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Abstract

Background: Protein subcellular localization plays a crucial role in understanding cell function. Proteins need to
be in the right place at the right time, and combine with the corresponding molecules to fulfill their functions.
Furthermore, prediction of protein subcellular location not only should be a guiding role in drug design and
development due to potential molecular targets but also be an essential role in genome annotation. Taking the
current status of image-based protein subcellular localization as an example, there are three common drawbacks,
i.e, obsolete datasets without updating label information, stereotypical feature descriptor on spatial domain or
grey level, and single-function prediction algorithm’s limited capacity of handling single-label database.

Results: In this paper, a novel human protein subcellular localization prediction model MIC_Locator is proposed.
Firstly, the latest datasets are collected and collated as our benchmark dataset instead of obsolete data while
training prediction model. Secondly, Fourier transformation, Riesz transformation, Log-Gabor filter and intensity
coding strategy are employed to obtain frequency feature based on three components of monogenic signal with
different frequency scales. Thirdly, a chained prediction model is proposed to handle multi-label instead of single-
label datasets. The experiment results showed that the MIC_Locator can achieve 60.56% subset accuracy and
outperform the existing majority of prediction models, and the frequency feature and intensity coding strategy
can be conducive to improving the classification accuracy.

Conclusions: Our results demonstrate that the frequency feature is more beneficial for improving the performance
of model compared to features extracted from spatial domain, and the MIC_Locator proposed in this paper can
speed up validation of protein annotation, knowledge of protein function and proteomics research.
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Image intensity encoding strategy, Multi-label classifier chain
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Background

Human protein subcellular localization prediction is an
important component of bioinformatics. Identifying the
subcellular locations of proteins can improve our under-
standing of their functions, mechanisms of molecular
interaction, genome annotation and identification of drug
targets [1, 2]. For example, protein synthesized from
ribosome must be transported to their corresponding sub-
cellular locations to fulfill their functions. Aberrant sub-
cellular localization of protein can lead to serious loss of
biological function or disorder occurrence in organisms
and can even cause cancer [3]. Diabetes, blindness and
certain forms of cancer have been demonstrated to be
caused by the malfunction of G Protein-Coupled Receptor
(GPCR) signaling pathways [4, 5]. Moreover, understand-
ing of protein subcellular localization can greatly improve
target identification during drug discovery. In the case of
membrane proteins and secreted proteins, they are easily
accessible by drug molecules due to their localization in
the cell membrane or on the cell surface. It is well known
that the traditional protein subcellular location annotation
is derived from biological experiments in wet laboratory,
however, computational models offer an attractive com-
plement to time-consuming and laborious experimental
methods [6, 7].

Currently, a large number of automated prediction
models have been developed for correctly predicting the
subcellular locations of protein [8—10]. These prediction
models can be divided into two categories in terms of
processing target datasets, i.e., sequence-based [11-14],
which uses the amino acids sequence as the input pro-
tein information, and image-based [15-18], which em-
ploys the biology image as the target dataset.

Efforts on sequence-based protein subcellular localization
have been made by many research groups, such as Chou
group, Briesemeister group, Wan group and Almagro
group, and the corresponding software is Cell-Ploc, YLoc,
iLoc-Hum, FUEL-mLoc, SpaPredictor and DeepLoc
[19-24]. For instance, Chou et al. proposed a high-
performance prediction model, iLoc-Hum, which can
handle proteins with single-labeled and multi-labeled sub-
cellular locations [20]. By applying the gene ontology
(GO) and position specific scoring matrix (PSSM) se-
quence information and K-nearest neighbor classifier
(KNN) classification, iLoc-Hum achieve a remarkably
higher success rate at 76%, and a user-friendly web-server
is developed. FUEL_mLoc is proposed to predict with sin-
gle- or multi-label, and it uses the key go terms to analyze
how a prediction is made and it can predict several spe-
cies. The experimental results proved that FUEL-mLoc
outperforms state-of-the-art subcellular localization pre-
dictors [22]. However, with the technology development
in gene sequencing, the imperfection of protein sequence
annotation was preferred by scientists [25, 26]. Then
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several genes sequencing reannotation tools are designed
for checking and correcting the error of annotation. They
encouraged researchers to realize that these sequence-
based methods may not be significantly reliable [27].

Moreover, the sequence-based methods are not sensi-
tive to protein translocations, especially when dealing
with cancer. In detail, human health is reflected by cells,
which are restricted by the internal ecological environ-
ment of human body. When unavoidable changes of en-
vironment occur, cells must have complex collaborative
response, i.e., protein translocation [14]. Amino acid se-
quence itself does not change when the protein trans-
location in cancer cell environment. Hence, image-based
protein subcellular localization prediction models have
gradually become a research hotspot [28—30]. Murphy
group proposed a framework for the construction of
image-based protein subcellular localization prediction,
and the prediction framework was first applied to the
Human Protein Atlas (HPA) database [16]. This initia-
tive is regarded as the pioneering work in the field of
image-based subcellular localization prediction.

In the following years, an increasing number of image-
based protein subcellular localization prediction models
have been proposed based on the combination of image
processing technologies and machine learning algo-
rithms. For example, Boland et al. utilized the back-
propagation neural network classifier and subcellular
location features (SLFs) to recognize the subcellular
localization of Hela cells [31], however, the local infor-
mation of sample was not revealed. Muhammad Tahir
et al. proposed the SVM-SubLoc method, which focuses
on the combination of the Haralick feature and local
image descriptor, then feeds into the support vector ma-
chine (SVM) classification. The SVM-SubLoc model can
achieve 99.7% prediction accuracy in Hela cells dataset
[32]. Lin group proposed a new learning algorithm
named AdaBoost.ERC. They utilized the error-correcting
output codes (ECOC) coding strategy and the boosting
method to improve the prediction accuracy [33]. Al-
though the model mentioned above can obtain high
accuracy, the involved features are extracted in spatial
domain, which may be attributed to the limited image
processing technology.

To describe local features more accurately, XU et al.
first proposed the local binary pattern (LBP), a popular
local image descriptor applied in the field of image
retrieval, to protein subcellular images. Experimental re-
sults showed that LBP plays a significant role in improv-
ing the performance of prediction model by capturing
the texture information of immunohistochemistry (IHC)
images [17]. Coelhp L P et al. obtain the interest regions
of IHC image by using the K-means method within the
target image [18]. The feature descriptor is calculated in
the interested regions of image. These entirely featured
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descriptors generated the local feature by clustering
method. Although the approach achieved an improve-
ment in the classification accuracy, the number of K-
means clustering centers may cause fluctuations in the
performance of prediction model for various datasets.
For instance, the method just achieves 78.9% classifica-
tion accuracy in the HPA dataset [34]; in contrast, 94.4%
classification was obtained in the Hela2D dataset [35].
Shao group made efforts on the improvement of accur-
acy by using a novel voting strategy in decision level and
taking the different relationship of labels into account.
Although the method achieved high prediction accuracy,
it was unable to handle multi-label protein subcellular
location prediction [15]. Jieyue L and Newberg ] et al.
proposed to update the subcellular localization annota-
tion of datasets by using the hierarchical clustering
method and SVM classification, followed by continu-
ously revising the subcellular localizations of test
samples. Godinez W ] et al. proposed M-CNN predic-
tion model, which uses the convolution neural network
(CNN) with multi-scale architecture, to predict image
subcellular localization in eight published datasets. Al-
though the experimental result showed that M-CNN
achieved around 95% prediction accuracy in the seven
datasets more than these popular network architectures,
such as AlexNet and GoogleNet [36-38], M-CNN
merely obtained the 77% prediction accuracy in the
HPA dataset, as the HPA dataset consists of image with
multi-label.

Moreover, many efforts have been made on the algo-
rithm level [39-41]. Wei group proposed a novel feature
selection method that used the biology background to
set up a regularization item so as to optimize the feature
selection method, and this method can select more
informative feature subsets [40]. The Sullivan group
innovatively used the online game (EVE Online) to at-
tract the numerous participants to annotate the subcel-
lular locations of protein image based on both of the
transfer learning framework and the deep learning
method to build the automated Localization Cellular
Annotation Tool (Loc-CAT). This work not only
achieved the F1 score of 0.74 but also proposed a novel
approach to obtain the precious annotated data by the
online game [41].

