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ABSTRACT
Background. Medulloblastoma (MB) is the most common intracranial malignant
tumor in children. The genes and pathways involved in the pathogenesis of MB are
relatively unknown. We aimed to identify potential biomarkers and small-molecule
drugs for MB.
Methods . Gene expression profile data sets were obtained from the Gene Expression
Omnibus (GEO) database and the differentially expressed genes (DEGs) were identified
using the Limma package in R. Functional annotation, and cell signaling pathway anal-
ysis of DEGs was carried out using DAVID and Kobas. A protein-protein interaction
network was generated using STRING. Potential small-molecule drugs were identified
using CMap.
Result. We identified 104 DEGs (29 upregulated; 75 downregulated). Gene ontology
analysis showed enrichment in the mitotic cell cycle, cell cycle, spindle, and DNA
binding. Cell signaling pathway analysis identified cell cycle, HIF-1 signaling pathway,
and phospholipase D signaling pathway as key pathways. SYN1, CNTN2, FAIM2,MT3,
and SH3GL2 were the prominent hub genes and their expression level were verified by
RT-qPCR. Vorinostat, resveratrol, trichostatin A, pyrvinium, and prochlorperazine
were identified as potential drugs for MB. The five hub genes may be targets for
diagnosis and treatment of MB, and the small-molecule compounds are promising
drugs for effective treatment of MB.
Conclusion. In this study we obtained five hub genes of MB, SYN1, CNTN2, FAIM2,
MT3, and SH3GL2 were confirmed as hub genes. Meanwhile, Vorinostat, resveratrol,
trichostatin A, pyrvinium, and prochlorperazine were identified as potential drugs for
MB.
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INTRODUCTION
Medulloblastoma (MB) is one of the most common intracranial malignant tumors in
children. Standardized treatment options including maximal surgical resection, radiation
therapy, and chemotherapy can improve overall five-year survival rates; however, the
prognosis of patients with advanced disease is still unsatisfactory (Kim et al., 2010). Despite
extensive studies on the pathogenesis and progression of MB, the pathophysiology of
disease development is still unclear. The pathogenesis of MB is closely related to many
factors such as mutations in genes, abnormalities in cellular immunity, and changes in
environmental factors (Wang et al., 2018). A deep understanding of the changes in protein
expression involved in the pathogenesis of MB is critical for the development of better
treatment strategies.

Gene chip is a genetic testing technology that has been in use for more than a decade.
The gene chip technology can rapidly detect changes in gene expression in the sample
and is suitable for screening differentially expressed genes (DEGs) (Vogelstein et al., 2013).
In recent years, gene chip technology has been widely used, and data from numerous
microarray studies have been stored in free public databases. These databases provide
valuable data for further research. So far, several gene chip data have been analyzed, and
hundreds of different genes involved in the development of several central nervous system
cancers such as gliomas have been identified (Xi et al., 2017; Zeng et al., 2018). However,
most gene chip data is a mixture of both MB and glioma and does not accurately represent
changes in MB, and therefore does not generate satisfactory results. There have been
reports of microarray data to find DEGs in medulloblastoma (Shaabanpour Aghamaleki
et al., 2019). However, the reliability of the analysis results was controversial due to the
heterogeneity of the sample from a single cohort study. Therefore, most single-chip analyses
are not sufficient to identify effective biomarkers in MB. To overcome this, we used data
derived from four gene chips to identify effective biomarkers for MB. This method is more
accurate and does not have the disadvantages associated with the single-chip analysis.

In this study, we downloaded four MB microarray datasets (GSE42656, GSE74195,
GSE109401, and GSE50161) from free public Gene Expression Omnibus database (GEO).
A total of 77 MB samples and 39 normal brain samples were included in this study. We
identified the DEGs using the Limma package in R software (version 3.5.0) from the four
gene expression profiles and subsequently, used the Venny online tool for further integrated
analyses. We then employed the DAVID databases and Kobas online tool to identify the
functions of the identified DEGs and the key cell signaling pathways involved. The network
of protein-protein interaction (PPI) was generated using the STRING database. Finally, we
used the CMap database to explore potential small-molecule compounds that can be used
for treating MB.

