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Simple Summary: Many mosquito species can transmit pathogens and may pose a risk to human
health. With increasing urbanization and alteration of natural habitats, the composition of mosquito
communities is changing, with some species thriving particularly well in and adjacent to human
settlements. In the present study, indoor mosquito collections submitted to the citizen science project
‘Mückenatlas’ were used to investigate the composition, abundance, and diversity of species of
different urbanization levels, and to detect preferences for less or more urbanized areas. We found
that species richness and diversity decreases with increasing urbanization, and some important
vector species are captured most frequently in densely urbanized regions. Our results highlight the
importance of long-term mosquito monitoring to learn how these vectors respond to habitat change
caused by humans. Only with sufficient knowledge about the ecology of mosquitoes can we assess
risks, plan counter strategies, and take action.

Abstract: Urbanization has been associated with a loss of overall biodiversity and a simultaneous
increase in the abundance of a few species that thrive in urban habitats, such as highly adaptable
mosquito vectors. To better understand how mosquito communities differ between levels of urban-
ization, we analyzed mosquito samples from inside private homes submitted to the citizen science
project ‘Mückenatlas’. Applying two urbanization indicators based on soil sealing and human popu-
lation density, we compared species composition and diversity at, and preferences towards, different
urbanization levels. Species composition between groups of lowest and highest levels of urbanization
differed significantly, which was presumably caused by reduced species richness and the dominance
of synanthropic mosquito species in urban areas. The genus Anopheles was frequently submitted from
areas with a low degree of urbanization, Aedes with a moderate degree, and Culex and Culiseta with a
high degree of urbanization. Making use of citizen science data, this first study of indoor mosquito
diversity in Germany demonstrated a simplification of communities with increasing urbanization.
The dominance of vector-competent species in urban areas poses a potential risk of epidemics of
mosquito-borne diseases that can only be contained by a permanent monitoring of mosquitoes and
by acquiring a deeper knowledge about how anthropogenic activities affect vector ecology.

Keywords: biodiversity; citizen science; epidemiology; mosquitoes; urbanization

1. Introduction

With continuing outbreaks of mosquito-borne diseases in Mediterranean countries
and recent cases of West Nile fever as far north as Germany, the management of mosquito
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vector species has become an important political and scientific issue throughout Europe [1].
Many countries have implemented mosquito-monitoring programs based on various
methodological approaches. The collected data are used to update and predict species
distributions, such as tracking the spread of invasive or native mosquito species that are
capable of transmitting disease agents such as dengue, chikungunya, West Nile, or Zika
viruses [2,3].

Urbanization is thought to be one of the main anthropogenic drivers of changes
in mosquito species composition and relative abundance through loss of natural larval
habitats and the creation of new artificial ones [4–6]. With urbanization, an increase in
population densities of those mosquito species is expected because they thrive in urban
environments and in the vicinity of humans due to a selective advantage, e.g., the capability
of breeding in artificial containers or the preference for human blood hosts. These include
species of the genera Aedes, Anopheles, and Culex, some of which have invasive potential and
can transmit a variety of pathogens, such as the Asian tiger mosquito Aedes albopictus [7].
Invasive species are highly adaptable and often prosper in urban environments, amplifying
the risk of mosquito-borne disease outbreaks [8]. Consequently, it is of utmost interest and
importance for risk assessment and epidemiological modelling to know which mosquito
species dwell in human settlements and how mosquito communities differ based on
surrounding environmental features such as the level and structure of urbanization.