The contributions made by the predecessors in the
field of protein subcellular localization prediction, es-
pecially in imaged-based, should be positively evalu-
ated, however, three shortcomings can be summarized
as follows.

Firstly, the labels of benchmark dataset in published
works have been updated by database, such as HPA.
Although the prediction accuracy at that time was
quite gratifying, it would greatly reduce the credibility
of the prediction model if the training samples used in
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the prediction model construction are involved in the
label updating of database. Obviously, it is meaningless
to accurately predict an error or a failed label, and the
corresponding training samples can also be treated as
obsolete data. Different from face and natural images, the
label information of protein image datasets is updated regu-
larly to ensure that the subcellular location corresponding
to a sample image is true and accurate. For instance, the
subcellular location of gene “ENSG00000182606” is re-
ported “Cytopl” in [17], while the subcellular location of
gene is updated “ER” and “Nucleoplasm” in version 18 of
HPA database. The label of “ENSG00000155876” in HPA
has been updated to Golgi apparatus and Vesicles in the
latest version while its labels reported in [17] are “Golgi ap-
paratus”, “Lysosomes” and “Vesicles”. Inspired by this, the
latest datasets from HPA have been collected and collated
as our benchmark instead of obsolete data.

Secondly, they lack of in-depth understanding of pro-
tein image signals. For a target protein image, it is not
just a digital image, but more importantly, it is still a 2-
dimension signal, which is often overlooked. Researchers
are more eager to find a simple image descriptor to ex-
tract features from protein images rather than taking the
time to figure out the 2-dimension signal. For example,
LBP and its variation, local ternary pattern (LTP) and
local quinary pattern (LQP), are employed to extract
local feature of protein IHC images [42, 35]. These kinds
of image descriptors focus on encoding the gray level in-
formation of image in spatial domain rather than consid-
ering other aspects of image, such as the local energy,
structure and geometry information, which can be ob-
tained from the transformation or frequency domain of
image signal [43]. Even for complicated feature descrip-
tors, such as completed local binary pattern (CLBP) and
local tetra pattern (LTrP), can capture more local infor-
mation [44, 45]; however, the target protein image is still
encoded in grey level or spatial domain. This kind of
roughly transplanted approach has ignored the biological
properties of IHC protein images, which included mul-
tiple cells and can be sparse representation in frequency
domain. Few researchers have been taking this point into
account.

In this paper, to generally capture the essential local
property of IHC image, Fourier transformation, Riesz
transformation, Log-Gabor filter and intensity coding
strategy are employed to obtain frequency feature based
on three components of monogenic signal with several
frequency scales. 2-dimension fast Fourier transform is
employed to convert target protein channel from spatial
domain into the frequency domain, and then the Riesz
transformation [46] is employed to obtain two frequency
responses in orthogonal directions [47]. To improve the
robustness of model, the convolution of three parts, i.e.,
original frequency information and two frequency
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responses of Riesz transform, and Log-Gabor band-pass
filter with different frequency scales is calculated. It is
known that the detail information of IHC image, e.g.,
slight textures and edges, mainly concentrated on the high
frequency band. In addition, larger frequency response
can be obtained, if the frequency of local texture informa-
tion is closer to the center frequency of Log-Gabor filter,
and vice versa. The inverse 2-dimension fast Fourier trans-
form converts three parts into the spatial domain, and the
monogenic signal of image can be represented. By using
various mathematical formulas, the three components of
monogenic signal of protein channel can be calculated,
namely, local amplitude, phase and orientation (APO).
These three components denote to the energetic, struc-
tural, and geometric information of target protein image,
respectively. The details for corresponding encoding strat-
egies ara given in the following section.

Thirdly, it is well-known that above 50% of proteins
are found in two or more subcellular locations. An ef-
fective and accurate prediction model should be capable
of handling multi-label datasets, and it is critical to cap-
ture the dynamic transfer of proteins between different
subcellular locations and to screen for cancer bio-
markers. Xu et al. proposed an image-based multi-label
protein subcellular prediction model CorrASemiB based
on the combination of Bayesian theory and variety deci-
sion strategies [48]. The CorrASemiB employed the
binary relevance (BR) classification as the multi-label
classification, which leads the neglect of the correlation
of subcellular localizations. In order to find the correl-
ation between different subcellular locations, Wang
group proposed the random label selection (RALS) to
more accurately predict the subcellular localizations of
protein with multi-label, which learned the correlation
of different subcellular localizations from datasets by
randomly selected labels as the additional features add-
ing into the original feature space [49]. However, the
randomly selected labels will lead to the prediction
performance instability of model. Zhou et al. used the
multi-view complementary protein information, i.e. GO,
conserved domain database (CDD) and amino acid com-
position (AAC), to build the prediction model [9]. While
this method achieved an increase in the prediction
accuracy at 5-11% because the sample feature was ex-
tracted from the multi-view of protein, the correlation
of labels and the hierarchical structure of GO terms
are ignored.

Considering the importance of multi-labeled proteins,
the predictive model is expected to handle multi-labeled
datasets, a chained classification is proposed in this
paper. The experimental results show that the subset ac-
curacy of the proposed prediction model can achieve
60.56% classification accuracy and outperform the exist-
ing prediction models.
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Results

The 5-fold cross-validation is utilized to split the train
set and test set on the benchmark dataset in this paper.
The benchmark dataset consists of 3240 IHC images,
and the proportion of image with multi-label is 25%, i.e.,
824 multi-label IHC images in total. The numbers of
subcellular locations involved in benchmark are seven,
i.e., “Cytosol”, “Endoplasmic reticulum”, “Golgi appar-
atus”, “Nucleoli”, “Mitochondria”, “Nucleus” and “Vesi-
cles”. A total of 1864-dimension features, derived from
SLFs and frequency feature, have fed into subsequent
classifier chains (CC). In the next section, the MIC_
Locator™-® (X is one of A, P and O components; S repre-
sents the scale factor from 1 to 5) prediction model is
trained by the combination of global features and local
image descriptor with different frequency scales in these
components of monogenic signal. The MIC_Locator™-F
prediction model (X is A, P and O components) denotes
to the ensemble prediction model of three APO compo-
nents. These weighted ensemble methods are used to
fuse all single prediction models for constructing the
prediction model MIC_Locator.

The performance of MIC_Locator with frequency feature
on new benchmark dataset

In this section, we aim to compare the performance of
frequency feature with different local image descriptors,
namely LBP, CLBP and LTrP. The SLFs feature with 10
dbs, which derives from the 10 vanishing moments of 2-
dimension wavelet analysis function, e.g. db1l-dbl0, is
directly combined with these different local image de-
scriptors and frequency domain feature as the sample
feature. As the results (mean and standard deviations)
are shown in Fig. 1, there are two distinct trends. One is
that the MIC_Locator achieves the best classification
accuracy, and the other is that the ensemble prediction
model of APO components is more high-performance
than these local image descriptors extracted from
spatial domain.

From Fig. 1, the MIC_Locator can achieve the 63.24%
subset accuracy in db5, but the classification SLFs_LBP,
SLFs_CLBP, SLFs_LTrP just achieve lower accuracy at
51.29, 51.05 and 53.13%. Consistent with the above con-
clusion, MIC_Locator achieves the best performance in
other dbs. The ensemble prediction models of APO
components are fused by the weighted ensemble algo-
rithm. The weight parameter of weighted ensemble
method is obtained by the grid research from 0.1 to 0.5
with the step of 0.01 based on db4, and the producer of
experiment has been shown in Fig. 2. The weight param-
eter is set to be 0.43 as the final weight parameter, when
the MIC_Locator achieves the highest subset accuracy.