MATERIALS & METHODS
Microarray data information
We downloaded the gene expression profile data for GSE42656, GSE74195, GSE109401,
and GSE50161 from the GEO database (http://www.ncbi.nlm.nih.gov/geo). The GSE42656
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data set was based on the GPL6947 Platforms (Illumina HumanHT−12 V3.0 expression
beadchip) and contained nine MB samples and 16 normal brain samples (Henriquez
et al., 2013). The GSE74195 data set was based on the GPL570 Platform (Affymetrix
Human Genome U133 Plus 2.0 Array) and contained 27 MB and five normal brain tissue
samples (De Groot et al., 2011). The GSE50161 data set was based on the GPL570 Platform
(Affymetrix Human Genome U133 Plus 2.0 Array) and included 22 MB samples and
13 normal brain tissues (Griesinger et al., 2013). The GSE109401 data set was based on
GPL16686 Platforms (Affymetrix Human Gene 2.0 ST Array (transcript (gene) version))
and included 19 medulloblastoma samples and five normal brain samples (Rivero-Hinojosa
et al., 2018). We selected these four gene expression profiles for further integrated analyses
to avoid racial differences and errors in individual experiments.

Identification of DEGs in medulloblastoma
The DEGs were identified based on the series matrix file using Limma package in R
software (version 3.5.0) according to the cut-off standard (p< 0.05 and logFC >1) (Fang
et al., 2017). The four sets of differential expression data were respectively divided into
upregulated DEmRNAs and downregulated DEmRNAs and were uploaded to Venny
(http://bioinfogp.cnb.csic.es/tools/venny/) for integrated analyses. A heat map was
generated using the pheatmap package in R. The GSE74195 dataset was used as the
reference to generate the heat map. The heatmap showed 29 upregulated DEGs, and 75
downregulated DEGs.

GO and KEGG enrichment analysis of DEGs
The DAVID online database and Kobas online tool were used for functional and pathway
enrichment analyses (Huang da, Sherman & Lempicki, 2009). We uploaded the DEGs to
DAVID for GO functional annotation analysis and Kobas for KEGG pathway enrichment
analysis. P < 0.05 was used as the cut-off value.

Building a PPI network
The STRING public database, which provides PPI network analysis, can evaluate direct
and indirect links between DEGs (https://string-db.org) (Franceschini et al., 2013). The
DEGs were uploaded to STRING to obtain the PPI network using an Interaction score of
0.2. Cytoscape was used for visualizing the PPI network and for identifying the hub genes
based on the degree of connectivity between DEGs.

Identification of small-molecule compounds for the treatment of MB
CMap, an online tool, can be based on the gene expression profile of a disease to
mine potential therapeutic drugs (Lamb et al., 2006). We divided the DEGs of MB
into upregulated DEGs and downregulated DEGs, and uploaded them to CMap to
explore the drugs. P < 0.001 and Enrichment <-0.8 was used as the cut-off criteria.
The 3D structures of the small-molecule compounds are available from PubChem
(https://pubchem.ncbi.nlm.nih.gov/).
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RNA isolation and reverse transcription quantitative polymerase chain
reaction (RT-qPCR) analysis
Total RNA is extracted from in normal human brain tissue and medulloblastoma cell
lines (Daoy and D283) using Tri-Reagent (Sigma, USA) according to the manufacturer’s
instructions. NanoDrop One spectrophotometer (Thermo Fisher Scientific, USA) was
used to evaluate the quality and quantity of the RNA. The Transcriptor First Stand cDNA
Synthesis Kit (Roche, USA) was used to reverse transcribe total RNA into cDNA.The
FastStart Universal SYBR Green Master (ROX) (Roche, Germany) and the QuantStudio
software (Thermo Fisher Scientific, USA) were reserved for RT-qPCR based on the
manufacturer ’s instructions.The GAPDH gene was used as an endogenous reference.

