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Abstract

Background: Air pollution increases the morbidity and mortality of cardiovascular disease (CVD). Atherosclerosis
(AS) is the pathological basis of most CVD, and the progression of atherosclerosis and the increase of fragile plaque
rupture are the mechanism basis of the relationship between atmospheric particulate pollution and CVD. The aim
of the present study was to investigate the effects of coal-fired fine particulate matter (PM2.5) on the expression
levels of atherosclerosis-related proteins (von Willebrand factor (vWF), Endothelin-1 (ET-1), intercellular adhesion
molecule-1 (ICAM-1), and E-selectin, and to explore the role and mechanism of the progression of atherosclerosis
induced by coal-fired PM2.5 via the mitogen-activated protein kinase (MAPK) signaling pathways.

Methods: Different concentrations of PM2.5 were given to apolipoprotein-E knockout (ApoE−/−) mice via intratracheal
instillation for 8 weeks. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of vWF, ET-1 in
serum of mice. Immunohistochemistry was used to observe the expression and distribution of ICAM-1 and E-selectin in
the aorta of mice. Western blot was used to investigate the phosphoylation of proteins relevant to MAPK signaling
pathways.

Results: Coal-fired PM2.5 exacerbated atherosclerosis induced by a high-fat diet. Fibrous cap formation, foam cells
accumulation, and atherosclerotic lesions were observed in the aortas of PM2.5-treated mice. Coal-fired PM2.5 increased
the protein levels of ET-1, ICAM-1, and E-selectin, but there was no significant difference in the vWF levels between the
PM2.5-treatment mice and the HFD control mice. Coal-fired PM2.5 promoted the phosphorylation of p38, c-Jun N-
terminal kinase (JNK), extracellular signal-regulated kinase (ERK) in aortic tissues of mice.
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Conclusion: Coal-derived PM2.5 exacerbated the formation of atherosclerosis in mice, increased the expression levels of
atherosclerosis-related proteins in mice serum, and promoted the phosphorylation of proteins relevant to MAPK
signaling pathway. Thus, MAPK signaling pathway may play a role in the atherosclerosis pathogenesis induced by Coal-
derived PM2.5.
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Background
Air pollution caused 4.1 million deaths globally in 2016
alone and is the sixth highest-ranking risk factor for global
mortality [1]. Air pollution increases the morbidity and
mortality of cardiovascular disease (CVD) [2–5]. Accord-
ing to a report of the World Health Organization (WHO),
around 17.3 million people die of CVD each year, which
accounts for 30% of all deaths [6]. Fine particulate matter
(PM2.5) is the main toxic component of atmospheric par-
ticulate matter and primarily derives from coal-fired emis-
sion and automobile exhaust [7]. Moreover, an estimated
2.9 million deaths was attributed to PM2.5 in 2013 alone,
which is considered as a leading risk factor for global dis-
ease [8]. PM2.5 is one of the primary causes of death in
China and accounted for 11.1% of all deaths in China in
2016 [1]. Since the PM2.5 pollution is mainly caused by
coal-burning emission in China [9, 10], it is important for
future research to further elucidate the effects and mecha-
nisms of coal-fired PM2.5 on cardiovascular diseases.
Atherosclerosis (AS) is a type of CVD [11] and is one

of the leading causes of death around the world [12–14].
AS is also the pathological basis of most CVD, and the
progression of atherosclerosis and the increase of fragile
plaque rupture are the mechanism basis of the relation-
ship between atmospheric particulate pollution and
CVD [15–17]. PM2.5 increased mortality in individuals
with CVD [18] via its contribution to the development
of atherosclerosis [19]. Additionally, exposure to PM2.5

is a fundamental cause of cardiovascular diseases [20].
PM2.5 has short-term and long-term effect on cardiovas-

cular system [14, 21]. Animal studies have suggested that
PM2.5 exposure increases both the area of atherosclerotic
plaques and plaque vulnerability in apolipoprotein-E
knockout (ApoE−/−) mice and rats [19, 22, 23]. Similar re-
sults have been found from epidemiological studies, which
have revealed that exposure to PM2.5 increases the devel-
opment of atherosclerosis in humans [24–26]. PM2.5 pre-
sumably exerts atherogenic effects by inducing endothelial
damage, mitochondrial injury, inflammatory responses,
and oxidative stress [23, 27, 28]. However, the underlying
molecular processes and potential mechanisms remain to
be fully elucidated due to the etiological complexity of the
atherogenesis [29, 30].
Mitogen-activated protein kinase (MAPK) signaling

pathways are a series of parallel cascades of serine/

threonine kinase, including extracellular signal-regulated
kinase (ERK), c-Jun N-terminal kinase (JNK), and p38
MAPK [31]. MAPK signaling pathways play a key role in
the atherosclerosis development [32], and it deserves
further investigation in PM2.5-induced atherosclerosis.
Thus, the present study aimed at exploring the mecha-
nisms of atherosclerosis induced by coal-fired PM2.5 and
the role of MAPK signaling pathways in this disease
progression.