An expected result is observed that the ensemble pre-
diction model MIC_Locator™-" can extremely improve
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expressed in the frequency domain making it easily to be

62

3 o =
=l =] —_
1 1 1

[
o
1

Subset accuracy (%)

I
Ny

1
0\

w
(=
1

55 —r 7
0.0 0.1 02 0.3 0.4 0.5
w

Fig. 2 The subset accuracy of MIC_Locator fluctuates with the
weighted parameter W

captured by the PO components, and then MIC_Loca-
tor’™* and MIC_Locator®F can be superior to SLFs_
LBP. The above-mentioned reasons can be validated
with experimental results in the next section.
Furthermore, in the comparison of local image de-
scriptors extracted in the spatial domain, the LTrP
achieve the highest classification accuracy than the LBP,
CLBP. Specifically, SLFs_LTrP prediction model trained
by the combination of SLFs and LTrP local image de-
scriptor can achieve 53.13% subset accuracy in db5. The
results demonstrated that the LTrP local image descrip-
tor can preferably extract the texture information of
image, as the LTrP captures the statistic information of
image by comparing the consistency of center pixel with
neighboring pixels. Although the LTrP used a more
complex local image descriptor coding strategy, higher
subset accuracy is achieved by the MIC_Locator at
63.24% in db5 as the local image descriptor of MIC_Lo-
cator codes the frequency information rather than the
spatial information. The classification accuracy of pre-
diction model SLFs LBP achieves 51.29% subset accur-
acy in db5, which is 1.84% lower than the prediction
model SLFs_LTrP. Because the definition of LBP is
concerned the difference between the center pixel and
its neighboring in gray level to capture the statistic infor-
mation of image. The SLFs_CLBP prediction model
achieves limited classification accuracy at 51.05% in db5.
The reason is that the CLBP local image descriptor com-
pares the gray level of center pixel with the average gray
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level of whole image to add center pixel information,
which cannot more precisely capture the essential prop-
erty of center pixel. In addition, while the local image
descriptor as a complementary feature combined with
the SLFs, the prediction model can hugely increase the
classification accuracy. For example, the prediction
model SLFs obtain the lowest classification accuracy in
44.97%, owing to the lack of local image descriptor. The
SLFs_LTrP, SLFs_LBP, SLFs_CLBP prediction model
respectively achieve a higher classification accuracy com-
pared the SLFs prediction to 8.19, 6.29 and 6.08% in
db5. Although the performance of local image descrip-
tors extracted from the spatial domain has been vali-
dated, it is still inferior to MIC_Locator. Hence, we have
made further analysis to verify and reveal the internal
logic, such as the analysis of Log-Gabor filter, coding
strategy, APO components and multi-scale.

Performance of log-Gabor, image intensity coding
strategy and classifier chain

In this section, to validate the advantages of parts,
namely Log-Gabor filter, image intensity encoding strat-
egy and CC, we respectively compare the MIC-Locator
and the MIC-Locator without each part.

The constructed MIC_Locator prediction model
without Log-Gabor filter and image intensity encoding
strategy is named as Without_image_intensity and
Without_Log-Gabor. As shown in Fig. 3, the experi-
mental results illustrate that the MIC_Locator without
the Log-Gabor and image intensity coding strategy
achieve lower performance. Specifically, the MIC_Lo-
cator achieve 59.04% subset accuracy in db3, but the
Without_Log-Gabor and Without_image_intensity just
obtain 46.28 and 55.46%. We can draw a conclusion
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that the Log-Gabor filter and image intensity coding
strategy actually play an indispensable role in contrib-
uting the performance of MIC_Locator.

Furthermore, the CC classification is replaced by the
BR multi-label classifier. The Table 1 investigates that
the performance of MIC_Locator based on the CC and
BR in 10 dbs in terms of overall, single-labeled and
multi-labeled subset accuracy. As can be seen, the CC
outperforms BR in the MIC_Locator™-¥E, MIC_Loca-
tor’™£ and MIC_Locator®-F in all evaluation indexes. Al-
though the MIC Locator with BR classifier slightly
outperforms the CC classifier at 0.75% in terms of over-
all subset accuracy, the CC can extremely boost the
multi-labeled subset accuracy from 19.96 to 31.30%.
Considering the CC is importantly effective for deter-
mining subcellular localization of multi-label proteins.
Hence, the CC and frequency feature are jointly lever-
aged to constructing the MIC_Locator.

Results of exploration of the three components from
monogenic signal

An obvious conclusion can be drawn from Fig. 1 that
frequency features are more discriminative than SLFs
and the original spatial feature, and can greatly im-
prove the accuracy of the prediction model; however,
we are more interested in which component plays a
more important role in the whole frequency domain.
Hence, the APO components are visualized and
showed intuitively in Fig. 4.

It is well known that the phase spectrum is most im-
portant in frequency domain analysis of the signal, and
the consistent conclusion can be observed in Fig. 4.
Firstly, an IHC image is selected from the benchmark
datasets, and the selected patch is marked by the red

-
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Fig. 3 The results of various evaluation metrics for MIC_Locator, Without_image_intensity and Without_Log-Gabor on db3
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Table 1 The comparison of subset accuracy on both overall, single-label and multi-label testing dataset of MIC_Locator by using BR

and CCin 1-10 dbs

cC BR
Subset Single-labeled subset Multi-labeled subset Subset Single-labeled subset Multi-labeled subset
accuracy accuracy accuracy accuracy accuracy accuracy

MIC_ 54.73% 64.26% 26.90% 51.14% 63.47% 15.26%

Locator"-£

MIC_ 58.08% 67.45% 30.70% 55.25% 67.33% 20.06%

Locator™-*

MIC_ 57.71% 67.36% 29.52% 56.12% 68.80% 19.18%

Locator®-F

MIC_Locator  59.86% 69.63% 31.30% 60.61% 74.56% 19.96%

rectangle frame. Secondly, the local patch in these three
components is commonly amplified, which are shown in
Fig. 4. It is clear that the amplitude component mainly
reflects the outline of image in local patch, and the
phase component extremely reflects the slight texture,
and the orientation component presents the texture in-
formation along the gradient direction.

Another important finding was that the phase com-
ponent captures more frequency information than
other components. Specifically, the orientation compo-
nent vaguely presents the outline of local patch in the
upper right of Fig. 4d, but the phase component more
distinctly presents the texture of local patch in the
upper right of Fig. 4c. In order to verify the conclusion
of the subjective evaluation, some essential experi-
ments are carried out and the corresponding results
are shown in Fig. 5. The result of FSL_PSL"-* outper-
forms phase component can significantly reflect fre-
quency information.

Results of MIC_Locator on different frequency scales

To gain better understanding of which frequency scale is
better and whether fusing these prediction model with
single frequency scale can obtain more benefits, the per-
formance of MIC_Locator with different frequency

scales on APO components are compared, and it is
necessary for us to verify whether the conclusion men-
tioned above is consistent at all scales.

In this section, the scale index is set from 1 to 5, which
affects the center frequency that makes the Log-Gabor
band-pass filter has different frequency responses, and
the results are showed in Fig. 5. The prediction model
with frequency scale from 1 to 3 can achieve superior
classification performance. For instance, the MIC_Loca-
tor’>? achieves 55.89% classification accuracy in db2,
while the MIC Locator’™>* and MIC_Locator™® re-
spectively achieve 55.3 and 51% classification accuracy;
the MIC_Locator®-® achieve 55.02% classification ac-
curacy in db2, whereas the MIC_Locator®->* and MIC_
Locator®->* respectively achieve 53.14 and 49.4% classifi-
cation accuracy.

Furthermore, these ensemble prediction models of
each component, MIC_Locator™-£, MIC_Locator’™£ and
MIC_Locator ©-F, achieve the highest prediction accur-
acy on each db. For example, MIC_Locator’F achieves
the 58.92% classification accuracy, while the MIC_Loca-
tor™! and the MIC_Locator™® respectively achieve
56.94 and 50.57% classification accuracy in db5, since
these ensemble prediction models fuse the advantage of
each single prediction model. From the Table 1, the

Fig. 4 The comparison of ability in capturing slight texture feature on these APO components of image based on a given local patch in an IHC
image. a Denotes to an IHC image derived from the "ENSG00000013364" and the corresponding subcellular location is “Cytosol”. An example of
local patch region is presented in the original IHC image by marking red rectangle. The APO components on this local patch are separated in
frequency domain and inverse transform (Fourier Inversion) to spatial domain for easy visualization. b Denotes to amplitude component under
the local patch. ¢ Represents the phase component under the local patch. d Represents the orientation component under the local patch
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MIC_Locator™" to MIC_Locator™° based on 10 dbs. ¢ Compares MIC_Locator®F with MIC_Locator®>" to MIC_Locator®=° based on 10 dbs
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T T T T T T T T T T
dbl  db2 db3 db4 db5S db6 db7 db8 db9 dblO

ensemble prediction model of phase components MIC_
Locator’™* achieve the highest subset accuracy than
MIC_Locator™-t and MIC_Locator®—=~ on 10 dbs by 3.35
and 0.37%, as the phase component is preferable to cap-
ture the texture information of image; the MIC_Locator,
however, outperforms the MIC_Locator™E,

Performance validation of MIC_Locator on both single-
label and multi-label datasets

In order to validate the performance of proposed predic-
tion model MIC_Locator, we compare MIC_Locator
with opened and popular methods in db4. The compari-
son experiments can be carried out divided into two
parts, namely multi-label part and single-label part.

