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Abstract
Duchenne muscular dystrophy (DMD) is a devastating chromosome X-linked disease that manifests predominantly in pro-
gressive skeletal muscle wasting and dysfunctions in the heart and diaphragm. Approximately 1/5000 boys and 1/50,000,000 
girls suffer from DMD, and to date, the disease is incurable and leads to premature death. This phenotypic severity is due to 
mutations in the DMD gene, which result in the absence of functional dystrophin protein. Initially, dystrophin was thought 
to be a force transducer; however, it is now considered an essential component of the dystrophin-associated protein complex 
(DAPC), viewed as a multicomponent mechanical scaffold and a signal transduction hub. Modulating signal pathway activa-
tion or gene expression through epigenetic modifications has emerged at the forefront of therapeutic approaches as either an 
adjunct or stand-alone strategy. In this review, we propose a broader perspective by considering DMD to be a disease that 
affects myofibers and muscle stem (satellite) cells, as well as a disorder in which abrogated communication between different 
cell types occurs. We believe that by taking this systemic view, we can achieve safe and holistic treatments that can restore 
correct signal transmission and gene expression in diseased DMD tissues.
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Introduction

Duchenne muscular dystrophy (DMD) is a chromosome 
X-linked disease that affects approximately 1/5000 boys 
and 1/50,000,000 girls [1–3]. DMD manifests in progressive 
skeletal muscle wasting and heart and diaphragm dysfunc-
tions [4]. Depending on the dystrophin expression profile, 
some patients also suffer from other phenotypic alterations 
that include cognitive deficits and psychiatric problems [5, 
6]. DMD is typically diagnosed around the age of 5 when 
the first symptoms of motor delay or abnormal gait become 
apparent, although preceding delays in independent walking 
and language development may have also been observed [7]. 
With progression of the disease, the extent of muscle fiber 
loss is so vast that patients are forced to use a wheelchair 
and respiratory system aid to help the diaphragm sustain 
breathing. To date, DMD is incurable and leads to premature 

death by the twenties or thirties due to respiratory or cardiac 
failure [7].

DMD is caused by mutations in the DMD gene that lead 
to the absence of functional dystrophin protein. A number 
of research studies have revealed that a lack of functional 
dystrophin results in aberrant signal transduction, which 
leads to epigenome modifications and altered gene expres-
sion in affected muscle tissues [8–11]. Although still limited, 
knowledge regarding dystrophin absence-associated dis-
turbed signaling resulted in the first experimental therapies 
and clinical trials based on gene expression modulation. For 
example, the use of histone deacetylase inhibitors showed 
promising therapeutic outcomes in DMD animal models 
and patients [12, 13]. Nonetheless, due to the systemic and 
nonspecific action of these therapies, disadvantageous side 
effects are inevitable [12]. We are only starting to recognize 
the intricate web of interactions between myofiber and its 
environment, which consists of various cell types, includ-
ing muscle stem (satellite) cells, fibro/adipogenic progeni-
tors (FAPs), immune cells, motoneurons, bone cells, and 
blood vessel cells. Any of the therapeutic approaches based 
on tweaking gene expression in the diseased tissue would 
need to take into account the magnitude of these cell-to-cell 
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interactions. In this article, we gather and review the avail-
able data on the interdependence of various cell types in the 
muscle and surrounding tissues in the context of dystrophin 
deficiency.

Molecular background of Duchenne 
muscular dystrophy

DMD is localized on the Xp21 locus, which spans ~ 2.5 Mbp 
and consists of 79 exons. Its activation leads to the syn-
thesis of several mRNA transcripts in a tissue-dependent 
manner. In particular, a 14 kb mRNA encoding 427 kDa 
dystrophin isoform (Dp427) is generated in high amounts in 
skeletal muscles and the heart [14], and all mutations caus-
ing DMD result in either the loss or production of highly 
dysfunctional Dp427 [15]. Dp427 synthesis occurs at three 
distinct promoters. Dp427m is present in skeletal and car-
diac muscles, Dp427c occurs in neurons of the cortex and 
the CA regions of the hippocampus, and Dp427p is found 
in cerebellar Purkinje cells [14]. In addition to full-length 
dystrophin, several shorter isoforms are generated as a result 
of transcription from several other unique promoters. Iso-
forms Dp260 and Dp116 are observed mainly in the retina 
and peripheral nerves, respectively [16, 17], while Dp140 
is predominantly synthesized during fetal stages and in the 
adult brain, similar to the shortest Dp40 [18, 19]. In contrast, 
Dp71 is ubiquitously present in various tissues, and although 
previously considered to be a nonmuscle isoform [20, 21], 
its presence has been recently confirmed in myoblasts and 
myofibers [21, 22]. Depending on the site of mutation in 
DMD, the expression of shorter dystrophins might also be 
compromised [23], which impacts the extent of the observed 
pathological alterations. For instance, mutations that affect 
the expression of Dp71, which is especially abundant in the 
brain, account for intellectual disability in DMD patients [5].