Methods
Coal-fired PM2.5 collection and extraction
Raw coal from a typical coal field (Yinchuan) in China
was purchased from state-owned coal mines. The coal
samples were broken into pieces and ignited in the
stove. PM2.5 emitted from coal combustion was sampled
by the dilution tunnel system, and dilution and sampling
continued until the combustion finished [33].
The PM2.5 filters were extracted with ultra-pure water

in an ultrasonic bath. After ultrasonic elution and
freeze-drying, coal-fired PM2.5 suspensions were pre-
pared and stored at − 20 °C until they were used for ex-
posure to mice.

Animals and experimental groups
ApoE−/− C57BL/6 J mice represent a common experi-
mental model for atherosclerosis research. Forty
ApoE−/− male mice (7–8 weeks old, weight ranged from
18 g to 20 g) were obtained from Beijing Vital River La-
boratory Animal Technology Co., Ltd. Mice were housed
in a barrier system at a controlled temperature (22 ±
2 °C) and a relative humidity 40–70%, with a 12 h:12 h
light:dark cycle. All animals were given free access to
food and water. Atherosclerosis model groups were fed
with a high-fat diet (HFD) consisting of 54% regular
chow, 20% sugar, 15% lard oil, 7.8% casein, 1.7% calcium
hydrogen phosphate, 1.2% cholesterol, and 0.2% bile salt.
Choosing 6 to 10 mice for each group in general mice

experiments to meet the statistical requirements, and we
chose the median 8. It not only avoided sample size re-
duction caused by accidental death during the experi-
ment, but also followed the rules of 3R which contain
the reduction of animal usage. After 1 week of
acclimatization, mice were divided into the following five
groups randomly by using random number table (n = 8)
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and treated with PM2.5 or phosphate buffer saline (PBS):
(1) normal control group (normal diet + PBS); (2) HFD
control group (HFD + PBS); (3) low-dose group (HFD +
PM2.5 0.05 mg/kg of body weight [bw]/week); (4)
middle-dose group (HFD + PM2.5 0.50 mg/kg of bw/
week); and (5) high-dose group (HFD + PM2.5 5.00 mg/
kg of bw/week). Basing on previously reported study
[34] and our laboratory former work, different concen-
trations of coal-fired PM2.5 (0, 0.05, 0.50, and 5.00 mg/kg
of bw) were given to ApoE−/− mice once a week (at
8.00–11.00 a.m. of Tuesday) via intratracheal instillation.
After 8 weeks treatment [21], mice were sacrificed by
cervical dislocation under isoflurane anaesthesia. Whole-
blood samples kept at room temperature for 30 min after
they were collected through aortas, and then they were
centrifuged at 3000 g for 10 min. Sera were collected and
stored at − 80 °C. Aortic root samples were fixed in 4%
paraformaldehyde and embedded in paraffin, after which
they were used for histopathological and immunohisto-
chemical analyses.

Histopathology
As previously reported [35, 36], aortas isolated from all
groups were fixed in 4% paraformaldehyde for 48 h and
subsequently embedded in paraffin. For histopatho-
logical assessment, all samples of aorta root were proc-
essed into serial sections with 6-μm thick, and stained
with hematoxylin and eosin (H&E).