Few studies about mosquito diversity in urban regions of Europe exist, with only two
pertaining to metropolitan areas in Germany [9,10] and only a handful for other European
countries [11–16]. By comparison, responses of mosquito communities to urbanization
have been investigated more intensively in North and South America [17,18], Asia [19,20],
Australia [21], and Africa [22], probably due to past or recent outbreaks of mosquito-borne
diseases. The majority of these investigations focus on identifying hotspots of one or
two synanthropic, highly vector-competent species such as the yellow fever mosquito
Aedes aegypti or Ae. albopictus in relation to urbanization [12,23]. Studies have rarely been
aimed at capturing the entire mosquito biodiversity and relating it to urbanization [17].
A key reason for this lack of studies is that access to private properties is limited. The
alternative—placing traps on public land—is risky and too often results in damaged or
stolen devices [24]. As a result, it is deemed necessary to include residents in the research
process via a citizen science approach in order to safely collect data from around and
inside homes.

Citizen science has become an increasingly common form of research over the last
decade [25–27]. Among its many benefits for society, it facilitates data collection on a spatial
and temporal scale that scientists alone are barely able to cover [28]. However, there are
doubts about the explanatory power of data gathered by non-professionals, as they tend to
contain observation biases such as uneven spatial coverage [29–31], inconsistent sampling
behavior [32,33], or uncertainties in object identification by the participants [34]. On the
other hand, advanced methods have been developed in recent years for each stage of the
scientific process, including avoidance of bias through adapted protocols [35,36], verifica-
tion of data using artificial intelligence [34,37,38], detection and statistical compensation of
biases [33,39–42], and data integration [43].

Regarding urban ecology, data collected by citizens have been used in many studies,
such as investigating the biodiversity of taxa like birds [44] or phorid flies [45], tracking
invasive species [46], or initiating conservation action [47]. Many citizen science projects are
aimed at monitoring and controlling mosquitoes as they are easily identifiable and people
are personally concerned due to health implications or nuisance. In Italy, for example,
a novel approach by Caputo et al. [48] used citizen surveys via an app (ZanzaMapp) to
estimate mosquito abundance and nuisance. By means of the originally Spanish ‘Mosquito
Alert’ smartphone app, participants could upload pictures of five important mosquito
vectors and corresponding breeding habitats to inform health authorities in the Barcelona
region [49]—a successful concept that has been launched in 17 other countries in 2020.
Despite the relevance for public health, there is, to our knowledge, no study that explicitly
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focuses on the indoor biodiversity of mosquitoes. Indeed, very few studies have been
conducted that target the insides of the participants’ residences, although investigating the
ecology and evolution of the indoor biome is an emerging research field and is predestined
for citizen science approaches [50].

The lack of knowledge about which mosquitoes actually enter human residences might
be partly filled by data from the citizen science project ‘Mückenatlas’, an implemented part
of the German mosquito monitoring program. To gain knowledge about the occurrence
and distribution of native and invasive mosquito species, this program was initiated in
2011 and consists of several monitoring schemes such as collecting eggs by ovitrapping,
larvae by dipping, and adults by placing attractant traps. This systematic approach was
extended by the passive surveillance instrument ‘Mückenatlas’ in 2012, where people were
asked to collect and submit mosquito samples without any protocol and training [51].
By 2020, approximately 154,000, mostly hand-caught, mosquitoes had been submitted as
physical samples, with more than 66% coming from the inside of the participants’ homes,
thus providing a rich data source for the current study.

This study investigates the indoor diversity of mosquitoes based on ‘Mückenatlas’
submissions from inside private homes. We take a multi-level approach to determine and
specify differences of mosquito communities from varying levels of urbanization, defined
by two indicator variables, soil sealing (surface imperviousness) and human population
density. First, we visualize and test whether mosquito communities differ among levels
of urbanization. Second, rarefied species richness and effective Shannon diversity as
biodiversity indices are calculated to find explanations for the found differences. Finally, we
investigate whether mosquitoes, aggregated into genera, show preferences for certain levels
of urbanization. In the broader context of the uniqueness of the dataset, we simultaneously
investigate whether the information contained in the data confirms our knowledge of
mosquito ecology or even leads to new insights.