Initially, dystrophin was considered to serve only mechan-
ical functions, particularly in the context of the dystrophin-
associated protein complex (DAPC) assembled in the sar-
colemma and known to transduce the force during muscle 
contraction to the extracellular matrix (ECM) [24]. Over 
time, interactions of either dystrophin or DAPC with several 
cytoskeletal elements and cell signaling molecules have been 
reported [25]. Because of its numerous binding domains and 
interaction partners, dystrophin is now considered part of 
a multicomponent mechanical scaffold as well as a signal 
transduction hub [26–29] (Fig. 1).

The lack of functional full-length dystrophin (Dp427) 
inevitably leads to sarcolemma destabilization and mus-
cle degradation. These effects are particularly evident in 
myofibers that are stretched during contractions, where 
dystrophin absence results in extensive membrane tearing, 
influx of  Ca2+ through stretch-activated ion channels, a rise 

in intracellular  Ca2+ levels and the associated overproduc-
tion of reactive oxygen species (ROS) [30, 31]. This pro-
cess is considered an important initiating event in dystrophic 
pathogenesis and a subject of many studies that focus on 
therapeutic interventions in DMD [32–35]. The absence 
of dystrophin and the resultant disorganization of DAPC 
also impair the distribution of proteins at and underneath 
the sarcolemma, including signaling molecules, additionally 
contributing to myofiber death [36]. Importantly, dystrophin 
deficiency seems to be naturally alleviated by expression 
of the utrophin (UTRN) gene in both humans and animal 
models [37, 38], which is signified by the structural and 
functional similarities between utrophin and dystrophin [39, 
40] and by the differences in the severity of the phenotype 
of various DMD mouse models. In particular, mdx mice that 
lack Dp427 have relatively mild disease symptoms and only 
slightly affected lifespans [41, 42], while mice missing both 
dystrophin and utrophin (mdx/utrn−/−) show a much more 
severe phenotype and usually die before the age of 20 weeks 
[43, 44]. Despite clear symptomatic differences in the course 
and severity of the disease in mdx mice and humans, mdx 
mice continue to be the most commonly used animal model 
of DMD [41, 45]. The effect of an absence of dystrophin in 
the muscle is not limited to the myofiber pathology but also 
pertains to the direct loss of dystrophin-related functions 
in satellite cells and vasculature [46, 47]. In particular, loss 
of dystrophin in satellite cells results in alterations in their 
division kinetics and differentiation into mature fibers [46].

Treatment strategies for DMD target primary defects 
or attenuate secondary downstream pathologies. The first 
approach aims to restore functional dystrophin protein. For 
example, antisense oligonucleotide-mediated exon skipping 
targets pre-mRNA splicing to restore shortened but func-
tional proteins [48], while the CRISPR/Cas9 system is used 
to edit the defective DMD gene [49]. Currently, four exon 
skipping antisense oligonucleotides are FDA-approved 
for use in the treatment of DMD patients: Amondys 45 
(casimersen), Viltepso (viltolarsen), Exondys 51 (eteplirsen) 
and Vyondys 53 (golodirsen)  [50–52]. Moreover, CRISPR/
Cas9-based strategies have provided promising therapeutic 
approaches; however, limitations remain, including the risk 
of off-target gene editing, and further research is required 
[50]. The above strategies are mutation-specific and thus are 
not universal and cannot be used for all patients. In contrast, 
the sequence of functional dystrophin can be delivered to 
all cells with recombinant adeno-associated viral (rAAV) 
vectors, although their capacity is limited to approximately 
4.7 kb and thus precludes insertion of a cassette spanning 
the 11 kb coding fragment of Dp427 mRNA. Importantly, 
vectors carrying microdystrophins to muscle fibers are in 
clinical trials with promising initial results [53, 54] and 
minidystrophins can be generated by dual rAAV expres-
sion vectors [55, 56]. Cell-based therapies offer another 
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approach; however, despite promising studies in animal 
models, the results are not fully transferable to humans, and 
the limitations include poor survival and limited migration 
(myoblasts), quick differentiation that limits their regenera-
tive potential (satellite cells; SCs), risk of thalamic stroke 
(mesangioblasts), and limited ability to differentiate into 
muscle cells (bone marrow cells and CD133 + cells) [37, 
57].

