremely poor ethanol yield from sugar consumed, which

cannot be explained by the overproduction of any other meta-
bolic products investigated in this study. Similar results have been
previously obtained by Magyar and Toth (2011) and Tofalo et al.
(2012).

Biogenic amines were detected at low levels in all eight
microvinifications (Figure 2). In particular, the trial CS has
the highest value of biogenic amines and QS has the lowest
value. The pure cultures of H. uvarum, C. zemplinina, and S.
cerevisiae did not produce cadaverine that was formed in all
multistarter fermentations with the exception of QS. Tyramine,

Table 2 | Chemical profile of wines obtained with pure, mixed, and sequential starter cultures.

Parameters Wines

C S H CS HS CHS RCHS QS

pH 3.14 ± 0.02a 3.06 ± 0.01bc 3.26 ± 0.01d 3.19 ± 0.01a 3.05 ± 0.06bc 3.03 ± 0.01c 3.08 ± 0.01b 3.08 ± 0.01b

Ethanol (% v/v) 8.96 ± 0.02b 9.43 ± 0.03e 5.64 ± 0.02c 9.38 ± 0.01f 9.14 ± 0.03g 8.93 ± 0.02b 8.78 ± 0.01d 8.35 ± 0.01a

Residual sugars (g/l) 41.83 ± 0.04d 21.67 ± 0.03b 76.82 ± 0.02h 24.57 ± 0.03a 23.15 ± 0.01c 43.95 ± 0.04f 42.55 ± 0.01g 48.25 ± 0.05e

Total titratable acidity

(g/l tartaric acid)

5.55 ± 0.04d 5.33 ± 0.02a 5.47 ± 0.02b 5.82 ± 0.01f 5.15 ± 0.04c 5.65 ± 0.04g 5.44 ± 0.01b 6.05 ± 0.05e

Volatile acidity (g/l

acetic acid)

0.78 ± 0.04b 0.67 ± 0.01a 1.23 ± 0.03g 0.84 ± 0.01bc 0.86 ± 0.05c 0.84 ± 0.01bc 0.98 ± 0.01d 0.72 ± 0.01a

Glycerol (g/l) 10.20 ± 0.01e 5.24 ± 0.05b 10.33 ± 0.03h 9.26 ± 0.04f 8.14 ± 0.05a 7.88 ± 0.03c 8.25 ± 0.05d 8.92 ± 0.01g

Dry extract (g/l) 89.34 ± 0.04b 87.76 ± 0.03f 83.37 ± 0.02d 89.29 ± 0.00b 91.97 ± 0.01e 78.72 ± 0.01c 83.28 ± 0.01a 84.64 ± 0.04g

Free SO2 (mg/l) 6.10 ± 0.03d 4.09 ± 0.01b 3.23 ± 0.04c 4.05 ± 0.06b 4.05 ± 0.05b 3.87 ± 0.04a 6.44 ± 0.06g 3.23 ± 0.04c

Malic acid (g/l) 0.42 ± 0.01bc 0.47 ± 0.01a 0.44 ± 0.01cd 0.40 ± 0.02b 0.48 ± 0.02a 0.45 ± 0.01ad 0.39 ± 0.01b 0.41 ± 0.01bc

Tartaric acid (g/l) 5.85 ± 0.03g 5.53 ± 0.04a 5.26 ± 0.03b 5.71 ± 0.03d 6.55 ± 0.02f 5.34 ± 0.05bc 5.34 ± 0.01c 5.48 ± 0.04a

Citric acid (g/l) 0.15 ± 0.01b 0.16 ± 0.01b 0.15 ± 0.01b 0.15 ± 0.01b 0.16 ± 0.01b 0.15 ± 0.02b 0.16 ± 0.01b 0.14 ± 0.01b

Acetic acid (g/l) 0.62 ± 0.01b 0.66 ± 0.03b 0.66 ± 0.03b 0.73 ± 0.01c 0.54 ± 0.01d 0.84 ± 0.02g 0.74 ± 0.02ba 0.78 ± 0.01a

C, C. zemplinina; S, S. cerevisiae; H, H. uvarum; CS, C. zemplinina/S. cerevisiae; HS, H. uvarum/S. cerevisiae; CHS, C. zemplinina/H. uvarum/S. cerevisiae; RCHS, C.

zemplinina/H. uvarum/S. cerevisiae; QS, Sequential Fermentation.