2. Materials and Methods
2.1. The Citizen Science Dataset

The ‘Mückenatlas’ project calls upon the German population to catch mosquitoes, kill
them without damage, e.g., by freezing, and send them together with a submission form
that is downloadable from the project website (www.mueckenatlas.com) to the involved
institutes. Every participant is rewarded with a personal email or letter with details about
the catch and, if desired, an individual marking on the collectors’ map on the project
website. The institutes will morphologically and, if necessary (i.e., in ambiguous cases),
genetically identify the submitted sample to species level using the identification keys of
Becker et al. [52] and Schaffner et al. [53] and CO1 barcoding [54], respectively. We consid-
ered mosquito groups or complexes (e.g., Anopheles maculipennis complex, Culex pipiens
complex, Aedes annulipes group) as single taxa to account for impossibilities or uncertainties
in differentiating females between species. These complexes or groups are referred to as
species for simplification (Supplementary Materials Table S1). All data corresponding to a
mosquito submission is uploaded to the German mosquito database CULBASE.

Data were extracted from CULBASE for the years 2012 to 2019. The dataset consisted
of 26,060 entries, with each entry representing one mosquito species submission from one
location on a unique date, hereafter referred to as submission. One submission might
contain several individuals of the same species when participants caught more than one
mosquito on the same occasion; these are then summed up in an additional count variable.
The exported dataset comes with an automatically generated suite of covariates, such as
geo-coordinates, land-use type, and collection date. In addition, the dataset has a variable
that reflects the participants’ comments on the collection location, such as garden, house,
or stable etc. These were categorized manually, and all entries were then filtered according
to the locations of the submissions from the interior, resulting in 16,933 observations.

www.mueckenatlas.com
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2.2. Classification of Urbanization Level by Indicator Variables

To define the corresponding level of urbanization of every observation, we used
two indicator variables: (1) percentage of sealed soil (imperviousness) and (2) population
density as the number of individuals per square kilometer. Concerning sealing, we basically
followed the categorization by Böcker [55] and defined a value from 0 to 50% as low, from
51 to 70% as moderate, from 71 to 90% as strong, and from 91 to 100% as very strong. A
grid of the percentage of soil sealing related to the surface of Germany with a resolution
of one square kilometer served as the data base [56], from which the corresponding value
was extracted for each individual submission location and then allocated to either low,
moderate, strong, or very strong sealing. In addition to soil sealing as a common measure
for urbanization, human population density was considered because humans unknowingly
create numerous larval habitats, e.g., in private gardens, green spaces, or cemeteries,
while also providing reliable sources of blood meals, either by themselves or by their pets
and their livestock. The assessment according to human population density was derived
from the degree of urbanization classification (DEGURBA) of the EU [57], categorizing a
population density of up to 300 inhabitants per square kilometer as rural, between 300 and
5000 inhabitants per square kilometer as peri-urban, and above 5000 inhabitants per square
kilometre as urban. We created a human population raster with square kilometer grid
cells based on data from the German census in 2011 [58], extracted the corresponding
data for every submission-related collection site, and assigned categories of either rural,
peri-urban, or urban (see Supplementary Materials, Figure S1, for maps on distribution of
both indicator variables across Germany). For simplification, we further refer to mosquito
communities by level of urbanization as groups. Data preparation and creation of spatial
covariates were conducted in R version 3.6.3 [59] with packages dplyr [60], raster [61], and
rgdal [62].

2.3. Statistical Analysis

We used non-metric multidimensional scaling (NMDS) to explore differences in
mosquito community composition according to level of urbanization, a common approach
to visualize multidimensional data in two-dimensional space. This ordination technique is
based on ranked proximities between the subjects of interests, in this case, the abundance
(submission numbers) of mosquito species and level of urbanization. Each year of data
collection (2012 to 2019) was treated as a replicated sample, and the respective urbaniza-
tion levels of both indicators represented the sampling units. The impact of frequently
submitted species was minimized by Wisconsin double standardization and square-root
transformation, and the Bray-Curtis index was used to create dissimilarity matrices based
on the species submission numbers within each group. For both runs with command
metaMDS (vegan package), we calculated the stress level, which is an indicator of the
reliability of the result, e.g., an ordination with a stress greater than 0.3 could also have
occurred arbitrarily. To test the groups for statistically significant differences in species com-
munities, a permutational multivariate analysis of variance (PERMANOVA) was applied,
followed by a pairwise comparison of groups with a permutation test based on t-statistics
(homogeneity of dispersion, PERMDISP).