All these therapeutic methods must face the problem of 
immune rejection of either the restored or delivered dystro-
phin, as well as other foreign proteins, including viral cap-
sids. Alternative strategies that bypass the problem of poten-
tial immune rejection consist of (1) genetically corrected 
autologous pluripotent stem cells differentiated ex vivo 
into dedicated muscle stem cells [58, 59] and (2) therapies 
grounded on either pharmacological induction of the UTRN 
gene [57] or delivery of vectors encoding micro- and mini-
utrophins [40, 60]. Importantly, the Davies and Chamberlain 
groups revealed the therapeutic potential of full-length [61] 
and truncated utrophins in the muscles of dystrophic mice 
[62, 63]. Moreover, increasing the level of utrophin in DMD 
patients using pharmacological activators also had positive 

outcomes [40]. Nevertheless, it is important to note that the 
synthesis of dystrophin and utrophin from several promot-
ers, extensive alternative splicing of the resultant mRNAs 
and the presence of alternative polyadenylation sites result 
in the expression of a whole range of specialized protein 
products in various cell types in a time- and often space-
restricted manner [20]. Thus, inadequate dystrophin isoform 
matching could lead to unwanted side effects and long-term 
therapy designed for myofibers with one particular protein 
may expose latent dystrophin-related phenotypes in tissues 
other than muscle. The current results indicate that utrophin 
can partially compensate for the lack of functional Dp427, 
both in mechanical and signaling activities [64]. However, 
forced body-wide expression of specific utrophins might 
lead to unexpected pathologies due to, e.g., a lack of neu-
ronal nitric oxide synthase (nNOS)-related signaling [65] or 
inadequate organization of microtubules [66].

In this review, we focus on DMD pathogenesis from a 
broader perspective that includes affected myofibers and 
satellite cells as well as abrogated cell communication and 
signaling between various cell types in the muscle and 
surrounding tissues, including inflammatory cells, bones, 

Fig. 1  Dystrophin-associated protein complex organization. Dystro-
phin forms a scaffold for the dystrophin-associated protein complex 
(DAPC) that acts both as a mechanical force transducer and a sign-
aling hub. Depending on the presence of the dystrophin isoform, its 
paralog utrophin or tissue/cellular localization, the content of DAPC 
may differ. Full-length dystrophin Dp427 consists of the N-terminal 
domain (NTD), central rod [with 24 spectrin-like repeats (circles) 
and 4 hinge modules (rectangles)], cysteine-rich (CRD), and C-ter-
minal (CTD) domains, which provide multiple sites for interactions 
with proteins. NTD and spectrin-like repeats 11–15 bind costameric 
actin filaments, while repeats 8 and 9 anchor MARK2 and 20–23 
interact with microtubules, which can also contact dystrophin indi-
rectly through ankyrin-B. Spectrin-like repeats 1–3 and 10–12 may 
additionally participate in stabilizing the complex to the sarcolemma 
by binding the lipid bilayer. Through CRD, dystrophin interacts with 

sarcolemma-located β-dystroglycan (β-DG), which is anchored to 
α-dystroglycan (α-DG). In turn, α-DG binds laminin, a component of 
the extracellular matrix (ECM) network, which facilitates the trans-
fer of forces during muscle contraction from the cytoskeleton to the 
ECM and protects the sarcolemma from twich-induced damage. At 
the neuromuscular junction (NMJ), the interaction of α-DG with 
agrin and perlecan provides MuSK-induced clustering of acetylcho-
line receptors (AChRs) and determines the localization of acetylcho-
line esterase, while the binding of β-DG with rapsyn is involved in 
the clustering of AChRs. Additionally, β-DG stabilizes α, β, δ- and 
γ-sarcoglycan and the sarcospan complex at the sarcolemma. The 
CTD of dystrophin interacts with various cytosolic proteins, such as 
dystrobrevin or syntrophins (Syn). Syntrophins recruit sodium chan-
nels and signaling molecules, such as neuronal nitric oxide synthase 
(nNOS)
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microvasculature, and innervation; however, signaling-
related topics, such as noncoding RNAs or exosomes, are 
omitted because they have been previously reviewed in-
depth [67–69]. The involvement of dystrophins in cell sign-
aling and communication opens new therapeutic avenues 
as either adjuvants or stand-alone approaches. In addition, 
because all DMD patients suffer from skeletal muscle weak-
ness as well as diaphragm and heart failure, signaling-based 
approaches could be a universal method of treatment and 
contribute to improving their quality of life.