Immunohistochemistry
Immunohistochemistry was performed as previously
described [37]. The paraffin-embedded tissue sections
were dewaxed, then immersed in 0.01 mol/L citric
acid buffer and heated to boiling in an autoclave for
2 min. After treated with 0.3% hydrogen peroxide so-
lution for 10 min, the tissue sections were blocked
with 5% bovine serum albumin (BSA) for 1 h at 37 °C.
Then they were washed three times with tris buffered
saline (TBS), and were then incubated with primary
antibodies (rat anti-mouse intercellular adhesion
molecule-1 [ICAM-1] [dilution 1:100] and rabbit anti-
mouse E-selectin [dilution 1:25], both purchased from
Abcam, UK) for 2 h at 37 °C. The tissue sections were
then washed three times with TBS, and treated with
appropriate horseradish peroxidase (HRP)- conjugated
secondary antibodies for 2 h at 37 °C. Then they were
then rinsed three times with TBS again. Antigen-
antibody reactions were stained with diaminobenzi-
dine (DAB), and sections were also counterstained
with H&E. The expression levels of ICAM-1 and E-
selectin were observed with a Nikon E400 microscope
under high-power (400×) fields.

Enzyme-linked immunosorbent assays (ELISAs)
The concentrations of Endothelin-1 (ET-1) and von
Willebrand factor (vWF) in the mice sera were deter-
mined by ELISA kits according to the manufacturer’s
recommendations (Abcam, UK).

Western blotting
As previously described [38], proteins were extracted
with protein lysate, and a BCA protein assay reagent kit
(Beyotime Biotechnology, Shanghai, China) was used to
detect their concentrations. Proteins were subjected to
electrophoresis on sodium dodecyl sulfate (SDS)– poly-
acrylamide gels and then the target proteins were trans-
ferred onto nitrocellulose membranes. Subsequently, the
membranes were blocked for 2 h at room temperature
with 5% (wt/vol) milk in TBS with 0.05% (wt/vol)
Tween-20. Next, The membranes were washed in tris
buffered saline with Tween 20 (TBST) for three times
and incubated overnight at 4°Cwith specific primary
antibodies. Antibodies for p-p38 (4511S), p38 (9212S),
p-JNK (4668S), JNK (9252S), p-ERK (9101S), ERK
(9102S), and β-Tubulin (2146S) were obtained from Cell
Signaling Technology (Danvers, MA, USA). Then the
membranes were washed with TBST three times and
were incubated for 2 h at room temperature with horse-
radish peroxidase-conjugated secondary antibody. After
being washed in TBST, protein bands were detected
with an enhanced chemiluminescence (ECL) detection
kit (GE Health, USA), and quantified by densitometry
(Tanon-4500).

Statistical analysis
All data were presented as the mean ± standard deviation
(SD). Statistical analyses were performed with SPSS 18.0
software. One-way analysis of variance was used to
analyze the differences among multiple groups. P value
< 0.05 was considered to be statistically significant.

Results
Body weights and organ coefficients
After 8 weeks of PM2.5 exposure, there was no signifi-
cant difference in body weights among the experimental
groups (Fig. 1). There were also no significant differ-
ences in the mediastinal lymph-node weights or coeffi-
cients between the normal control group and the HFD
control group. However, after 8 weeks of treatment with
PM2.5, HFD-fed ApoE−/− mice had significantly in-
creased mediastinal lymph-node weights and coefficients
compared with those of HFD control mice (Fig. 2).
Compared with the measured parameters in HFD con-
trol mice, PM2.5-treatment did not induce any changes
in thymus, spleen, liver, or kidney weights—or in their
corresponding organ coefficients—in HFD-fed ApoE−/−

mice (not shown).
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Histopathology
To examine whether coal-fired PM2.5 promotes the for-
mation of atherosclerosis in ApoE−/− mice, we exposed
them to coal-fired PM2.5 or PBS for 8 weeks. Cross-
sections of aortas were stained with H&E (Fig. 3). In the
normal control group, the intimal structure was well-
organized and intact. However, the intima was markedly
thickened in the HFD control group, and some foam
cells were located in the subendothelial layer. Moreover,
PM2.5 treatment exacerbated HFD-induced atheroscler-
osis. Cross-sections of the PM2.5-treated mouse aortas
showed atherosclerotic lesions, intimal thickening, fi-
brous cap formation, and accumulation of foam cells, in-
dicating that coal-fired PM2.5 promoted the formation of
atherosclerosis in mice.