An excellent prediction model, accurate and efficient
prediction of single-labeled samples in the benchmark
dataset is the basic guarantee of the generalization ability
of prediction model. The performance of MIC_Locator
is compared with the [15, 16] in predicting the single-
labeled sample part. The accuracy, recall and precision
are used for the evaluation index, and the experimental
result has been shown in Table 2.

The [16] uses the SLFs as the sample feature, and the
linear SVM is applied as a classification to predict the
subcellular location of test sample. The LBP and SLFs
are combined as the sample features feeding the SVM,
and the SC-PSorter voting strategy and multi-kernel
learning method are used to enhance the performance
of [15]. To obtain an objective comparison result, these
single-labeled samples are selected from benchmark
datasets as a dataset for the [15, 16], as the benchmark

Table 2 The performance comparisons of single-label
prediction model on db4

Prediction model Accuracy Recall Precision
Coelho et al. [16] 56.34% 54.35% 57.97%
Wei et al. [15] 60.46% 57.75% 66.84%
MIC_Locator 71.27% 70.54% 72.00%

datasets include the multi-labeled protein, which dis-
turbers the performance of single-labeled prediction
model [15, 16]. Meanwhile, MIC_Locator only predicts
the single-labeled sample in the benchmark dataset.
Based on the 5-fold cross-validation, the MIC_Locator
obtain 71.27% accuracy 70.54% recall and 72% preci-
sion, and these three metrics are higher the [15, 16].
The better performance of MIC_Locator mainly owes
to the following two aspects: (i) we use the frequency
feature of IHC to construct prediction model and (ii)
fusing the single prediction based on several frequency
scales enhances the robustness and general ability of
MIC_Locator.

To further confirm the performance of MIC_Locator
in multi-label part, the MIC_Locator is compared with
the iLocator, which belongs to the multi-label subcel-
lular localizations prediction model, and the experi-
ment result is shown in Table 3. The accuracy, recall,
precision and label average accuracy are used for the
evaluation index, and these evaluation indexes are de-
fined in [17, 61]. The better performance of MIC_Lo-
cator mainly owes to the following two aspects: (i) we
use the frequency feature of IHC to construct predic-
tion model and (ii) fusing the single prediction based
on several frequency scales enhances the robustness
and general ability of MIC_Locator.

Based on the original benchmark dataset and 5-fold
cross-validation, the MIC_Locator achieve 60.43% subset
accuracy, and it exceeds the iLocator by 5.62%. For the
analysis of experiment result, it is described in the dis-
cussion section.

Extended exploration results of MIC_Locator

It is well known that target images with high quality
dyeing properties and accurate label are less than 50% in
HPA. Some semi-supervised learning models are pro-
posed to select properly from medium quality dyeing
images and participate in the training stage of the model
in order to solve the shortage of high quality dyeing
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Table 3 The performance comparisons of multi-label prediction model on db4

Prediction model Subset accuracy Recall Precision Average label accuracy
iLocator [17] 54.81% 53.63% 57.51% 84.90%
MIC_Locator 60.43% 60.12% 69.24% 88.43%

sample. However, such kind of approach must be fully
confident in the robustness of the prediction model. In
this section, we compare the model proposed in this
paper with the existing semi-supervised model. The
experimental results show that the proposed model is
better than the semi-supervised model. Moreover, trans-
form the proposed model into a semi-supervised model
is a very interesting follow-up work.

In this section, we compared our prediction model
with two popular semi-supervised prediction models,
i.e. standard semi-supervised approach [39] and im-
proved semi-supervised approach CorrASemiB [48].
The results of performance comparison have been
shown in Table 4. Referring to the [39], this standard
approach is to select properly based on the consistency
between the prediction labels from the proposed super-
vised learning model and the true labels. As for CorrASe-
miB, integrating the different organelles correlation
emerges a DAG structure by the Bayesian algorithm that
each node represents a subcellular location, and the edge
of DAG structure symbolizes the reliable relations be-
tween two subcellular locations.

Two consistent conclusions can be observed from the
comparison experimental results. Firstly, the MIC_Loca-
tor achieve the highest subset accuracy in 10 dbs, and
the identical conclusions were obtained in the Fig. 1.
Since we utilized amplitude, phase and orientation com-
ponents in various frequency scales to describe the IHC
image which can not only describe the energetic, struc-
tural, and geometric information of protein channel, but
also the texture of protein channel with different fre-
quency spans can be captured; Secondly, The perform-
ance of the standard semi-supervised [39] only can reach
36% subset accuracy on the new benchmark dataset
while the result of improved semi-supervised approach
is 12% higher than the standard approach. Refer to [39]
approach, the BR classification is employed as multi-
label classification which cannot consider the correlation
between different subcellular locations leading lower
classification accuracy. The CorrASemiB approach
achieves progress in prediction performance compared

to [39] approach, as the Bayesian network is applied to
guide the constructing of model. However, the lack of
efficient local image descriptor results in limited predic-
tion accuracy.

Discussion

By comparing local image descriptors deriving from
spatial domain and frequency information, it is ob-
served that several important factors contributed to
the excellent performance of MIC_Locator. Firstly,
extracting frequency features by three different aspects
of image, namely APO components, is superior to cap-
turing the texture information of image from the amp-
litude, phase and orientation perspective of image.
Secondly, as shown in Fig. 1, fusing in decision level
based on several single frequency scales and APO
components not only can integrate the advantages of
each prediction model but also can enable multiple
prediction models to complement each other, and ul-
timately obtain better classification accuracy.

To get an inquiry of MIC_Locator in depth, the com-
parison experiment had been carried out to explore the
performance contribution of Log-Gabor filter, image
intensity coding strategy and CC parts on the final pre-
diction. As shown in Fig. 2, our experiment results dem-
onstrate that the MIC_Locator without these three parts
achieve limited performance, and identical conclusions
can be obtained. Firstly, the Log-Gabor with different
frequency scales can capture more frequency informa-
tion distributing in various frequency bands and avoid
the disturbance of DC. Secondly, the image intensity en-
coding strategy more accurately describes the distribu-
tion of local signal, and it enhances the discrimination of
MIC_Locator. Finally, CC can significantly improve the
classification accuracy for multi-label by capturing the
correlation of different subcellular location.

It is well known that phase is the position of a point in
time (an instant) on a waveform cycle in the field of
physics and mathematics, and also a typical feature in
frequency domain. Hence, P component is given a
higher expectation, which means it will have a better

Table 4 The subset accuracy (%) for the different prediction models based on 10 dbs

db1 db2 db3 db4 dbs db6 db7 db8 db9 db10
Hady et al. [39] 36.37 36.37 3593 3649 37.55 35.75 3745 3745 36.93 37.80
CorrASemiB [48] 48.38 48.38 49.00 4807 49.77 50.23 46.21 4961 49.46 4853
MIC_Locator 59.85 6043 59.04 6043 60.37 59.04 60.04 60.56 5947 58.98
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performance in MIC_Locator while comparing with A
and O component. By analyzing the experiment result of
MIC Locator under various APO components with
qualitative and quantitative approaches, it is found that
the phase component is indeed more superior to im-
proving the performance of classification than amplitude
and orientation components and extracting the slight
texture information of image, which further demon-
strates that the phase component plays a significant role
in capturing the frequency information of sample.
Furthermore, comparing with state-of-the-art methods
belonging to both single-labeled and multi-labeled
methods, the proposed MIC_Locator outperforms other
baseline approaches shown in Tables 2 and 3 in terms of
different evaluation indexes, which demonstrate again
the high-performance of MIC_Locator. The reasons are
summarized as follows. Firstly, the fine-grain informa-
tion of IHC is transformed into the spare information in
frequency domain by the Riesz transform, Fourier trans-
form and the Log-Gabor with the multi-scale frequency
factor, which is conducive to capturing the information
of IHC. Secondly, APO components enable IHC infor-
mation to be captured more completely, because the
APO components reflect the energy, structure and
geometry information of IHC rather than the gray level
information. Thirdly, the LBP and image intensity cod-
ing schedules are commonly used to capture the statistic
information of APO components. Finally, the CC classi-
fication is used to handle multi-label task, which con-
siders the correlation of several subcellular localizations
in the process of constructing prediction model. The
result validates the advantage of MIC_Locator for the
subcellular localization prediction of multi-label protein.