Disrupted signaling in skeletal muscle

Muscle repair is a highly organized sequence of cellular 
events resulting in reconstruction of damaged tissue [70]. 
In DMD, this process is abrogated and shows chronically 
overlapping degeneration and regeneration cycles caused by 
DAPC loss and the resultant structural and signaling abnor-
malities in myofibers and satellite cells. On the one hand, the 
fibers cannot sustain the contraction forces and die, while on 
the other hand, they cannot be efficiently regenerated due to 
the affected division and self-renewal of muscle progenitor 
cells. Recurring inflammation and progressive fibrosis addi-
tionally lead to breakdown of the ECM and further change 
intracellular signaling as well as compromise interactions 
between different cell types, including myofibers as well 
as myoblasts and satellite cells, motoneurons, various bone 
[71] and microvasculature [72] cells (Fig. 2) and recently 
discovered FAPs [73].

Chronic inflammation

Inflammation is a complex biological response in organ-
isms to mitigate harmful stimuli, such as pathogens, irri-
tants, or damaged cells, and initiate tissue repair. It is driven 
by innate immune response factors (nonspecific, associated 
with inflammation) and adaptive immune response fac-
tors (specialized). The innate immune response is initiated 
first, and it involves the action of cells, such as neutrophils, 
monocytes, and macrophages, and soluble factors, includ-
ing cytokines and complement [74]. The pattern recognition 
receptors (PRRs) on the membranes of cells of the innate 
immune response recognize molecules on the pathogen 
surface as well as released material during cell damage or 
death, which represent damage-associated molecular pat-
terns (DAMPs). PRRs can be subgrouped depending on the 
ligand specificity, function, or localization. In particular, 
Toll-like receptors (TLRs) play a key role in the immune 
response (Table 1).

TLRs are expressed on the surface of immune cells and 
cells unrelated to the immune system, including myofibers. 
Activation of TLR signaling initiates cascades of molecular 

events that trigger the synthesis and secretion of cytokines 
and other proinflammatory factors necessary for both innate 
and adaptive immune responses [75, 76]. Cytokines are 
small proteins (~ 5–20 kDa) released by a broad range of 
cells. Their cell-surface receptors are located on various 
types of cells, and following binding, cytokines activate a 
cascade of intracellular signaling, resulting in up- or down-
regulation of a number of genes, although the final effect 
is cell-type specific. Depending on their influence on the 
inflammatory process, they can be divided into pro- and anti-
inflammatory cytokines. Specifically, families of interleukin 
(IL)-1, IL-17, tissue necrosis factor-α (TNF-α), and inter-
ferons belong to the first group, whereas anti-inflammatory 
signaling is driven by families of IL-10 and IL-12 cytokines 
[77] (Table 1). Interestingly, some of them, e.g., IL-6, can 
have a pleiotropic effect on muscle regeneration, i.e., IL-6 
interaction with its soluble receptor mediates pro-inflam-
matory response while binding to its membrane-bound 
receptor triggers a cascade of regenerative or anti-inflam-
matory cytokine action [78, 79] (Table 1). At the time that 
the mechanisms of innate immunity are already active, the 
major histocompatibility complex (MHC) proteins present 
antigens and initiate an adaptive immune response involv-
ing the action of T and B cells. Chronic inflammation can 
adversely affect tissues and organs, and the current data 
indicate that continuous stimulation of the immune system 
sustained by the ongoing degeneration and regeneration of 
myofibers adversely affects the condition of DMD patients.

Membrane instability and leakage of cytoplasmic content 
into the extracellular matrix initiate chronic activation of the 
innate immune system in DMD muscles (Fig. 3a). DAMPs, 
including nucleic acids, heat shock proteins (HSPs), high-
mobility group box 1 (HMGB1) proteins, and ROS, are 
released by destroyed fibers and activate TLRs, e.g., TLR2/4 
in myofibers (Fig. 3a). Signaling from TLRs and the IL-1 
receptor activates a downstream adaptor protein, myeloid 
differentiation primary response 88 (MyD88) (Table 1). 
MyD88 activates IL-1R-associated kinase (IRAK) family 
kinases, which in turn trigger mitogen-activated protein 
kinases (MAPKs) and proinflammatory transcription factors, 
such as nuclear factor-κB (NF-κB; Fig. 3e) and activator pro-
tein 1 (AP-1). Importantly, Gallot et al. (2018) showed that 
inhibition of TLRs or MyD88 in dystrophic mice alleviates 
the disease symptoms and reduces inflammation [80] (see 
also “Disrupted signaling in satellite cells”).