The levels of atherosclerosis-related proteins
Compared with the HFD control group, the vWF levels
in blood plasma of PM2.5-treatment groups were not in-
creased, but were significantly increased in the normal
control group (Fig. 4a). This finding indicated that HFD
inhibited the level of vWF in ApoE−/− mice.
The levels of ET-1 in the plasma were significantly in-

creased in PM2.5-treatment groups compared with the
HFD control group, whereas they were lower in normal
control group compared to the HFD control group (Fig.
4b). This finding indicated that PM2.5 increased the ex-
pression of ET-1 in ApoE−/− mice.
Immunohistochemistry revealed a slight increase in

the expression of ICAM-1 in the HFD control group
relative to that in the normal control group. In addition,
PM2.5 treatment significantly increased ICAM-1 expres-
sion compared with that in the HFD group (Fig. 4c).
E-selectin expression was also examined by immuno-

histochemistry (Fig. 4d). There were no visible E-
selectin-positive cells in aortas from normal control
mice, while HFD significantly increased E-selectin

expression. Treatment with PM2.5 plus HFD markedly
increased E-selectin expression in mouse aortas.

Phosphorylation levels of components of MAPK signaling
pathways
To further investigate the mechanism of PM2.5-induced
atherosclerosis, activation of MAPK signaling pathways
was examined. As shown in Fig. 5, the phosphorylation
levels of p38 MAPK, ERK1/2, and JNK in PM2.5-treat-
ment ApoE−/− mice were significantly increased com-
pared with those in HFD control mice. This finding
indicated that coal-fired PM2.5 increased the phosphoryl-
ation levels of p38, ERK1/2, and JNK in mouse aortas.

Discussion
PM2.5 presumably exerts atherogenic effects by inducing
endothelial damage, mitochondrial injury, inflammatory
responses, and oxidative stress [21, 23, 28, 39, 40]. In
our present study, PM2.5-treatment significantly in-
creased lymph-node weights and coefficients compared
with those of HFD control group. It indicated that in the
process of inflammation induced by coal-fired PM2.5

immunocytes might be involved in and play role in
injury or recovery. So further studies are needed to
elucidate potential mechanisms underlying this
phenomenon.
Epidemiological and experimental studies have sug-

gested that PM2.5 exposure is a risk factor which pro-
motes the development of AS [41], and lipids
accumulation and fibrous plaques formation in arteries
are characters of AS [42, 43]. In our present study,
cross-sections of PM2.5-treated mouse aortas exhibited
atherosclerotic lesions, intima thickening, fibrous cap
formation, and foam cell accumulation, indicating that
coal-fired PM2.5 promoted the formation of atheroscler-
osis in mice.
The expression of adhesion molecules on the endothe-

lium increased during the progression of AS, which

Fig. 1 Effect of coal-fired PM2.5 on body weight (n = 8)
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involve the recruitment of monocytes into the circula-
tion and trans-endothelial migration [44]. Moreover, efi-
ciencies of adhesion molecules would inhibit monocyte
migration and AS formation in mice [36].
vWF is a large glycoprotein [45] that can be produced

in endothelial cells and megakaryocytes [46–48]. vWF
involves the adhesion of platelets to endothelial cells
[47], which is associated with the formation of thrombus
and atherosclerosis [49, 50]. But It is still controversial
whether vWF plays a key regulatory role in the AS for-
mation induced by coal-fired PM2.5. A study showed
PM2.5 could increase vWF in old people, but another
stuy showed PM2.5 could decrease vWF level in rats

[51]. In our study, there was no significant difference in
the vWF levels between the PM2.5-treatment mice and
the HFD control mice. Our result was consisted with
those in the previous study [52], which showed PM2.5

could not increase vWF in young adults. Different re-
sults may caused by different species and different phys-
ical conditions. Therefore, further studies are needed to
elucidate whether vWF is really involved in the process
of AS formation induced by PM2.5 or not.
ET-1 is a vasoconstrictor peptide that is synthesized

by endothelial cells of the vascular wall [53] and by
macrophages [54], and has been demonstrated to be a
potent vasoconstrictor [55–58]. ET-1 directly affects

Fig. 2 Effects of coal-fired PM2.5 on mediastinal lymph nodes in terms of (a) weight, and (b) organ coefficient (compared with HFD control mice,
*P < 0.05, **P < 0.01, n = 8)
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blood vessels and the heart [59] and is implicated in
many forms of cardiovascular disease [60–63]. Studies
have demonstrated that the overexpression of ET-1
exacerbates HFD-induced AS in ApoE−/− mice [64,
65]. However, it remains unclear how increased ET-1
expression exacerbates atherosclerotic progression in
HFD-fed ApoE−/− mice [64]. In the present study, we
found that coal-fired PM2.5 elevated the expression of
ET-1 in mice plasma. We can not obtain a very ideal
dose-response relationship for this index, there are
two reasons may induce such condition. The first is
that in the experiment only several mice were used
for each group and there must be some sampling