Owing to the advantage of semi-supervised model is
that more training samples are used to enhance the
generalization ability of the model in the training stage, two
excellent semi-supervised models are proposed [39, 48].
Hence, the investigation on the performance comparison
between MIC_Locator and some semi-supervised models
had been carried out. As can be seen from the comparison
results in Table 4, the proposed MIC_Locator is about 12%
higher than the overall accuracy of the semi-supervised
learning model. This is not to say that the semi-supervised
learning framework does not work, but because semi-
supervised learning is based on supervised learning. Once
the quantitative features are weakly discriminative or the
machine learning algorithms are not robust, and then the
advantages of semi-supervised learning are difficult to fully
exploit. Although MIC_Locator has a good predictive per-
formance, more samples to participate in training are
expected. However, it is an indisputable fact that high
quality dyeing images are a minority in HPA database.
Therefore, it is meaningful for MIC_Locator to
combine with semi-supervised framework, and two
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advantages can be summarized as follows. Firstly,
MIC_Locator achieved significant improvement can
provide a very accurate and efficient supervised-
prediction-model guarantee for the semi-supervised
learning framework. Secondly, more medium quality
dyeing images can make feature capture more compre-
hensive and accurate in frequency domain.

Furthermore, research work based on image signals is
still very few while comparing with the study of protein
subcellular localization prediction at the sequence level;
however, the prediction model based on image signal of
analysis is more visualized and interpretable, such as
phase components shown in Fig. 4. Therefore, we believe
that the combination of prior knowledge of protein at
the sequence level and analysis at the protein robustness
and generalization ability of the predictive model, which
is also a very meaningful follow-up research direction.

Conclusion

In this study, an accurate and effective multi-label pro-
tein subcellular locations prediction model named MIC_
Locator is proposed. Experimental results have demon-
strated that MIC_Locator can achieve 60.56% subset
accuracy on the new multi-label benchmark dataset
derived from version 18 of HPA. Different from the re-
ported prediction model, MIC_Locator transforms
IHC images into frequency domain to capture more
discriminative information, i.e., amplitude, phase and
orientation information. In detail, the frequency fea-
ture is extracted from the monogenic signal of image
based on the different frequency scales. In addition,
intensity encoding strategy is employed to provide
complementary information. Finally Classifier Chain
enables MIC_Locator to enhance the capabilities of
handling the multi-labeled dataset efficiently.

In order to evaluate the overall capabilities of the pro-
posed MIC_Locator model objectively, we analyzed the
MIC_Locator model from multiple angles: Firstly, integ-
rity evaluation of predictive models under the introduc-
tion of frequency domain features and classifier chain
architecture in 10 dbs. The proposed MIC_Locator out-
performed any other approaches in Fig. 1. Secondly,
independent exploration in-depth of APO components
to demonstrated that the P component outperforms A
and O components in discriminative ability of prediction
model. The relevant experimental results further validate
our expectation that the phase information should have
a more general meaning in the frequency domain signal;
thirdly, study in-depth of the impact of different fre-
quency scales and components on the prediction model,
and the decision fusion also considered. Finally, based
on all previous results mentioned above, the expanded
experiment of the comparison between MIC_Locator
and semi-supervised framework was carried out. This is
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because the high quality dyeing image samples are really
limited in the HPA database, and we hope to further im-
prove MIC_Locator. The experimental results show that
the combination with the semi-supervised framework is
indeed very sensible. Furthermore, we have made efforts
on applying CNN into determining subcellular location.
Due to the huge loss of gradient information in the high
layer of CNN model, it remains a challenge for training
a high-performance CNN model. In future work, we
plan to develop a CNN model based on the residual
network architecture so that the problem of gradient
disappearance can be effectively solved.

From the perspective of model application, MIC_Loca-
tor can be used to automate annotation of proteins sub-
cellular location, and contribute to revealing protein
function. Moreover, the MIC_Locator can provide reli-
able indication of whether a certain protein is suitable as
a cancer biomarker by capturing the transfer among its
subcellular locations. Some initial results have been
achieved but not reported in this paper.

Methods
Benchmark datasets
When it comes to image databases, HPA is undoubtedly
one of the most popular protein image data sources in
the world in recent years [2, 51-53]. It is a completely
open database that allows academics and industry re-
searchers to freely access to explore all human science
issues related to human proteomics. The HPA project
originated in 2003 is supported by the Knut and Alice
Wallenberg Foundations (KAWF) in Sweden, and has
maintained a good tradition of updating at least once a
year. Currently, HPA has been updating to version 18,
which consists of three separate parts, i.e., the Tissue
Atlas (TA) [51], the Cell Atlas (CA) [2] and Pathology
Atlas (PA) [52]. In this paper, the benchmark dataset has
been collected and collated from TA, which mainly
focuses on the expression profiles of human genes at the
protein level. The images in this sub-database had de-
rived from antibody-based protein analysis by using im-
munohistochemistry, and covered 15,273 genes (78%)
with available antibodies, and involved a total of 44 nor-
mal tissues in humans.

The collation and verification of the benchmark data-
set are critical to the construction of the predictive
model. Hence, a carefully checking task has been carried
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out on the corresponding benchmark dataset of two
published papers [16, 17]. These benchmark datasets
derive from published literature in [16, 17], which are re-
spectively single-label dataset and multi-label dataset
and has been used in references [15, 40]. The bench-
mark datasets in [16] based on the early version of HPA
database, and the other benchmark datasets proposed by
the Xu et al. [17] are collected from the 12 version of
HPA database.

The comparison between two reported benchmark
datasets and protein subcellular localization annotation
on the version 18 of HPA has been summarized in
Table 5.

These update of two reported benchmark datasets
about protein subcellular localization annotation on the
version 18 of HPA has been summarized in the Table 5.
As we are concerned, these datasets can no longer be
used as benchmark datasets because the label informa-
tion in these datasets has been updated by HPA. Fur-
thermore, labels of some protein images are completely
different with those of the original dataset. For example,
the subcellular localization of Arylsulfatase B protein has
been updated from the “lysosome” to the “Golgi appar-
atus” [2]; the subcellular location of protein HSPA5
belongs “ER” subcellular location in the [2], while its
subcellular localizations changes in “Cytosol” in the
version 18 of HPA. This is how we are motivated; an up-
dating IHC benchmark dataset is collected and collated
based on the latest version of HPA.

In addition, each image in HPA has two criterion
scores, i.e., reliability score and protein expression level.
Both of them play a crucial role in collected a reliable
benchmark dataset. The reliability scores are divided
into four types, ie., “Enhanced”, “Supported”, “Ap-
proved”, and “Uncertain”. The four types indicate the
level of reliability of the analyzed protein expression pat-
tern based on available RNA-seq data, protein or gene
characterization data and immunohistochemical data
from one or several antibodies with non-overlapping epi-
topes. For example, the type “Enhanced” is the strictest
index among these four reliability score indexes, which
not only take the consistency of annotation with other
available databases but also utilized the orthogonal or
independent antibody validation method. Protein ex-
pression level denotes to the protein staining extent of
target IHC image, and is divided into four patterns,
i.e, “high”, “medium”, “low” and “not detected”. For

Table 5 The change of subcellular locations annotation of benchmark datasets in version 18 of HPA

The number of proteins.