After muscle injury, the tissue is infiltrated by innate 
immune system cells. Among others, (1) CD8 + cytotoxic 
T lymphocytes induce apoptosis of myofibers through a 
perforin-mediated pathway, (2) eosinophils release lytic 
substances and (3) inflammatory M1 macrophages (acti-
vated by proinflammatory cytokines, such as IFN-γ) produce 
nitric oxide (NO) and inflammatory cytokines and partici-
pate in direct phagocytosis (Fig. 3b). Macrophage-derived 
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NO further induces muscle fiber lysis and tissue damage, 
which stimulates neutrophils to release free radicals [81]. 
Local elevations in oxidative stress aggravate the pathology 
of DMD muscles, partially through changes in signal trans-
mission [82]. Proinflammatory cytokines trigger constitutive 
expression of MHC class I and II on muscle cells, which 
attract T and B cells, consequently inducing an adaptive 
immune response [83] (Fig. 3c). Meanwhile, promoted by 
IL-10, IL-4 and IL-13, modulatory M2 macrophages gradu-
ally replace M1 macrophages. M2 macrophages release anti-
inflammatory cytokines, such as IL-10, IL-4 and transform-
ing growth factor-β (TGF-β) [81] that alleviate muscle injury 
(Fig. 3b) (Table 1).

The various inflammatory molecules produced by mac-
rophages include matrix metalloproteases (MMPs), which 
are known to promote inflammation and interstitial fibro-
sis (Fig. 3d) (Table 1). In particular, high levels of MMP-9 
were detected in numerous muscle conditions, including 
the skeletal muscles of DMD mouse models and patients 
[84]. Moreover, the level of MMP-9 correlated with disease 
severity [85]. Hindi et al. showed that inhibition of MMP-9 
boosts the promyogenic M2 phenotype while diminish-
ing the percentage of M1 macrophages in mdx mice [84]. 
Accordingly, MMP-9 downregulation reduced the levels of 

the inflammatory cytokines IFN-γ and IL-6 and increased 
the activity of IL-4 (involved in adaptive immunity). The 
reduced inflammation was also confirmed by the reduced 
levels of the proinflammatory transcription factors NF-κB 
and AP-1 (Table 1). Furthermore, enhanced proliferation of 
SCs and improved regeneration were observed [84].

During DMD muscle degeneration, M1 macrophages 
and myogenic cells are among the main sources of the 
proinflammatory factor TNF-α (Fig. 3b) (Table 1), which 
is suggested to be the major death ligand driving necrosis 
and programmed necrosis (necroptosis) and is linked to the 
activation of receptor-interacting protein kinase-1 (RIPK3) 
signaling [86]. Elevated TNF-α levels also contribute to the 
aggravation of inflammation via the induction of NF-κB 
signaling, which triggers the expression of proinflammatory 
genes and the synthesis of cytokines and chemokines. The 
Acharyya group demonstrated upregulation of IκB kinase/
NF-κB (IKK/NF-κB) signaling in DMD and revealed that 
reduction of NF-κB or its upstream activator IKK improves 
the pathology and muscle function in mdx mice [87]. In the 
same animal model, Yang et al. showed that AAV-medi-
ated shRNA knockdown of the p65 subunit of NF-κB has 
an anti-inflammatory effect [88]. Genetic reduction of p65 
levels also diminished chronic inflammation and improved 