The primer sequences were as follows: 5′-GGACACGTGCTCAGAGATT-
3′ (sense) and 5′-TCTACGATGAGCTGTTTGTCTTC-3′ (antisense) for SYN1,
5′-GGGGTGATGTTGCCCTGTAA-3′ (sense) and 5′-AGGTCTGAGGCATTGGTTCG-
3′(antisense) for CNTN2, 5′-CTGATTCTCCTGACCGTCTTTAC-3′ (sense) and 5′-
GAACTTGGTCTGGAAGCTGAA-3′(antisense) for FAIM2,5
′-CAAGTGCGAGGGATGCAAAT-3′ (sense) and 5′-TGGCACACTTCTCACACTCC-
3′(antisense) for MT3, 5′-CTCAGCCTAGAAGGGAATATCAAC-3′ (sense) and 5′-
CAGCAGGGCTGATCCATTT-3′(antisense) for SH3GL2, and
5′-CACCCACTCCTCCACCTTTGA-3′ (sense) and 5′-ACCACCCTGTTGCTGTAGCCA-
3′ (anti- sense) for GAPDH. The results were analyzed using the - 1CT method with an
unpaired t -test, and a P-value < 0.05 was considered a meaningful result.

RESULTS
Screening of DEGs in MB
We downloaded the gene expression datasets—GSE42656, GSE109401, GSE50161, and
GSE74195 from GEO. From the GSE42656 dataset, we identified 869 DEGs, of which
222 were upregulated, and 647 were downregulated. A total of 764 DEGs were identified
from the GSE109401 data set—274 upregulated and 490 downregulated; 5,494 DEGs from
GSE50161—2,798 upregulated and 2,696 downregulated, and 1,000 DEGs were identified
from GSE74195—422 upregulated and 578 downregulated. Integrated analyses revealed
that 104 DEGs were consistently expressed in the four data sets (Figs. 1A and 1B); these
included 29 upregulated DEGs, and 75 downregulated DEGs in MB tissue compared to the
normal brain tissue (Table 1). A heat map of the DEG distribution was generated using the
GSE74195 dataset as a reference (Fig. S1).

Gene Ontology Analysis of DEGs
The identified DEGs were analyzed using DAVID using p< 0.05 as the cut-off standard to
identify the functions associatedwith theDEGs. TheGO function annotation is divided into
three functional groups—cell component (CC), molecular function (MF), and biological
process (BP). As shown in Fig. 2 and Table 2, within the BPs the upregulated DEGs were
closely related to mitotic cell cycle, cell cycle phase-M phase, cell cycle process, cell cycle,
spindle organization, and microtubule-based process and the downregulated DEGs were
closely related to vesicle-mediated transport. Within CC the upregulated DEGs were closely
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Figure 1 Using the Vennymap to obtain commonDEGs inMB, and the cross areas represented the
commonly DEGs of the four datasets (GSE42656, GSE109401, GSE50161, and GSE74195). (A) Com-
monly up-regulated genes (29 DEGs); (B) Commonly down-regulated genes (75 DEGs).

Full-size DOI: 10.7717/peerj.8670/fig-1

Table 1 The 104 differentially expressed genes (DEGs), including 29 upregulated genes and 75 down-
regulated genes were identified in the medulloblastoma tissues from four profile datasets using normal
brain tissues as a reference.

DEGs Gene name

Up-regulated 29 ACTL6A, UBE2C, TMEM97GTF2IRD1, INSM2, CDC20, PRC1,
ZNF423, HMGB2, ODC1, MCM7, KLHDC8A, SOX11, RAD51AP1,
KIF15, CDK6, EBF3, EYA2, TYMS, TTK, CD24, DACH1, SOX4,
NUSAP1, RPGRIP1, KIF11, NEUROG1, OTX2, TOP2A

Down-regulated 75 CADPS2, TMEM163, UNC13C, DNER, CNTNAP1, DNM3, TMOD1,
FEZ1, RAPGEF4, RIT2, NDRG4, TPPP, TMEM55A,
MT3, FAIM2, ABLIM1, RCAN2, MAP1A, DHCR24,
NRXN2, PTGDS, CDS1, RASGRP1, PCP4,
NRIP3, HPCAL4, PTCHD1, GAS7, KIAA0513,
PMP2, PHACTR3, TF, CADM2, CNTN2, VSNL1,
BCAS1, DKK3, SCRN1, FBXL16, ELOVL4,
OPCML, DNM1, EEF1A2, TTC9B, CA11,
CEND1, MOBP, SH3GL2, SCG5, EPDR1,
LRRC3B, COX7A1, NAP1L3, TSPAN7,
CAMK2B, OPTN, STMN4, CLSTN3,
PEA15, SYN1, RNF175, REEP2, CSRP1, SYT11,
TCEAL2, GPM6B, TPRG1L, ASTN1, MAP7D2, SIRPA,
OLIG1, SYNGR3, ELMO1, HK1, VAMP2