Total Location Consistently Location Missing Location Transfer
Xuetal. [17]. 28 8 1 19
Murhpy et al. [16]. 16 4 2 10
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example, the pattern “high” denotes to the best expres-
sion level of protein channel in the target IHC image.
To better describe the difference between different
protein expression levels, we listed several images with
seven subcellular localizations and protein expression
levels in Fig. 6.

In this paper, a benchmark image dataset with a total
number of 3420 is prepared in consideration of both
“Enhanced” and “high” criteria based on version 18 of
HPA. The number of proteins with single-label and
multi-label are 55 and 25, and the number of images
with single-label and multi-label are 2413 and 827.
The proportion of protein with multi-label nearly oc-
cupies 30%, and the proportion of image with multi-
label closes to 25%. The number of the corresponding
subcellular organelles is 7, namely “Cytosol”, “Endo-
plasmic reticulum”, “Golgi apparatus”, “Nucleoli”,
“Mitochondria”, “Nucleus”, “Vesicles”. In the process
of collecting and collating our benchmark dataset, the
same data structure as [17] is followed, namely 70%
single-labeled proteins and 30% multi-labeled proteins,
which has been listed in Table 6.

IHC image preprocessing

Different from natural and facial images, the prepro-
cessing of IHC protein images requires a separation of
protein channel from original IHC image rather than
image rectification or illumination normalization. Each
IHC image in HPA contains both DNA and protein
components, to which correspond purple and brown
color respectively, and photographed by an RGB
camera. Hence, the three most important steps in the
preprocessing of IHC image can be summarized as fol-
lows. Firstly, the transform stage, the original IHC pro-
tein image is transformed from RGB space to HSV
space, and then filtering at hue level. Secondly, the fil-
tering stage, a certain threshold named dyed index
(DI) is employed to filter out badly dyed images, and is
fixed at 13 in general [16]. Thirdly, separation stage,
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linear separated method is employed to achieve precise
separation at signal and numerical levels [54].

Traditional feature

In the field of protein subcellular localization prediction,
there are numerous image features regarded as the
excellent feature for the IHC image, such as LBP [42],
CLBP [44] and SLFs [31]. LBP calculates the gray value
of center pixel with the neighboring pixels as statistic in-
formation for a target image. CLBP adds coding the
property of center pixels on the basis of LBP. The Hara-
lick texture and DNA spatial distribution feature are one
of the most discriminative features of SLFs to describe
the IHC image from a global perspective, and it has been
widely used in many works and has validated its high-
performance [15-17, 31, 34, 40, 41]. In this paper, the
SLFs feature, derived from the combination of Haralick
feature and the DNA distribution feature, is unified into
global feature in total 840-dimension [54]. The employ-
ment of wavelet transformation has played a positive
role in global feature quantization and extraction of IHC
images. It has been demonstrated that frequency domain
information has certain advantages in describing global
feature of IHC images.

However, most research papers prefer to employ an
image descriptor to extract features from target protein
images in the spatial domain because they only focus on
the image properties of digital signals, and ignore the
signal properties of its own [55, 35]. Richer information
can be observed through signal processing, for example,
transforming the target signal from the spatial domain
to the frequency domain.

In this paper, frequency feature of IHC image is ex-
tracted from these three components of monogenic
signal of image based on different frequency scales ra-
ther than grey level information, while Haralick fea-
tures and DNA distribution features being employed
to describe the IHC image as the complementary glo-
bal feature.

Cytosol.

High protein
expression imgaes |

Medium protein
expression imgaes

Fig. 6 Visual differences of protein images under different subcellular locations and protein expression levels

Nucleoli. icles.

Mitochondria. V.
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Table 6 The distribution of protein and image with single-label
and multi-label in the benchmark dataset

New Benchmark dataset Total Single-label Multi-label
Proteins 80 55 25
Images 3240 2413 827

Local image descriptor extraction on frequency domain
Although the conventional features, such as SLFs, LBP,
CLBP, can describe the IHC image to some extent.
However, local information of IHC image especially in
amplitude, phase and orientation aspects are not well
mined. In this paper, the target IHC image is trans-
formed into the frequency domain from the spatial do-
main by the fast fourier transform (FFT). And then, the
Riesz transformation is employed to generate the corre-
sponding monogenic signal in frequency domain, which
composes three parts i.e., a real part and two imaginary
parts. The three parts can be considered as original fre-
quency information and two frequency response parts in
signal processing. In order to understand in-depth the
protein image signal, Log-Gabor is employed to filter
with different frequency scales because it not only
inherits the essential property of traditional Gabor filter
reflecting the information of specific frequency band in a
specific direction but also avoid the influence of DC
signal [56]. By using Log-Gabor filter with different
frequency scales, local frequency information, which dis-
tributes in different frequency bands, can be captured
and extracted [57]. Finally, the three parts of different
frequency scales are transformed back to the spatial do-
main respectively.

Since the monogenic signal consists of a real part and
two imaginary parts, it is numerically unsuitable for fea-
ture extraction of the target signal. Hence, some numer-
ical operations have been done on these three parts so
that it can provide more information about the original
signal, for example, amplitude (A), phase (P) and orien-
tation (O), and the corresponding formula is given by
formula (4, 5, 6). The A component can well represent
the edge and contour information of each IHC image,
and the P component can well represent structural in-
formation and the O component can reflect the geom-
etry information. And then, an efficient 8-bit LBP
coding strategy is used to extract the statistic features of
three components. Besides, these two imaginary parts
are compared with a threshold 0, and generating the 2-
bits binary code is considered as the image intensity
code. Finally, the image intensity coding and LBP are
combined as the 1024-dimension local image descriptor.
The Haralick feature united the local image descriptor
as a sample feature of 1864-dimension, feeding into CC
to construct the prediction model. The details of local
image descriptor coding have been described in the next
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section. Finally, the average and weighted ensemble
method are employed to fuse the probability scores at
prediction level. The top and threshold criteria are pro-
posed to give the final decision of subcellular locations.
The flowchart of proposed MIC_Locator is shown in
Fig. 7. The meaning of the proposed prediction model,
MIC_Locator, can be summarized as follows: letter “M”
denotes to monogenic signal; letter “I” denotes to image
intensity coding strategy; letter “C” represents to classi-
fier chain; word “Locator” stands for the goal of subcel-
lular localization.

APO components generation of monogenic signal
Frequency domain signal analysis (FDSA), as one of the
most important approaches in the field of signal process-
ing, can show in depth how many sub-signals lie within
each given frequency band over a range of frequencies,
and these different frequencies can well represent ap-
proximate information and detailed information of the
original signal. At the level of mathematical analysis, the
primary purpose of FDSA is to obtain the analytic signal
of target signal, for example, the combination of a 2-D
signal with the Riesz transformed one yields a sophisti-
cated 2-D analytic signal. The analytic signal approach
was introduced by Felsberg M, Sommer G in 2001 [46]
and has been widely applied to many fields, such as
medical image analysis [58] and synthetic-aperture radar
(SAR) image recognition [59].

In this paper, Riesz transform, defined as a high-
dimension generalization of the Hilbert transform, is
employed to transform the original signal into a new sig-
nal on a 2-D complex plane. In 2-D plane, the Riesz
transform can be expressed as follow.

_ (@) _ [ Paxs(p)

sl = (50) = (e )
where s(p) denotes to the original or target signal. X and
Y are the two orthogonal directions of the 2-D complex
plane, and the entire 2-D Hilbert space has been
spanned by Riesz transform. 4, and /%, is defined as Hil-
bert transform factor, and the corresponding Fourier
transform can be defined as H, = - jw,/lloll and H,= -
jwylllwll with the angular frequency ® =(w, w,). The
character R of Sg(p),, , symbolizes the Riesz transform
or 2-D Hilbert transform of image. The Riesz transform
kernel is defined as follow.