Fig. 2  Pathological alterations and affected signaling pathways in 
DMD muscle fibers and surrounding tissues. Pathological alterations 
are listed for myofibers as well as extracellular matrix (ECM), bones, 
innervation, vasculature and satellite cells. Examples of upregulated 
(↑) and downregulated (↓) signaling pathways associated with the 
observed pathological changes in muscle fibers and surrounding tis-
sues are listed in the box. Abbreviations: nuclear factor-κB (NF-κB), 
transforming growth factor-β (TGF-β), tissue necrosis factor (TNF), 

reactive oxygen species (ROS), matrix metalloprotease 9 (MMP9), 
Toll-like receptors (TLRs), myeloid differentiation primary response 
88 (MyoD88), activator protein 1 (AP-1), neuronal nitric oxide syn-
thase (nNOS), nitric oxide (NO), microRNA-206 (miR-206), vascular 
endothelial growth factor (VEGF), muscle-specific kinase (MuSK), 
hypoxia-inducible factor-1α (HIF-1α), interleukin 6 (IL-6), leukemia 
inhibitory factor (LIF), Wnt/β-catenin (Wnt/β-cat), receptor activator 
of NF-κB (RANK)
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Table 1  Disrupted signaling pathways in DMD muscles and surrounding tissues

Signaling pathway Up- (↑) or downregu-
lated (↓) in DMD

Short description References for 
further reading

Muscle inflammation TLRs ↑ Toll-like receptors (TLRs) belong to the pattern recogni-
tion receptors and play crucial roles in the innate immune 
response. After interaction with damage-associated molecules 
patterns (DAMPs) or pathogen-associated molecular patterns 
(PAMPs), TLRs initiate downstream signaling to activate 
NF-κB, interferons, or mitogen-activated protein kinases 
(MAPKs) that regulate the expression of immune defense-
related genes

[75, 244]

MyD88 ↑ Myeloid differentiation primary response 88 (MyD88) is 
an adaptor protein for inflammatory signaling pathways, 
downstream of TLRs and IL-1 receptors. MyD88 links TLRs 
or IL-1 receptors to IL-1R-associated kinase (IRAK), while 
activation of IRAK activates NF-κB, MAPKs, and activator 
protein 1, driving immune response

[245]

NF-κB ↑ Nuclear factor kappa-light-chain-enhancer of activated B cells 
(NF-κB) is a family of inducible transcription factors regulat-
ing multiple aspects of immune response and inflammation. 
NF-κB promotes the expression of proinflammatory genes 
and regulates the survival, activation, and differentiation of 
immune cells

[246, 247]

AP-1 ↑ Activator protein 1 (AP-1) is a heterodimer transcription factor 
built of proteins that belong to the Fos, Jun, ATF, and MAF 
families. In response to growth factor and cytokine signaling, 
AP-1 controls a wide range of cellular processes, including 
cell proliferation, death, survival, and differentiation

[248, 271]

MMPs ↑ Matrix metalloproteinases (MMPs) are zinc-dependent endo-
peptidases involved in extracellular matrix remodeling, both 
during physiological processes and in pathological condi-
tions. MMPs are also important players during inflammation

[249]

TNF ↑ Tumor necrosis factor (TNF) is a pro-inflammatory cytokine 
that regulates a number of signaling pathways with vari-
ous downstream effects. TNF proteins are predominantly 
expressed by immune cells. TNF signaling impacts immune 
response, inflammation, cell proliferation, programmed cell 
death, and necrosis

[250]

Klotho ↓ Klotho proteins are obligate components of endocrine fibroblast 
growth factor (FGF) receptor complexes and provide the 
high-affinity binding of FGF19, FGF21, and FGF23 to their 
receptors. Klotho proteins are known to play a role in aging-
related diseases, diabetes, cancer, arteriosclerosis, renal and 
bone disease, and inflammation processes

[251]

TGF-β ↑ Transforming growth factor-β (TGF-β) initiates signaling 
through the canonical SMAD pathway, regulating the 
expression of hundreds of genes. TGF-β induces also various 
noncanonical pathways that are responsible for cytoskeleton 
organization, cell polarity, and miRNA maturation. The 
effects of TGF-β signaling depend on the cellular context

[252]

IL ↑ Interleukins (ILs) are a group of cytokines with immunomodu-
latory functions that play an important role in immune 
cell differentiation and activation. ILs could have pro- and 
anti-inflammatory effects, depending on the producing and 
responding cell type or the phase of the immune response

[253]

Muscle – bone Wnt/β-cat ↑ Wnt/β-catenin (Wnt/β-cat) pathway regulates cell fate deter-
mination, cell migration, polarity and organogenesis during 
embryogenesis. Binding of Wnt to its membrane receptor 
causes translocation of β-cat degradation complex to the cell 
membrane, effecting in accumulation of β-cat in the cyto-
plasm and its eventual translocation into the nucleus to act as 
a transcriptional coactivator

[272]