Notes.
DEGs, differentially expressed genes.

related to the spindle-microtubule, and cytoskeleton, whereas the downregulated DEGs
were closely related to the synapse, synapse part, clathrin-coated vesicle, synaptic vesicle,
cytoplasmic vesicle, coated vesicle, cytoplasmic membrane-bounded vesicle, vesicle, and
membrane-bounded vesicle.WithinMF, the upregulated DEGs showed a close relationship
with DNA binding and the downregulated DEGs did not show any association.
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Figure 2 Gene Ontology (GO) functional annotation analysis and significant terms of DEGs inMB
and GO analysis divided into three parts. Cyan for cell component, pink for molecular function, and blue
for biological process.

Full-size DOI: 10.7717/peerj.8670/fig-2

KEGG pathway analysis
The 104 DEGs were grouped as upregulated and downregulated DEGs and the cellular
signaling pathways represented were analyzed by KEGG (Fig. 3 and Table 3). The
upregulated genes aremainly involved in the cell cycle, ubiquitin-mediated proteolysis, viral
carcinogenesis, one-carbon pool by folate, and microRNAs in cancer. The downregulated
genes are mainly involved in the synaptic vesicle cycle, bacterial invasion of epithelial cells,
insulin secretion, HIF-1 signaling pathway, phospholipase D signaling pathway, and cell
adhesion molecules (CAMs).

PPI network generation and identification of the hub gene
The interrelationships between the 104 DEGs were analyzed using STRING. We found
that 100 of the 104 DEGs were related to each other and were visualized using Cytoscape
–100 nodes and 776 edges are included in the network of PPI and the hub gene based on
the degree of connectivity between genes were identified (Fig. 4A). Among the hub genes,
the most significant hub genes were SYN1, CNTN2, FAIM2, MT3, and SH3GL2 (Fig. 4B).

Potential therapeutic drugs for MB
Of the 104 DEGs, only 85 were eventually converted to IDs from 22,214 probes in the
Affymetrix platform. After that, we used CMap and identified six potential therapeutic
drugs based on set criteria (Table 4). A PubMed literature search revealed that two
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Table 2 DEGs divided into upregulated genes and downregulated genes and their first ten meaningful
GO enrichment analyses.

Term Description Count P-Value

Up-regulated
GO:0005819 Spindle 6 1.92E–06
GO:0000278 Mitotic cell cycle 8 5.99E–06
GO:0003677 DNA binding 15 1.12E–05
GO:0022403 Cell cycle phase 8 1.25E–05
GO:0000279 M phase 7 3.80E–05
GO:0022402 Cell cycle process 8 9.14E–05
GO:0007049 Cell cycle 9 9.45E–05
GO:0007051 Spindle organization 4 9.51E–05
GO:0015630 Microtubule cytoskeleton 7 1.03E–04
GO:0007017 Microtubule-based process 6 1.27E–04
Down-regulated
GO:0045202 Synapse 11 5.27E–06
GO:0016192 Vesicle-mediated transport 11 5.69E–05
GO:0044456 Synapse part 8 1.45E–04
GO:0030136 Clathrin-coated vesicle 6 3.77E–04
GO:0008021 Synaptic vesicle 5 4.37E–04
GO:0031410 Cytoplasmic vesicle 11 7.37E–04
GO:0030135 Coated vesicle 6 8.80E–04
GO:0016023 Cytoplasmic membrane-bounded vesicle 10 9.86E–04
GO:0031982 Vesicle 11 0.001022664
GO:0031988 Membrane-bounded vesicle 10 0.001235649

Notes.
GO, Gene Ontology; DEGs, differentially expressed genes.

drugs—vorinostat and resveratrol –have been reported to have a therapeutic effect in
MB. The other three drugs, trichostatin A, pyrvinium, and prochlorperazine, have been
reported to have therapeutic effects in other cancers. The 3D structures of these potential
therapeutic drugs are available from PubChem (Fig. 5).