*Data are expressed as average ± SD. Different letters (a–h) in the same row correspond to statistically significant differences (P < 0.05).

FIGURE 2 | Biogenic amines content in wines obtained with pure,

mixed, and sequential starter cultures. C, C. zemplinina; S, S.
cerevisiae; H, H. uvarum; CS, C. zemplinina/S. cerevisiae; HS, H.

uvarum/S. cerevisiae; CHS, C. zemplinina/H. uvarum/S. cerevisiae;
RCHS, C. zemplinina/H. uvarum/S. cerevisiae; QS, sequential
fermentation.
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histamine, 2-phenylethylamine, spermidine, and methylamine
were not detectable in any the samples analyzed.

Table 3 shows some volatile compounds that well discriminated
the aromatic profiles of the three wine yeast species. Pure cultures
of C. zemplinina and S. cerevisiae produced low quantities of ethyl
acetate and acetoin and high amounts of isoamyl alcohols and
β-phenylethanol, having C. zemplinina the highest productions
with respect to S. cerevisiae. In this study H. uvarum pure culture
produced high amounts of ethyl acetate and acetoin and very low
amounts of isoamyl alcohols and β-phenylethanol. The fermen-
tations of mixed cultures CS, HS, and RCHS presented low levels
of ethyl acetate and decreased the quantity of isoamylic alcohols
and 2-phenylethanol with respect to S. cerevisiae. The fermenta-
tion of mixed culture CHS presented the highest formation of
isoamyl alcohols and ethyl acetate. The sequential fermentation
QS showed a completely different situation among the multi-
starter fermentations, with the lowest content of ethyl acetate and
isoamyl alcohols and the highest one of acetoin, 2-phenylethanol,
and isobutyl alcohol.

Principal component analysis has been used to obtain bio-
chemical fingerprints of wines and to elucidate differences in the
different components of wine fermented by different strains of
Saccharomyces or by multistarter cultures (Nurgel et al., 2002;
Howell et al., 2006).

Some compounds produced by the yeast pure and multistarter
cultures were analyzed using PCA (Figures 3A,B). Firstly, the
correlation matrix was computed in order to discriminate the
variables, thus selecting 10 parameters (acetoin, 2,3 butanediol,
ethanol, ethyl acetate, titratable and volatile acidity,glycerol, reduc-
ing sugars, phenylethyl alcohol and isoamyl alcohols). The PCA
explained 70.6% of the total variance. PC 1 accounted for 53.55%
of the variance and the negative segment of loading plot for this
dimension (Figure 3B) was closely related to the levels of volatile
acidity, whereas its positive counterpart was mainly related to
ethanol. PC2 explained 17.05% of the variance; this dimension
was mainly related positively with titratable acidity. Then, in score

plot (Figure 3A) it is possible to distinguish three different groups
of wines produced by strains. The fermentation carried out by
H. uvarum was well differentiated from the others for the high-
est concentration of ethyl acetate, glycerol, acetoin, and volatile
acidity; whereas C, CS, and CHS were very similar except for the
concentration of isoamyl alcohols, 2,3 butanediol and reducing
sugars (in C and CS, the values were higher than in CHS).

DISCUSSION
One of the most studied technologically advances in wine mak-
ing is the inoculation of grape juice with mixed cultures of S.
cerevisiae and NS yeasts. In this study the fermentation kinet-
ics and metabolic compounds produced by multistarters during
fermentation of organic musts were compared. Generally the fer-
mentation kinetics of pure cultures of S. cerevisiae, H. uvarum,
and C. zemplinina were in agreement with those expected and
reported in other studies (Egli et al., 1998; Toro and Vazquez,
2002; Zohre and Erten, 2002; Mendoza et al., 2007; Fleet, 2008;
Ciani et al., 2010). The pure culture of H. uvarum was unable
to finish fermentation according to the poor fermentative capac-
ity of this species, but also the pure culture of C. zemplinina did
not end the fermentation. These two strains were selected on the
basis of their fermentative capacity in a must containing 180 g/l
sugars (Tofalo et al., 2011) and probably the metabolic fermenta-
tive products from the high sugar Montepulciano must (280 g/l)
affected their performances. In particular, C. zemplinina has been
reported to complete fermentation of Macabeo must containing
180 g/l sugars (Andorrà et al., 2010) even if with a slight delay com-
pared to the S. cerevisiae fermentation (Sipiczki et al., 2005; Tofalo
et al., 2009, 2012). The yeast interactions had a clear impact on the
fermentation kinetics and the presence of S. cerevisiae gave faster
fermentations. However C. zemplinina and S. cerevisiae associa-
tion (trial CS) showed a great improvement of kinetic during the
first 15 days of fermentation. C. zemplinina is an osmotolerant
and fructophilic yeast, generally producing low amounts of acetic
acid and relevant quantities of glycerol from sugar fermentation

Table 3 | Aromatic compounds (mg/l) of the wines obtained with pure, mixed, and sequential starter cultures.