OPN ↑ Osteopontin (OPN) is a multifunctional protein involved in 
physiological processes and the pathogenesis of various 
diseases (e.g., atherosclerosis, cancer, chronic inflammatory 
diseases). OPN interacts with several integrins and therefore 
controls cell migration, adhesion, and survival. Additionally, 
OPN promotes inflammation and regulates biomineralization

[254]
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Table 1  (continued)
Signaling pathway Up- (↑) or downregu-

lated (↓) in DMD
Short description References for 

further reading

RANK/RANKL/OPG ↑ Receptor activator of NF-κB (RANK), its ligand (RANKL), and 
osteoprotegerin (OPG) form the triad of the ligand/signaling 
receptor/decoy receptor. RANKL, RANK, and OPG have 
pivotal roles in the regulation of bone metabolism and the 
immune system. The triad is involved in diverse physiological 
and pathological contexts, including muscle metabolism

[255]

IL-6 ↑ Interleukin 6 (IL-6) can act both as a pro-inflammatory 
cytokine and an anti-inflammatory myokine, depending on 
the cellular context. Additionally, IL-6 stimulates osteoclas-
togenesis

[78, 256]

LIF ↑ Leukemia inhibitory factor (LIF) is an IL-6 class cytokine 
involved in controlling stem cell pluripotency, differentiation, 
bone metabolism, and inflammation. LIF signaling activates 
the JAK/STAT, MAPK, and PI3K pathways. This pleiotropic 
cytokine elicits a varied response in different cell types

[257]

POSTN ↑ Periostin (POSTN) is an extracellular matrix protein that acts as 
a structural molecule of the bone matrix and a signaling mol-
ecule that stimulates osteoblasts through integrin receptors 
and the Wnt/β-cat pathway. POSTN is secreted in muscles 
during regeneration and differentiation

[258]

FGF21 ↑ Fibroblast growth factor 21 (FGF21) is a hormone produced 
by several tissues that controls various metabolic pathways. 
Muscle-derived FGF21 acts as a stress-induced myokine, 
found to promote muscle atrophy and bone loss

[259]

Muscle—microvasculature NOS, NO ↓ Nitric oxide synthases (NOSs) catalyze the production of nitric 
oxide (NO) from L-arginine that controls, among others, 
vasodilation, and angiogenesis. NO also activates guanylyl 
cyclases (GC), which synthesize the second messenger cyclic 
guanosine monophosphate (cGMP), and act on its down-
stream targets, such as cGMP-activated protein kinase (PKG) 
or cyclic nucleotide-activated ion channels

[260]

VEGF ↓ Vascular endothelial growth factors (VEGFs) are key regulators 
of vascular development and of blood vessel function. Bind-
ing of VEGF to the VEGF receptor initiates the downstream 
signaling cascade and ultimately results in cell proliferation, 
migration, and the three-dimensional arrangement to form a 
vascular tube

[261]

miR-206 ↑ Micro-RNA miR-206 is expressed specifically in skeletal mus-
cles. miR-206 impedes cell proliferation and promotes SC 
and myoblast differentiation via posttranscriptional regulation 
of gene expression, boosting muscle regeneration and growth

[262]

HIF-1α ↓ HIF-1α is a regulatory subunit of hypoxia-inducible factor-1 
(HIF-1), an oxygen-dependent transcriptional activator. 
Target genes of HIF-1 are related to angiogenesis, cell prolif-
eration and survival

[263]

Muscle—neuron MuSK ↓ Muscle-specific kinase (MuSK) is a transmembrane tyrosine 
kinase that forms a multiprotein complex localized in the 
postsynaptic sarcolemma. In response to neural agrin signal-
ing, autophosphorylation of MuSK drives intracellular signal-
ing cascades to coordinate the local synthesis and assembly 
of synaptic proteins. It results in the reorganization of the 
cytoskeleton and the recruitment of AChR-binding scaffold-
ing proteins to aggregate AChRs

[160]

AChR Defects in clustering Acetylcholine receptors (AChRs) are ligand-gated ion channels 
that open upon acetylcholine binding and induce postsynaptic 
depolarization. AChR clustering is necessary for the proper 
functioning of the neuromuscular junction

[264]

Utrophin ↑ Utrophin is a dystrophin homolog. Similar to dystrophin, 
utrophin presents mechanical functions and forms a signaling 
hub as a scaffold for various proteins. The upregulation of 
utrophin gene (UTRN) is one of the potential strategies to 
treat DMD

[265]
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DMD muscle physiology [89], and by targeting RANKL 
(the receptor activator of nuclear factor NF-κB ligand), it 
alleviated the pathology by increasing the proportion of 
M2 macrophages and reducing muscle edema and fibrosis 
[90]. Furthermore, anti-RANKL treatment also increased 
the mechanical properties of bone in dystrophic mice [90]. 
Overall, inhibition of NF-κB may be a promising therapy 
for DMD, especially when combined with gene therapy 
designed to restore dystrophin expression.