We chose two biological diversity metrics, rarefied species richness, and effective Shan-
non diversity, which are robust against varying sample sizes and abundances, and facilitate
comparing differences in biodiversity between groups. Rarefaction is a standardization
technique that suits the ‘Mückenatlas’ data as it accounts for the different sample sizes
and allows a fair comparison between the urbanization categories. For all calculations,
we used the smallest sample size for each urbanization level in each year as the number
of sub-samples randomly drawn from the larger samples to estimate expected species
richness (sample-based rarefaction [63] with command rarefy of the vegan package).

The original Shannon–Wiener index was not used, as it is difficult to interpret and
not robust against differences in abundances; in our case, number of submissions and
sample sizes. These disadvantages are partially resolved by using the exponential of the
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Shannon–Wiener index to convert it to effective Shannon diversity. It indicates the effective
number of species, i.e., those that are equally common, and allows us to directly compare
the results among groups [64]. Following the calculation of rarefied species richness and
effective Shannon diversity, we applied ANOVA for group-wise and post-hoc Student’s
t-test with the Bonferroni–Holm adjustment for pairwise comparisons.

To find out whether the citizen science data can be used to infer preferences of
mosquito genera for a certain level of urbanization, a Chi-square test of homogeneity
was applied. Because the number of submissions from the considered level of urbanization
varied greatly, we adapted the method of Bates et al. [65] by using weighted expected
counts in the Chi-square test, i.e., we calculated for each of the five genera the summed
ratio of the other four genera’s observations from the different levels of urbanization to
approximate the corresponding sampling effort in the expected count for the target genus.
To test the single genera for significant tendencies of being submitted from certain levels of
urbanization, the Chi-square residuals were computed and positive and negative tenden-
cies visualized. These analyses were performed with R packages dplyr [60], vegan [66],
ggpubr [67], and ggplot2 [68].

We opted for statistical analyses that allowed us to investigate how mosquito commu-
nities change along an urbanization gradient. For this purpose, we used species abundances
for NMDS and biodiversity indices as well as abundances of genera for the Chi-square
tests. A more detailed ecological examination of the occurrences of individual species, their
habitat preferences, and contributions to differences in mosquito communities are beyond
the scope of the current study and will be carried out in the future.

3. Results

Distribution of submissions over years and urbanization levels varied greatly (Figure 1
and Supplementary Materials, Table S2). Most submissions were recorded in 2016 and
2017, a phenomenon based on media topicality and recorder bias that has already been
investigated in previous studies [30,69]. In general, a higher number of submissions came
from lower to medium levels of urbanization than from very densely populated areas. The
uneven distribution across the groups according to population density (inhabitants per
square km) is striking, with over two thirds of the entries coming from grid cells with
300 to 5000 inhabitants, which is not representative of the latest share of DEGURBA classes
in Germany (34% rural, 42% peri-urban, 24% urban [57]).

Figure 1. Numbers of submissions by year and level of urbanization, the latter assessed by (a) soil
sealing and (b) human population density.



Insects 2021, 12, 374 6 of 13

The NMDS plots show differences in yearly mosquito assemblages by groups for both
indicators of soil sealing (stress value = 0.14, R2 = 0.98) and human population density
(stress value = 0.14, R2 = 0.98). Stress values indicate a fairly good fit (Figure 2). Visually,
the NMDS plots (Figure 2) suggest that mosquito communities of high and low urbanized
areas are distinct. The PERMANOVA is significant, and the variance explained is fair for
both indicator variables of soil sealing (R2 = 0.55, p < 0.001) and human population density
(R2 = 0.44, p < 0.001) (Supplementary Materials, Table S3, p-values based on permutations).