Aromatic

compounds (%)

Wines

C S H CS HS CHS RCHS QS

Ethyl acetate 0.644 ± 0.001a 1.850 ± 0.003b 5.384 ± 0.002c 0.441 ± 0.003d 0.674 ± 0.001e 1.959 ± 0.001f 0.511 ± 0.003g 0.369 ± 0.004h

Acetoin 0.020 ± 0.001dg 0.027 ± 0.002h 0.533 ± 0.002b 0.028 ± 0.004h 0.075 ± 0.001a 0.023 ± 0.003h 0.014 ± 0.004d 0.479 ± 0.003e

Isoamyl alcohols 8.673 ± 0.003f 5.104 ± 0.001e 1.237 ± 0.004h 4.590 ± 0.001a 3.750 ± 0.001g 9.283 ± 0.004c 5.174 ± 0.004b 2.528 ± 0.001d

n-Heptane 0.264 ± 0.069d 0.839 ± 0.001e 1.283 ± 0.002f 0.761 ± 0.001a 0.913 ± 0.003b 1.663 ± 0.002c 0.106 ± 0.004h 0.692 ± 0.002g

n-Butanol 0.107 ± 0.001b 0.058 ± 0.001d 0.025 ± 0.004h 0.082 ± 0.003a 0.018 ± 0.001g 0.093 ± 0.003e 0.062 ± 0.001d 0.028 ± 0.001h

1-Hexanol 0.031 ± 0.0dg 0.026 ± 0.003hd 0.027 ± 0.003hd 0.018 ± 0.002e 0.00 ± 0.0a 0.025 ± 0.001h 0.00 ± 0.0a 0.034 ± 0.005g

1-Octanol 16.933 ± 0.004f 0.170 ± 0.003a 0.049 ± 0.003h 0.085 ± 0.002g 0.218 ± 0.001e 0.043 ± 0.003h 0.059 ± 0.003d 0.407 ± 0.003b

Phenylethyl alcohol 2.928 ± 0.004c 2.268 ± 0.002b 0.00 ± 0.00h 1.383 ± 0.003d 1.859 ± 0.002e 1.469 ± 0.003g 1.684 ± 0.001a 2.394 ± 0.002f

Isobutyl alcohol 0.277 ± 0.003e 0.285 ± 0.002b 0.219 ± 0.001g 0.190 ± 0.001d 0.663 ± 0.002f 0.267 ± 0.003a 0.156 ± 0.001h 1.020 ± 0.001c

C, C. zemplinina; S, S. cerevisiae; H, H. uvarum; CS, C. zemplinina/S. cerevisiae; HS, H. uvarum/S. cerevisiae; CHS, C. zemplinina/H. uvarum/S. cerevisiae; RCHS, C.

zemplinina/H. uvarum/S. cerevisiae; QS, sequential fermentation.

Data are expressed as average ± SD. Different letters (a–h) in the same row correspond to statistically significant differences (P < 0.05).
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FIGURE 3 | Score plot (A) and loading plot (B) of the first and second

principal components (PC) after PC analysis by the yeast pure and

multistarter cultures. C, C. zemplinina; S, S. cerevisiae; H, H. uvarum; CS,
C. zemplinina/S. cerevisiae; HS, H. uvarum/S. cerevisiae; CHS, C.
zemplinina/H. uvarum/S. cerevisiae; RCHS, C. zemplinina/H. uvarum/S.
cerevisiae; QS, sequential fermentation.

(Sipiczki et al., 2005; Magyar and Toth, 2011; Tofalo et al., 2011),
it could be suggested that it will be able to consume sugars at the
very beginning of the fermentation, alleviating the S. cerevisiae
from the osmotic stress, thereby improving also the fermentation
kinetics (Rantsiou et al., 2012). As previously demonstrated for
S. cerevisiae species, different strains of C. zemplinina can have a
specific effect, as reported by Tofalo et al. (2012). Moreover this
positive interaction on fermentation kinetics between S. cerevisiae
and C. zemplinina can have an important application on must
with high sugar contents or special wines such as icewine, “pas-
sito,” botrytized wines (Rantsiou et al., 2012). On the contrary
the inoculum of C. zemplinina and H. uvarum together with S.
cerevisiae (RCHS) did not produce the same results of CS trial,

probably for the lower proportion of cells of the two NS with
respect to S. cerevisiae.