Experiments verify the five hub DEmRNAs in MB
To verify the expression levels of the five hub genes in the PPI network, RT-qPCR was used
to detect their expression levels in normal human brain tissue and medulloblastoma cell
lines (Daoy and D283). The five hub genes in the PPI network, including SYN1,CNTN2,
FAIM2, MT3, and SH3GL2, were all down-regulated DEGs in MB, and this result was
confirmed by RT-qPCR (Fig. 6). This shows that our analysis results were completely
credible.

DISCUSSION
Although several studies have been carried out to understand the pathogenesis of MB,
there is no effective strategy to reduce the incidence or mortality of MB. This may be
because most studies till date have focused on a single genetic event contributing to MB
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Figure 3 Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway analysis of DEGs inMB.
Red represent the common up-regulated genes and green represent the common down-regulated genes.

Full-size DOI: 10.7717/peerj.8670/fig-3

pathogenesis. Therefore, in order to identify effective molecular markers, we used data
derived from four cohorts profile datasets obtained from the GEO database (GSE42656,
GSE74195, GSE109401, GSE50161). Integrated analyses of the four data sets revelated
104 DEGs including 29 upregulated, and 75 downregulated DEGs. Enrichment of these
genes identified certain cellular signaling pathways which may provide novel insights to
the understanding of the pathogenesis of MB. We also used CMap, a drug development
tool, and identified six potential drugs that can be used for the treatment of MB. To our
knowledge, this is the first study to use integrated bioinformatical analysis for studying the
pathogenesis of MB.

GO enrichment analysis showed that the upregulated DEGs were mainly involved
in the spindle, cell cycle phase, M phase, cell cycle, spindle organization, microtubule
cytoskeleton and the downregulated DEGs were mainly closely related to clathrin-coated
vesicle, synaptic vesicle, and cytoplasmic vesicle. These results are consistent with previous
literature reports that spindle defects play a vital role in the pathological process of MB
(Abdelfattah et al., 2018). LCL161 an inhibitor of apoptosis proteins (IAP) combined with
chemotherapy can slow MB cell proliferation by inducing G2/M phase arrest (Chen et al.,
2018). Patupilone, a microtubule stabilizer, can reduce clonogenic survival and enhance the
therapeutic efficacy of radiotherapy effect in MB (Oehler et al., 2011). α-synuclein binds to
cytoplasmic vesicles to change the surface morphology of in U251 glioblastoma cells (Duan
et al., 2017). Synaptic vesicle protein 2A is a predictor of the efficacy of levetiracetam in
glioma patients (De Groot et al., 2011). The internalization of clathrin-coated vesicles can
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Table 3 KEGG pathway analysis of upregulated and downregulated genes inMB.

Database ID Term Gene
Count

P-Value Gene
names

Up-regulated
KEGG PATHWAY hsa04110 Cell cycle 4 2.28E–06 TTK, CDC20, MCM7, CDK6
KEGG PATHWAY hsa04120 Ubiquitin mediated proteolysis 2 0.004624353 CDC20, UBE2C
KEGG PATHWAY hsa05203 Viral carcinogenesis 2 0.009970546 CDC20, CDK6
KEGG PATHWAY hsa00670 One carbon pool by folate 1 0.015198488 TYMS
KEGG PATHWAY hsa05206 MicroRNAs in cancer 2 0.020243092 CDK6, SOX4
KEGG PATHWAY hsa03030 DNA replication 1 0.026628344 MCM7
KEGG PATHWAY hsa03022 Basal transcription factors 1 0.033001239 GTF2IRD1
KEGG PATHWAY hsa00330 Arginine and proline metabolism 1 0.03652431 ODC1
KEGG PATHWAY hsa00480 Glutathione metabolism 1 0.037930065 ODC1
KEGG PATHWAY hsa05223 Non-small cell lung cancer 1 0.040735637 CDK6
Down-regulated
KEGG PATHWAY hsa04721 Synaptic vesicle cycle 4 8.12E–06 DNM3, UNC13C, DNM1, VAMP2
KEGG PATHWAY hsa05100 Bacterial invasion of epithelial cells 3 0.000492126 DNM3, DNM1, ELMO1
KEGG PATHWAY hsa04911 Insulin secretion 3 0.000627009 RAPGEF4, CAMK2B, VAMP2
KEGG PATHWAY hsa04066 HIF-1 signaling pathway 3 0.001075892 HK1, TF, CAMK2B
KEGG PATHWAY hsa04072 Phospholipase D signaling pathway 3 0.002737401 DNM3, RAPGEF4, DNM1
KEGG PATHWAY hsa04514 Cell adhesion molecules (CAMs) 3 0.002843803 NRXN2, CNTN2, CNTNAP1
KEGG PATHWAY hsa04961 Endocrine and other Factor-regulated