Figure 2. Non-metric multidimensional scaling (NMDS) showing differences in mosquito species
communities of different levels of urbanization assessed by (a) soil sealing and (b) human population
density, using years as replicates (symbols).

This result might indicate that there are different species present (or present in different
abundances), depending on urbanization level. Significant PERMDISP for indicator soil
sealing suggests that, for this variable, the difference might rather be due to within-group
dispersion, e.g., of greater abundance variation in the group of low sealing than in the
groups of strong and very strong sealing. The case was different for the indicator human
population density, where the PERMDISP test was not significant. To better understand
these patterns, biodiversity indices were calculated.

To explore the characteristics of the data, we plotted species richness, rarefied species
richness, adjusted species richness, the Shannon–Wiener index, effective Shannon diversity,
and the adjusted Shannon–Wiener index by year (Supplementary Materials, Figure S2). We
then computed and visualized rarefied species richness and effective Shannon diversity
per urbanization group and indicator (Figure 3). According to the ANOVA, rarefied species
richness is not significantly different among groups for both indicator variables, i.e., the
level of urbanization does not appear to have any influence on the number of species
submitted when accounting for different sample sizes. With respect to effective Shannon
diversity, we found significant differences between low and strong levels of urbanization.
With a higher level of urbanization, the number of effective species decreases, i.e., there
is a strong dominance of a few species (Cx. pipiens complex, Culiseta annulata and Aedes
japonicus) in urban areas (Figure 3).

The omnibus Chi-square test revealed significant differences in the number of genera
submitted per group for both indicators, soil sealing (χ2 = 80.5, p < 0.001) and human
population density (χ2 = 159.91, p < 0.001). A follow-up with single comparisons (row-wise
by genera to find out tendencies for level of urbanization) showed significant differences
in submission numbers for most genera, except for Culiseta, regarding the urbanization
indicator soil sealing, and Coquillettidia, regarding the indicator human population density
(Table 1).
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Figure 3. Boxplots comparing rarefied species richness, (a,b), and effective Shannon diversity
(number of equally common species), (c,d), by urbanization level based on two indicators, soil sealing
and human population density, using years as replicates. Thick black lines denote medians, first and
third quartiles are shown by lower and upper hinges, and whiskers represent distance from hinge to
the farthest value within the 1.5 interquartile range. Outliers are displayed individually. Symbols *
and ** indicate statistical significance at α < 0.05 and < 0.01 based on t-tests with the Bonferroni–Holm
correction (adjusted p-values displayed).

Table 1. Chi-square test of homogeneity for the number of observations per urbanization indicator—soil sealing and human
population density—of five mosquito genera. Expected counts are weighted by the proportion of samples of the four other
genera (ns = not significant).

Genus Observed Counts Weighted Expected Counts χ2 p-Value

Sealing Low Moderate Strong Very
Strong Low Moderate Strong Very

Strong

Aedes 2386 1064 427 86 2268 1063 489 143 36.61 <0.001
Anopheles 464 149 65 12 397 187 83 23 28.23 <0.001

Coquillettidia 238 79 31 12 208 97 43 12 11.21 <0.011
Culex 4424 2150 1023 300 4706 2092 877 222 70.40 <0.001

Culiseta 2297 1102 480 144 2341 1073 482 128 3.70 ns

Population Rural Peri-
Urban Urban Rural Peri-

Urban Urban

Aedes 645 2830 488 738 2683 543 4.18 <0.001
Anopheles 233 413 44 128 467 94 131.24 <0.001

Coquillettidia 80 239 41 67 244 49 41.81 ns
Culex 1462 5311 1124 1470 5346 1081 71.62 <0.028