The inoculum of S. cerevisiae after 48 h since that of C. zem-
plinina and H. uvarum (trial QS) produced a stuck fermentation
Similar results have been reported in other studies, even if the
mechanisms of this performance reduction of S. cerevisiae have
not yet been explained. When S. cerevisiae and C. cantarelli inter-
act during fermentation, the maximum S. cerevisiae population
decreases (Toro and Vazquez, 2002). This fact may be due to
amino acid and vitamin consumption during the first days of
fermentation that can disable the subsequent growth and fer-
mentative capacity of S. cerevisiae (Fleet, 2003). On the other
hand these data were confirmed by the plating counts. S. cere-
visiae dominated all the multistarter fermentations a part trial
QS in which C. zemplinina had its best performance. The higher
ability of S. cerevisiae to withstand the stress conditions such as
increasing ethanol, decreasing pH, nutrition depletion is generally
considered to drive the wine yeast population dynamics (Pretorius,
2000). These selective pressures are currently questioned, whereas
cell–cell interactions are being put forward as significant in affect-
ing yeast succession (Ciani and Pepe, 2002; Fleet, 2003; Nissen
et al., 2003). The early death of C. zemplinina and H. uvarum
during mixed fermentation, even if with quantitative differences,
appeared to be due to the antagonistic effect of S. cerevisiae as
reported also by Andorrà et al. (2010) in the same species. The NS,
in mixed fermentations, decreased as fermentation proceeded. On
the contrary other authors (Ciani et al., 2006; Mendoza et al.,
2007) reported that the presence of both Saccharomyces and NS
yeasts promotes an increase in the persistence of NS yeasts during
fermentation process. However it is clear that S. cerevisiae has a rel-
evant antagonist effect upon C. zemplinina and H. uvarum,but also
that the same NS can affect S. cerevisiae,depending on the sequence
of growth, the number of viable cells and strain specificity. Few
studies have been carried out to elucidate the mechanisms of
these antagonistic phenomena (Nissen et al., 2003; Arneborg et al.,
2005; Pérez-Nevado et al., 2006). During alcoholic fermentation
yeasts can produce compounds that can have inhibitory effects
against other yeast species or strains, such as short to medium-
chain fatty acids (Ludovico et al., 2001; Fleet, 2003), killer toxins
(Schmitt and Breinig, 2002), growth and nutritional conditions
(Fleet, 2003). However in the above-mentioned studies, cell–cell
contact-mediated mechanism appear to effect antagonism among
yeasts. To confirm the data obtained by plating counts qPCR was
used as culture-independent method. In fact sub lethally injured
and/or viable but non-culturable (VBNC) cells, may fail to grow
on plates and are common in wine (Millet and Lonvaud-Funel,
2000; Andorrà et al., 2011). The qPCR method used was previ-
ously developed to monitor the yeast evolution during alcoholic
fermentations (Hierro et al., 2007; Andorrà et al., 2011). However,
qPCR targeted at DNA quantifies also dead yeasts because of the
DNA’s stability (Hierro et al., 2006). Our data confirmed those of
Andorrà et al. (2011) who found high populations of H. uvarum
(up to 108 cells/ml) throughout the mixed fermentations by qPCR
methods. Of course these findings do not resolve the question if
these populations correspond to VBNC, injured and/or dead cells
or how many of these cells are metabolically active and how these
in turn can influence the final wines (Andorrà et al., 2011). This
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aspect needs further researches and advances. When some yeasts
develop together under fermentation conditions, they do not pas-
sively coexist, but rather they interact and can produce different
levels of fermentation products, which can affect the chemical and
aromatic composition of wines (Howell et al., 2006; Anfang et al.,
2009). Grape must fermentations performed by pure, mixed or
sequential cultures of NS yeasts with S. cerevisiae can produce
wines with significant differences in the chemical composition
(Herraiz et al., 1990; Ciani and Picciotti, 1995; Gil et al., 1996;
Lambrechts and Pretorius, 2000; Rojas et al., 2003; Romano et al.,
2003; Moreira et al., 2008). A relevant consequence of the NS yeasts
was the increased presence of glycerol in all the multistarter fer-
mentations, due the intrinsic characteristic of C. zemplinina and
H. uvarum. In similar way acetic acid production is considered
as a common pattern in apiculate yeasts that for this reason have
been considered for long time as spoilage yeasts (Romano et al.,
2003). Despite the high production of acetic acid in pure culture,
H. uvarum did not increase volatile acidity in multistarter fer-
mentations. These results are in complete agreement with those
reported by other authors (Ciani et al., 2006; Mendoza et al., 2007;
Andorrà et al., 2010). As regards biogenic amines, few studies have
been conducted on their formation by yeasts, comparing different
yeast species and quantifying only histamine (Torrea and Ancín,
2002). Their presence in wine ranged from a few milligrams per
liter to about 50 mg/l depending on the wine. This study con-
firmed the low amino-decarboxylase of wine yeasts, even if some
differences were determined in the eight trials. Even if a number of
authors suggest that yeasts do not appear to be responsible for the
production of most amines found in industrial commercial red
wines (Marcobal et al., 2006; Smit et al., 2008), the yeast contri-
bution to biogenic amine production could therefore be indirect:
yeasts can alter the composition of grape musts by using some
amino acids and secreting others during alcoholic fermentation
and autolysis, thereby changing the concentration of precursor
amino acids in the wine that can be used by other microorgan-
isms in subsequent fermentation steps (Soufleros et al., 1998).
According to the intrinsic characteristic of the single species, the
production of main aromatic compounds was well differentiated
in the trials. Low quantities of ethyl acetate and acetoin and high
amounts of isoamyl alcohols and β-phenylethanol were produced
by pure cultures of C. zemplinina and S. cerevisiae, as similarly
reported by Andorrà et al. (2010). In this study H. uvarum pure
culture produced high amounts of ethyl acetate and acetoin and
very low amounts of isoamyl alcohols and β-phenylethanol. The
production of large quantities of ethyl acetate and acetic acid by
H. uvarum has always been considered a negative characteristic