calcium reabsorption
2 0.003884233 DNM3, DNM1

KEGG PATHWAY hsa00524 Butirosin and neomycin biosynthesis 1 0.011244262 HK1
KEGG PATHWAY hsa04144 Endocytosis 3 0.01354801 DNM3, DNM1, SH3GL2
KEGG PATHWAY hsa04070 Phosphatidylinositol signaling system 2 0.0153706 CDS1, TMEM55A

Notes.
KEGG, Kyoto Encyclopedia of Genes and Genomes; ID, identification.

reduce the sensitivity of metabotropic receptors in C6 cells (Luis Albasanz, Fernandez &
Martin, 2002).

KEGG pathway analysis demonstrated that the upregulated genes have significant
enrichment in pathways including one-carbon pool by folate, microRNAs in cancer,
DNA replication, and basal transcription factors. Previous studies have shown that these
signaling pathways are mainly involved in the development of cancer. For example, the
basal transcription factors such as oncogene Orthodenticle Homeobox 2, play an important
role in cell migration and proliferation in MB (Wortham et al., 2014). Folate receptor
(Folr1) participates in the pathway network of the one-carbon pool by folate, which is
related to clinical, pathological, neuroimaging features, and prognosis of MB patients
(Liu et al., 2017). MicroRNA-31 inhibits DNA replication by targeting minichromosome
maintenance complex component 2 (MCM2), which has a strong inhibitory effect on MB
growth (Jin et al., 2014). The downregulated genes were mainly involved in HIF-1 signaling
pathway, phospholipase D signaling pathway, and phosphatidylinositol signaling system.
These signaling pathways are involved in the pathological process of cancer. For example,
phosphatidylinositol signaling system, such as the phosphatidylinositol 3-kinase (PI3K)
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Figure 4 The PPI network of DEGs. (A) One hundred DEGs were incorporated into the network con-
sisted of 29 upregulated (red) and 71 downregulated (green) genes; (B) hub genes determined by the de-
gree of connectivity between DEGs.

Full-size DOI: 10.7717/peerj.8670/fig-4

Table 4 Six small-molecule compounds identified as potential drugs for MB treatment by CMap anal-
ysis.

Term Enrichment P-Value

Vorinostat −0.842 0
Resveratrol −0.827 0
Trichostatin A −0.568 0
Pyrvinium −0.727 0.00077
Prochlorperazine −0.475 0.00082
0175029-0000 −0.718 0.00099

Notes.
CMap, connectivity map.

pathway is associated with reduced survival in patients and is one of the most common
signaling pathway-related abnormality in gliomas (Tuncel & Kalkan, 2018). Phospholipase
D signaling pathway specifically inhibits autophagic flux and decreases GBM cell viability
(Bruntz et al., 2014). The hypoxia-inducible factor-1 signaling pathway is vital for the
invasion and metastasis of glioma cells (Yaghi et al., 2016). Together, our results show that
the cellular pathways of DEGs identified in this study are closely related to the development
of cancer.

The PPI network of DEGs represents an overview of their functional relations. Most
of the hub genes selected in this network have been reported to be closely related to
the pathological process of cancers. For example, SYN1, one of the neuronal genes, is
related to the formation and maintenance of synaptic contacts and the expression of
REST. RCOR1 may cause deregulated expression of SYN1, which contributes to the
maintenance of glioblastoma stem-like cells (GSC) (Yucebas et al., 2016). CNTN2, a cell
adhesion protein, is a downstream protein of RACK1, which affects the growth and
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Figure 5 The 3D structures of five small-molecule compounds identified as potential drugs for MB
treatment. (A) Vorinostat, (B) Resveratrol, (C) Trichostatin A, (D) Pyrvinium, and (E) Prochlorperazine.