B hy) = LL) 2
el) <2n|p||3 2l 2

Thus, for target signal s(p), the corresponding mono-
genic signal is defined as follow:
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(See figure on previous page.)

test sample

Fig. 7 The flowchart of proposed MIC_Locator. The IHC image is selected from gene “"ENSG00000013364". The corresponding number of IHC
image is "6980_A_4_6", and it belongs to the “Cytosol” subcellular location. In the preprocess stage, the DNA and protein channel of protein are
separated. On the one hand, the DNA and protein channel are used to extract the 840-dimension SLFs feature. On the other hand, the protein
channel is transformed into the frequency domain by the Fourier transform. The frequency information of protein is multiplied by the Riesz
transform, generating two frequency responses in orthogonal directions. The frequency information of protein and two frequency response parts
of Riesz transform are multiplied by the Log-Gabor filter with multi-scale frequency factor. Afterwards, the protein information and two frequency
response parts are transformed into the spatial domain, which commonly consist of the monogenic signal of protein. The APO components of
image monogenic signal are calculated. The 8-bits LBP code extracts the statistic information of APO component, and the 2-bits image intensity
code is calculated from the two imaginary parts of monogenic signal by the formula (19). The LBP, image intensity and SLFs are united as the
final 1864-dimension sample feature, feeding into the CC. The top and threshold criteria are applied to judge the subcellular localizations of

Su(P),, = (). S:(p). S, (p)) (3)

where S(p) denotes to the real part of the monogenic
signal. S,(p) and S,(p) are the two imaginary parts
along the X-axis and Y-axis direction respectively. Fi-
nally, the APO components can be obtained by using
formula (4, 5, 6).

A= /S +S+S) (4)
¢ = atanz( §2+ 82 /S) (5)
6 = atan2(S,/S,) (6)

The function atan(x/y) presents the arctan(x/y) func-
tion, and the value range of the function atan(x/y)
arranges [-pi/2, pi/2] and covers two quadrants. In
contrast, the value range of function atan2(x, y) is [-pi,
pi] covering four quadrants, and the value of element
in these PO components same belongs [-pi, pi]. Hence,
the function atan2(x,y) is employed to calculate the
value of element these PO components. Where A de-
notes to amplitude (A) component, and ¢ denotes to
phase (P) component, and 6 denotes to orientation (O)
component.

Multi-scale monogenic signal representation

It is well known that the representation of target signal
in frequency domain is much more explicit than spatial
domain because the energy of target signal is more con-
centrated in frequency domain. Furthermore, this is
benefited by the multi-scale decomposition of target sig-
nal in frequency domain. For example, the interested
region of image in spatial domain, such as patches con-
sisting of contour or edge information, can be easily cap-
tured and represented in the frequency domain. Inspired
by this, the Log-Gabor filter with the logarithmic map-
ping function is employed to achieve multi-scale decom-
position in this paper. The advantage of the Log-Gabor
filter is a more desirable frequency response especially in
the high-frequency band while comparing with the trad-
itional Gabor filter [57]. Moreover, the Log-Gabor filter

can avoid the influence of DC, which limits the band-
width of band-pass filter. The definition of the Log-
Gabor filter is shown as follow.

G(w) = exp{-[Log(w/wo)]’/2[Log(a/w0)]"}  (7)
wo = (M) (8)

where w denotes to the center frequency. The A is de-
fined as the setting minimum wavelength, and it is set 4.
The k is the multiply factor of wavelength, which equals
1.7. The o/wy is set as a constant value to make the Log-
Gabor with a constant shape ratio, which is set 0.64. The
r is the scale index, and its intervals are from 1 to 5. The
parameters are set according to the recommendation in
[47] and our own experiments result.

With changing the frequency scale factors from 1 to 5,
the frequency response of Log-Gabor filter has been
shown in Fig. 8. Specifically, the center region is caved
in the frequency response of Log-Gabor filter. The
phenomenon denotes to the current direct by avoided,
and the low frequency information can be restrained.
Meanwhile, with the frequency scale increase, the fre-
quency response of Log-Gabor filter in high frequency
band can be apparently improved.

Then, the band-pass monogenic signal is obtained by
making the convolution of original signal and Log-
Gabor, which has been shown in the formula (9).

S16(p); S6x(p), S1e—y(p))
SLG(F)? hx*SLG(P)v hy*SLG(p)) (9)

StG-m(p)

S16(p) = S(p)+F(G(w)) (10)
SLG—x(P) = huxSi6 (]7) (11)
S16-y(p) = hyxS16(p) (12)

In formula (10), the F* denotes to the 2D inverse
Fourier transform, and S;g(p) is the real part of mono-
genic signal convolving the Log-Gabor filter. The S;s-
«() is the X-direction imaginary part of monogenic sig-
nal convolving the Log-Gabor filter in formula (11), and
Si6 - y(p) is the Y-direction imaginary part of monogenic
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signal convolving the Log-Gabor filter in formula (12).
The corresponding APO components are updated as
follows.

A = \/ St +Sic-x+ Siey (13)
bre = atan2( Sty + sﬁG,x/SLG) (14)
O = atanZ(SLG_x/SLG_y) (15)

To represent intuitively, APO components under dif-
ferent scales have been shown in Fig. 7. For A compo-
nent, it reflects the shape of an image and describes
local energetic information. For local phase and orienta-
tion component, these two components denote to local
structure and geometry information.

Monogenic signal encoding and feature quantification

An effective encoding method is not only the accurate
quantification of the target signal but also can provide
more discriminative features to the subsequent classi-
fiers. In this paper, two encoding strategies, i.e., general
encoding strategy and intensity encoding strategy, are
employed to quantify target IHC image. The former
strategy encodes APO components, i.e., A;g ¢ and
06, by using traditional LBP encoding method, which
calculates the relationship between the center pixel and
its surrounding pixels in the target local region. The
latter strategy focuses on encoding the variation
consistency of two imaginary parts of monogenic signal.
Obviously, these two encoding strategies work on the
local region of target image, and then perform statistics
and quantization. The processing of monogenic signal
generation has been shown in Fig. 7, and the details of
LBP descriptor can be found in [42].

General encoding strategy of APO components

The traditional LBP encoding strategy has been widely
applied in many fields related to image processing, such
as cell localization and phenotype recognition due to its

simple and efficient characteristics [60, 61]. The corre-
sponding formula is given below.

N
KN (p) =Y 20 VsL(p-p,), L(x)
i=1
_JL
=1o

where p, stands for the center pixel in each local region,
and p; denotes to a neighboring pixel. N represents the
number of neighboring pixels, and r denotes to the ra-
dius of neighborhood. L(x) is a symbol function, and the
function value is defined as 0 when independent variable
is negative. The K™ "(p,) presents the LBP coding of
each center pixel in spatial domain.

To extract the statistic information of local amplitude,
the local amplitude component is normalized to [0, 255].
However, local orientation and local phase components
represent an angle with a specific direction, and the cor-
responding value is ranged from [-pi, pi], which is unlike
with that of local amplitude component. Hence, P and O
components are required special numerical coding. The
general encoding strategy of APO components can be
summarized as follows.

x=0

else (16)

The encoding strategy of local amplitude component

The local amplitude component represents the ener-
getic information of local region in target IHC image.
Hence, taking into account the property of amplitude
component, and the interval of local amplitude is nor-
malized to [0, 255]. The standard encoding strategy of
LBP is employed to quantize amplitude component
feature. In detail, if the grey level of neighbor pixels is
larger than the center pixel, and then the value of
neighbor pixels is encoded as 1; whereas, the value of
neighbor pixels is encoded as 0 if the grey level of
neighbor pixels is smaller than the grey level of center
pixel. The coding process of amplitude component has
been shown in Fig. 9.
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Fig. 9 The LBP coding process of amplitude component in a local patch. The starting point of the LBP coding is in the lower right corner and
encoded in a clockwise direction

The encoding strategy of local phase and orientation
components

Different from amplitude component in the monogenic
signal, the elements of phase and orientation component
range in value from [-pi, pi]. Considering the physical
meaning of local orientation and local phase, namely,
the different value of local orientation and the local
phase is associated with the corresponding types of fea-
ture. For example, two phases are close to 0, which pre-
sents that feature type of two elements is similar and
belongs step edge; two orientations are close, and it
means that the gradient direction of two elements are al-
most along a same direction.