(Ciani and Picciotti, 1995), whereas there is controversy concern-
ing the production of higher alcohols. H. uvarum and K. apiculata
were found to be the main producers of higher alcohols by Gil et al.
(1996). However, some authors (Herraiz et al., 1990; Rojas et al.,
2003; Romano et al., 2003) reported that apiculate yeasts were low
producers of higher alcohols and can promote the esterification
of various alcohols such as ethanol, geraniol, isoamyl alcohols,
and 2-phenylethanol. Probably high production of higher alco-
hols could be a strain character dependent also in some NS wine
yeasts (Capece et al., 2005). The secondary volatile compounds
produced by mixed cultures were a combination of the different
strains. PCA well highlighted these differences, indicating that the
final wine characteristics can be modulated by different combi-
nations or species and sequence of inoculum (Nurgel et al., 2002;
Howell et al., 2006).

Candida zemplinina showed interesting features for mixed fer-
mentation with S. cerevisiae, in particularly increasing the fer-
mentation kinetic in high gravity Montepulciano must, with low
ethyl acetate and acetic acid production. The combined use of
three starter cultures (CSH and RCSH) could allow the improve-
ment of the organoleptic characteristics of a wine. Further studies
are needed to clarify the interaction among the different starters
and to optimize the fermentation and the modalities of inocula-
tion. Effectively the use of NS wine yeasts together with Saccha-
romyces strains in mixed fermentations might be recommended
as a tool to obtain the advantages of spontaneous fermenta-
tion of organic wines such as those obtained with Montepul-
ciano, while avoiding the risks of stuck fermentation (Rojas et al.,
2003; Romano et al., 2003; Jolly et al., 2006; Ciani et al., 2010).
Because of the NS yeast strains biodiversity about their produc-
tion level of enzymatic activities (Manzanares et al., 1999, 2000;
Mendes-Ferreira et al., 2001; Strauss et al., 2001) and fermenta-
tion metabolites (Romano et al., 1992, 2003; Capece et al., 2005)
of enological importance, suitable strains should be selected in
order to be able to design mixed starter able to provide benefi-
cial contributions also for wine obtained by organic viticulture.
In particular C. zemplinina showed a good interaction with S.
cerevisiae by increasing the fermentation kinetic in high grav-
ity Montepulciano must, with low ethyl acetate and acetic acid
production.
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