Full-size DOI: 10.7717/peerj.8670/fig-5

Figure 6 The expression levels of the five hubgenes in the PP Inetwork were detected by RT-qPCR.
These included (A) SYN1, (B) CNTN2, (C) FAIM2, (D) MT3, and (E) SH3GL2 (P < 0.05).

Full-size DOI: 10.7717/peerj.8670/fig-6
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differentiation of glioma cells through the RTK/Ras/MAPK signaling pathway (Yan &
Jiang, 2016). FAIM2 is an anti-apoptotic molecule that promotes tumor cell growth
through Fas-mediated mechanisms. Knock-down of FAIM2 can significantly affect tumor
cell proliferation in small-cell lung cancer (Kang et al., 2016). MT3 is a tumor suppressor
gene, and its expression is significantly reduced in AML samples. The overexpression of
MT3 can inhibit cell proliferation and promote tumor cell apoptosis in pediatric acute
myeloid leukemia (Tao et al., 2014). SH3GL2, as a suppressor for tumors, and has reduced
expression in glioma tissues promoting migration and infiltration of glioma cells by
enhancing STAT3/MMP2 signaling (Zhu et al., 2017). These five hub genes have important
regulatory effects in the pathophysiology of cancers, but their role has not been reported
in MB. These hub genes are potential targets for the treatment of MB.

CMap is an online tool that can be used to identify potential therapeutic drugs based
on DEGs in various disease (Lamb et al., 2006). In the current study, we identified six
drugs using CMap analysis. Two of these drugs have been previously reported to have a
therapeutic effect on MB. The combination of vorinostat and MLN8237 can significantly
inhibit the proliferation of MB cells (Muscal et al., 2013). Resveratrol inhibits the growth
of cancer cells by regulating the Notch signaling pathway to promote apoptosis and
differentiation of MB cells (Wang et al., 2008). Three drugs –trichostatin A, pyrvinium,
and prochlorperazine –have not been reported for the treatment of MB; however, several
studies have reported their treatment efficacies in other cancers. Prochlorperazine and
trichostatin A were used for treating glioblastoma and pyrvinium for the treatment of
ovarian cancer (Horing et al., 2013; Otreba & Buszman, 2018; Zhang et al., 2017). Although
the six small-molecule compounds

obtained have not been adequately studied in MB. CMap is an online tool that provides
researchers with an index based on disease DEGs to search for potential therapeutic drugs.
Recently, some traditional drugs have been found to have new therapeutic effects. The
development of new uses of old drugs can more quickly understand the pharmacological
properties of drugs, whichwill help their early application in clinical treatment. For example,
atorvastatin is a well-known traditional lipid-lowering drug, but in recent years, it has been
found to have obvious therapeutic effects on chronic subdural hematoma (Jiang et al.,
2018). Metformin is a traditional an anti-diabetic drug. In recent years, new therapeutic
effects have been discovered in human diseases such as anti-tumor effects, neuroprotective
effects, etc (Podhorecka, Ibanez & Dmoszynska, 2017; Saewanee et al., 2019). So we have
reason to speculate that the small-molecule drugs identified by CMap analysis may be
potential drugs for the treatment of MB.

CONCLUSIONS
In summary, most single data set analyses are limited by the small sample size, high
experimental error, and lack of ethnic differences, and therefore cannot reliably identify
the important genes and pathways involved in the pathogenesis of diseases. In this study,
the above problems were well avoided by using multiple data sets and integrated analysis
to improve the reliability and accuracy of the results. We identified 104 DEGs from four
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groups of gene expression profiling data of MB and analyzed them comprehensively. The
hub genes identified by PPI network analysis include SYN1, CNTN2, FAIM2, MT3, and
SH3GL2, which are involved in the pathogenesis of different cancers. We also identified
several small-molecule compounds that may have potential therapeutic effects on MB.
These findings provide new insights into the pathogenesis of MB and provide a basis for
treatment. however, further experimental verification is needed.
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