Culiseta 732 2670 621 749 2723 551 8.51 <0.001

By visualizing the Pearson residuals of the Chi-square test to explore tendencies of
mosquito genera for a certain urbanization level (Figure 4), a general preference of the
genus Anopheles for rural areas, of the genera Culex and Culiseta for more densely populated
environments, and of the genus Aedes for peri-urban spaces could be demonstrated.
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Figure 4. Tendencies of genera for a certain level of urbanization categorized by the indicators soil sealing (a) and human
population density (b) by means of Pearson residuals. Dot size corresponds to the overall contribution to the total Chi-square
value. Positive scores indicate an attraction (green to blue) and negative scores indicate a repulsion between rows and
columns (yellow to red). Significant differences from row-wise comparisons are indicated (* = p < 0.05, *** = p < 0.001).

4. Discussion

This is the first large-scale indoor mosquito biodiversity study for Germany, based
on 16,933 submissions to the citizen science monitoring scheme ‘Mückenatlas’ from in-
side the homes of the participants between 2012 and 2019. Without the contribution of
citizens, it would not have been possible to collect such data and analyze the biodiversity
of mosquitoes in human housing. Therefore, citizen science seems almost a necessity
for indoor biome research, at whatever scale. For example, at the lowest scale, citizens
could participate simply by letting scientists into their homes so that professionals can
systematically sample there (e.g., [70]). In this case, the involvement of citizens in the
scientific process is extremely limited, as is the amount of data that is collected because
this is highly dependent on financial and human resources. The scaling of projects can be
expanded in time and space the more autonomously and flexibly citizens are involved,
e.g., in physical data sampling, photorecording observations, or other parts of the scientific
process [71].

However, while the flexibility of the protocol leads to a high number of participants, it
also induces data bias [31]. In the case of the ‘Mückenatlas’ scheme, differences in sample
size by urbanization level reflects a spatial bias, predominantly caused by population den-
sity, a phenomenon well-known from opportunistic citizen science data [29,30,33,72]. In
this study, the huge differences in sample sizes within years and between the groups of ur-
banization level were counteracted with rather simple methods to demonstrate the general
interpretability and usefulness of the opportunistic data collection for addressing ecological
questions. Regardless of the biases that need to be addressed with methods according to
the analysis objective, involving citizens might be the only way to get indoor biome data at
all. Citizen science is also crucial for collecting a meaningful amount of information when
it comes to national, continental, or even cross-continental comparative studies.

With the support of citizens providing valuable information from their homes, this
study found that indoor mosquito communities differ by urbanization level. A location
effect could be identified for the indicator human population density, whereas differences
of the indicator soil sealing might be due to within-group dispersion, e.g., changes in
relative abundances within the group over the years. By further applying biodiversity
indices to shed more light on these differences, we see that the tendency that rarefied
species richness decreases with increasing urbanization, as already demonstrated in smaller
scale studies [11,15,73]. The higher species richness of sample aggregations stemming
from rural homes appear to reflect a more heterogeneous landscape featuring habitats
suitable for rarer and more specialized mosquito species. However, total species richness
independent from level of urbanization varies greatly over time (Supplementary Materials,
Figure S2), suggesting that fluctuating factors other than soil sealing and human population
density shape the recordable diversity of species. Climatic conditions greatly influence the
development and composition of mosquito communities [74–76] and can lead to higher
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densities, nuisance, and media topicality, thus increasing the probability of a submission by
a ‘Mückenatlas’ participant [30]. In addition, the opportunistic data collection is not only
biased by human population and climatic variability but also by taxonomic preferences [32].
In the case of citizen science programs where both native and invasive taxa are of interest,
people tend to look out for the intruders [77,78]. Therefore, species richness estimates
from citizen science data need to be carefully interpreted and, if possible, combined or
cross-checked with professional data [79,80].