error which may influence the representativeness of
mean for the population. Second, there is no liner re-
lationship between the dose and the response for this
index.
ICAM-1 is a transmembrane glycoprotein [66] and

is typically expressed on the surface of endothelial
and immune cells [67]. Cell-adhesion molecules, such
as ICAM-1, involve in binding and recruitment of cir-
culating leukocytes to the vascular endothelial cells
and further migration into subendothelial spaces,
which are primary processes of AS [68, 69]. Hence,
ICAM-1 may play a key role at the initial stage of AS
[70–73]. In the present study, we found that coal-

Fig. 3 Histological assessment of ApoE−/− mice aortas (a) 200x magnification and (b) 400x magnification (H&E staining)
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fired PM2.5 increased the expression of ICAM-1 in
ApoE−/− mouse aortas. In addition, a soluble form of
ICAM-1 has been found in plasma, which may be in-
volved in the progression of AS [74].
E-selectin is a transmembrane glycoprotein [75] and

expressed exclusively on the surface of endothelial
cells [76, 77]. E-selectin is important for the initial
rolling interaction [78–80] and subsequent adhesion
[81] of leukocytes in the inflamed endothelium, as
well as for the transmigration of inflammatory cells to
inflammation sites [76], which are critical events in
the initiation of AS [82]. Moreover, monocytes are re-
cruited to lipid-rich plaques mediated by E-selectin
during the progression of AS [83]. E-selectin is a hall-
mark of atherogenesis [84–86] and is implicated in
the destabilization of atherosclerotic plaques [87]. It
has been reported that E-selectin is mostly absent in
the healthy endothelial cells but is apparently upregu-
lated in aberrant endothelia that are covered with
atherosclerotic plaques in mice and humans [86]. E-
selectin is associated with PM2.5 measurements at the

day of blood drawing [88]. Our present study found
that coal-fired PM2.5 promoted E-selectin expression,
indicating that PM2.5 may aggravate arteriosclerosis by
inducing upregulation of E-selectin. Taken together,
the PM2.5-induced the changes of multiple proteins
expression in the present study suggest that these
proteins may link coal-fired PM2.5 exposure with the
formation of atherosclerosis.
MAPK signaling pathways are a series of parallel

cascades of serine/threonine kinases [31] that trans-
duce extracellular signals into cells and induce cellu-
lar biological responses [89]. MAPK signaling
pathways play an important role in regulating the car-
diovascular system [90], and they also influence the
formation and development of atherosclerosis [91,
92]. PM2.5 increases ET-1 levels and markedly upre-
gulates p-p38 MAPK expression in vascular smooth
muscle cells [93]. Studies have shown that cigarette-
smoke extracts upregulate the ICAM-1 and E-selectin
expressions via phosphorylation of JNK and ERK
pathways [94, 95]. Moreover, a study demonstrated

Fig. 4 Effect of coal-fired PM2.5 on the levels of proteins (a) vWF, (b) ET-1, (c) ICAM-1 (the brown areas are ICAM-1-positive cells, 400x
magnification), and (d) E-selectin (the brown areas are E-selectin-positive cells, 400x magnification); compared with HFD control mice, *P < 0.05,
**P < 0.01, n = 8
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that PM2.5 increases the expression of ICAM-1 in hu-
man endothelial cells via ERK pathway [96]. In the
present study, western blotting showed that coal-fired
PM2.5 induced phosphorylation of p38, JNK, and ERK
kinases in mouse aortas. Hence, MAPK signaling
pathways may partially link coal-fired PM2.5 exposure
with upregulation of ET-1, ICAM-1 and E-selectin.

Conclusion
Coal-derived PM2.5 exacerbated the formation of athero-
sclerosis in mice, increased the expression levels of
atherosclerosis-related proteins (ET-1, ICAM-1 and E-
selectinin) in mice serum and promoted the phosphoryl-
ation of proteins relevant to MAPK signaling pathway.
Therefore, We postulate that MAPK signaling pathway
may play a role in the atherosclerosis pathogenesis in-
duced by coal-derived PM2.5. More researches need to
be conducted on the relationship between
atherosclerosis-related proteins and MAPK signaling

pathway and the underlying mechanism needs to be elu-
cidated further in the future.
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