Therefore, a quadrant encoding strategy is employed
in this study. In detail, each element of local orientation
and phase component is normalized to [0,359]. Then,
we divided the range of [0, 359] into M intervals (M =4
while set quadrant encoding), i.e., [0, 89), [90, 179), [180,
269) and [270, 359), and the corresponding value falling
in each interval is encoded as “07, “17, “2” and “3”
respectively.

Obviously, each quadrant coding is different from
others, and related to different types of feature described
in [47], for example, different phase angles. The coding
formulas of the local phase and orientation component
are given as follows.

X = {0 VAN
QDeg) =p, if 20 peg I0VP )

For the orientation and phase components, ®(p,) rep-
resents the value of each center pixel p., and ®(p,) rep-
resents the value of neighboring pixel p;. Meanwhile, the
formula (18) is the quantification of local phase and
orientation. The coding process of phase and orientation
component has been shown in Fig. 10.

Image intensity encoding strategy

Inspired by the characteristics of CLBP feature [44], tak-
ing the property of center pixel into account, an encod-
ing strategy named intensity encoding is proposed to
generate a complementary feature coding for LBP cod-
ing of APO components.

The two imaginary parts originated from the mono-
genic signal of protein channel can be considered as the
representation of each target IHC image in 2-D Hilbert
space. Hence, the variation consistency of two imaginary
parts of monogenic signal is captured and encoded as a
2-bits code corresponding to 4 patterns, which has been
shown as follow.

00 lf SLGfx(pg) > 0 and SLny(pc) >0
I 1 _ 10 {f SLG—x(Pc) < 0 and SLny(pc) >0
[Cx(p6)7 Cy(pC) - 11 lf SLG—x(pc) < 0and SLG—y(pC) <0
01 lf SLGfx(pc) > 0 and SLny(PC) <0

(19)

where S;6_, and Sy _, (refer to formula 9) please) are
the two imaginary parts of monogenic signal. Comparing
these two imaginary parts of monogenic signal with the
threshold 0, the 2-bits image intensity code can be gen-
erated, “00”, “10”, “11” and “01”, and the process of
image intensity coding have been shown in Fig. 11.

The qualitative analysis of image intensity encoding
strategy

The characteristics of Hilbert transformation is phase
shift 90 degree based on the original signal, and the
Riesz transform consists of two Hilbert transform in X
and Y directions. Hence, the monogenic signal can be
presented in a spherical coordinate system. These two
imaginary parts of monogenic signal along the X and Y
direction can be regarded as the X-axis and Y-axis of
spherical coordinate system, and the Z-axis is equal to
the real part of monogenic signal. The spherical coordin-
ate system representation of monogenic signal has been
shown in Fig. 12. Samples contribute in the surface of
spherical coordinate system, and these components of
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Fig. 10 An example of encoding phase and orientation components of monogenic signal. The value of phase and orientation component is
converted into four intervals, and four intervals present different types of feature. Afterwards, the LBP of phase and orientation components is
generated, and LBP code begins to generate from the bottom right corner in clockwise direction

monogenic signal can be calculated. For instance, a given
sample X1, the amplitude component of X1 is the dis-
tance of X1 and the origin, which is presented as the Al
and is remarked by the red. The phase component is an
angle between the Z-axis and the amplitude component
A1, which is P1 and remarked by the green color. The
orientation component of sample is an angle between
the imaginary part in Y-direction and the projection of
Al in the XY plane, such as O1 which belongs to the
orientation components of X1 and remarked by the blue
color. Supposing the sample X2 is generated by rotating
the sample X1 with 90 degree in the anticlockwise, and
the rotation is remarked by the yellow color. Then the
three components of sample X2 are generated, A2, P2

and O2. It is considerably obvious that values of A2 and
P2 are same as these Al and P1, and the O2 and O1 are
various. The similar APO components value of sample
easily leads the prediction model lacking the discrimina-
tive and generation ability. The key problem is how to
distinguish these similar samples in the entirely spherical
system, such as X1 and X2.

In this study, the spherical system is divided into four
regions. The X-axis and Y-axis of spherical coordinate
system is the X-direction and Y-direction of imaginary
part of monogenic signal. By the formula (19), these four
regions respectively response to these four image inten-
sity codes, “00”, “01”, “11” and “01”. By coding the image
intensity, X1 and X2 can be distinguished. Such as the

0.23

the X-axis imaginary part

-2.40

the Y-axis imaginary part

image intensity binary coding:

Stg-y(Pe)
A
Code: 10 Code: 00
»S16-(Pe)
Code: 11 Code: 01

01

Fig. 11 The image intensity coding process of center pixel in frequency domain. The two imaginary parts of monogenic signal in the X and Y
direction are compared to the threshold value 0. The comparison result is mapped into the four quadrants, and four quadrants respectively stand
for four 2-bits codes, “00”, “10”, “11” and “01", as the image intensity code. As the value of X-direction and Y-direction imaginary part are 0.24 and
— 24, the image intensity binary code of element is “01"
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Fig. 12 The spherical coordinate system representation of monogenic signal. The z-axis is the real part of monogenic signal. The X-axis and Y-axis
are respectively the two imaginary parts of monogenic signal in the X and Y direction. In the Spherical coordinate system, these are four regions
dividing into 4 regions according to the formula (19). The X1 is a sample in region 1, and its amplitude, phase and orientation are A1, P1 and O1
which are respectively marked by the red, green and blue. The X2 is generated by rotating the X1 90 degree in an anti-clockwise direction
located in region 4, and the rotation direction is presented by the yellow color. These amplitude, phase and orientation components of X2 are

\

A2, P2 and 02, where A2, P2 and O2 components are respectively marked by the red, green and blue

X1 in the region 1 and the X2 in the region 4, and the
image intensity code respectively is “00” and “01”. The
2-bits image intensity code is concatenated on 8-bit LBP
as a final 10-bit local image descriptor.

Chains classification and fusing strategy of prediction
model

As the aforementioned, the local image descriptor con-
sists of the LBP code in these three APO components
and image intensity code, and the 1864-dimension sam-
ple feature is formed by combining the local image
descriptor and global image feature (SLFs features). The
stepwise discriminant analysis (SDA) feature selection
method is used to select the discriminative feature sub-
set from the original feature space, which uses the Wilks’
\ statistic to iteratively judge which features are the most
discriminating. The selected feature subset is fed into
the CC. Considering the correlation of labels in the
multi-label datasets, the classifier chain approach is
employed to handle multi-label datasets classification.
The CC consists of several binary SVM classifications,
and the probability score of previous SVM outputs is
added into the feature space in the next SVM classifica-
tion so that CC can capture the correlation of label.

Under the different APO components and the fre-
quency scales factors of Log-Gabor, constructing the
prediction model is presented MIC_Locator™-> (the x is
A, P and O components; S denotes to the frequency
scale factor Log-Gabor from 1 to 5). Because prediction
model with the various frequency scale factor S, namely
MIC_LocatorAfl, MIC_LocatorA*Z, MIC_LocatorAf‘?’,
MIC_Locator™* and MIC_Locator™->, has various dis-
criminative for information distributing in different fre-
quency bands, the average ensemble approach is used to
sum the seven prediction probability scores of MIC_
Locator™® in each component. The MIC_Locator™—* is
an ensemble prediction model based on three compo-
nents, and X denotes to amplitude, phase or orientation
components.

Finally, we summed the probabilities value deriving
from the three ensemble prediction models of mono-
genic components. As the amplitude, phase and orienta-
tion component of monogenic signal mainly reflects the
local energetic information, the local structural and the
local geometric information along main orientation re-
spectively, and the phase and orientation components
can describe the image texture superior to the amplitude
component. The weighted ensemble algorithm is applied
to fuse these three prediction models based on the APO
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components. The formula of weighted ensemble algo-
rithm has been shown as follow:

Sepr_pst = (1=24W)*S\uc_LocatorA—-

+ W*SMIC_Locatorp—E
+ W*SMIC_LocatorO—E

(20)

where W is the weight and is set 0.43. The extensive ex-
periment of selecting W has been shown in Fig. 12 and
in the next section. By the formula (20), we can build
the MIC_Locator prediction model. Refer to all 10 van-
ishing moments, we summed the prediction probabilities
of test images of prediction model output and divided
the sum value by the number of 10 vanishing moments.
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