Comparison of effective Shannon diversity also indicates that diversity decreases
with urbanization, thereby supporting the results of rarefied species richness estimates
and partly explaining the significant difference of the groups. Although a meta-study
by Fenoglio et al. [81] found hematophagues to be the only group of arthropods that
generally seems to positively respond to urban environments, mosquito communities are
less diverse in populated and sealed areas [11,73,82]. While the disturbance of natural
habitats through deforestation or drainage of wetlands negatively affects the life cycle of
rather specialized species, adaptive generalists are promoted by urbanization. Indeed, some
of the most competent vectors of the Aedes, Culex, and Anopheles genera show tendencies
to exploit edges of disturbance such as forest-arable land transitions, abandoned stables,
or construction sites at urban expansion borders [21,83]. The tendency of submitted Aedes
specimens to be collected predominantly in peri-urban areas could therefore also be due to
high submission numbers of Ae. japonicus, a species that also prefers these transition zones,
to the ‘Mückenatlas’ scheme [84].

Of all mosquito genera, Culex is the most frequent in urban and strongly sealed areas,
mainly due to the high numbers of Cx. pipiens complex submissions. Members of the Cx.
pipiens complex are ecologically and physiologically flexible and are known to thrive in
urban areas [85,86]. They reproduce as easily as other urban-adapted mosquito species in
widely available artificial containers [87]. As such, artificial containers offer microhabitats
that enable mosquito species to survive despite dry seasons or droughts [88]. Even the
emergence of the human-biting preference of Ae. aegypti or a shift of breeding site selection
by the minor malaria vector, Anopheles plumbeus, towards man-made habitats can now be
attributed to adaptation to urban regions with reliable water sources [88–90].

5. Conclusions

Our results demonstrate that citizen science is an appropriate method in the process
of analyzing the indoor biome and, moreover, that the ‘Mückenatlas’ opportunistic data
collection not only confirms existing knowledge but also enables completely new insights
into urban mosquito ecology. Although the analysis is greatly simplified by combining
all submissions and creating artificial groups of mosquito communities, regardless of
the geographical or climatic conditions of the original location, the explanatory power
of the data is strong—certainly due to the large observation number. Citizen science is
therefore not only recommended for inclusion in formal mosquito monitoring programs to
enlarge the data basis for better risk assessments and modelling, it could also unleash a
truly invaluable resource that can significantly advance the global indoor biome data—the
people at home [91].

The results of this study are also relevant for public health in Germany. The high
submission numbers of Cx. pipiens complex from within people’s homes and from high
levels of urbanization (i.e., densely populated areas) highlight the risk of human exposure
to mosquito-borne disease in the country. The simplification of mosquito communities
in urban areas worldwide, as confirmed by our study, is caused by less differentiation
of breeding sites through homogenization of urban habitats, which is in turn linked to
higher infection rates [11,73]. Initial natural diversity would not recover, even over a
century after being urbanized [17], so the natural mechanism of reducing species-related
nuisance through intraspecific competition will not be restored. In the face of accelerated
urbanization and global warming, precautions can only be taken with further intensive
surveillance and knowledge acquisition. Therefore, continuous mosquito monitoring
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on large scales, even cross-national, with conventional methods and citizen science are
just as essential as targeted small-scale field studies to achieve a better understanding of
vector ecology.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10
.3390/insects12050374/s1, Table S1: Species list with corresponding numbers of submissions to the
‘Mückenatlas’. Table S2: Total counts of submissions by year and level of urbanization; Table S3:
PERMANOVA results based on Bray–Curtis dissimilarities using square-rooted abundance data for
indoor mosquito communities grouped by (a) soil sealing and (b) human population density; Figure S1:
Distribution of indicator categories across Germany; Figure S2: Differences in the biodiversity indices
with or without consideration of the sampling effort across all years, regardless of urbanization
indicator. Figures S1 and S2 were produced in R [59].
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