The alleviating role of M2 macrophages is also linked to 
the increased synthesis and secretion of Klotho, a transmem-
brane protein whose extracellular domain can be cleaved 
and released (Fig. 3b) (Table 1). Klotho functions as a pro-
myogenic circulating hormone [91] that activates the pro-
liferation and growth of muscle cells. Accordingly, Klotho 
expressed by leukocytes positively influences the number 
of SCs in dystrophic muscle [91]. The expression of Klotho 
is significantly decreased in DMD tissues; the diminished 
activity of the Klotho pathway in muscle cells is attributed 
to epigenetic changes associated with oxidative stress in 
dystrophic muscle; and overexpression of Klotho in mac-
rophages counteracts the expression of profibrotic genes and 
reduce the pathology of DMD [92]. Under physiological 
conditions, Klotho diminishes TGF-β expression and thus 
prevents muscle fibrosis, whereas in DMD patients and mdx 

mice, TGF-β remains activated and consequently promotes 
muscle fibrosis.

Muscle–bone relation

Low bone mineral density and fragility in DMD are symp-
toms that accompany muscle degeneration caused by 
inflammation and alterations in signaling and cell-to-cell 
communication [93]. Pathological fractures of long bones 
and vertebrae significantly impact mobility and decrease 
the patients’ quality of life [94]; moreover, the standard 
long-term therapeutics for DMD, i.e., glucocorticosteroids, 
increase the risk of osteoporosis [95]. DMD mouse mod-
els also display a decline in bone biomechanical properties 
and healing capacity, spinal deformity, and spontaneous 
ossification in muscles [96–98]. Muscle-derived myokines, 
osteokines released by the bone, and inflammatory cytokines 
trigger common signaling pathways, thus providing a func-
tional connection between the cells organized into the mus-
cle–bone unit [71, 93] (Fig. 4).

IL-6 is a pro-osteoclastogenic and pro-myogenic cytokine 
released by tissues with essential functions in bone homeo-
stasis [93] and myogenesis [99]. IL-6 is upregulated in DMD 
patients and mdx mice compared with healthy controls, and 
it can mediate bone degradation and elevate the level of 

Table 1  (continued)

Signaling pathway Up- (↑) or downregu-
lated (↓) in DMD

Short description References for 
further reading

Muscle satellite cells MARK2 ↓ Microtubule affinity regulating kinase 2 (MARK2) is a serine/
threonine-protein kinase that is an important regulator of 
cell polarity. MARK2 modulates microtubule network via 
phosphorylation and inactivation of microtubule-associating 
proteins

[46, 266]

PARD3 Loss of polarization Partitioning defective protein 3 (PARD3) is a part of Par 
complex built of atypical Protein Kinase C (aPKC)/Bazooka 
(Baz, PARD3)/Par-6. The Par complex determines cell polar-
ity and asymmetric cell division. Opposite localization of Par 
complex and MARK2 defines the apicobasal axis

[46, 266]

Autophagy pathways ↓ The autophagy pathway is a conserved cellular process of deg-
radation of intracellular components that include soluble or 
aggregated proteins, organelles, macromolecular complexes, 
and foreign bodies. The formation of an autophagosome that 
ultimately fuses with a lysosome is driven by the cooperation 
of multiple factors

[267]

Notch ↑ Notch signaling is a conserved pathway of cell–cell commu-
nication. The Notch receptor is localized on the signal-
receiving cell, while ligands are located on the neighboring 
signal-sending cell. The effect of Notch signaling depends 
on the cellular context and can influence differentiation, 
proliferation and apoptotic cell fates

[268, 269]

p38γ/Carm1 Mislocalization Mitogen-activated protein kinase (MAPK) p38γ regulates 
SC fate through phosphorylation of Carm1, which further 
controls epigenetic induction of Myf5 expression during 
asymmetric SC division

[9]

FGF2 ↑ Fibroblast growth factor 2 (FGF2) is one of the FGFs that 
regulate SC function via activation of ERK MAPK, p38 
MAPKs, PI3 kinase, PLCg and STATs. SCs express FGR 
receptors to detect FGF2 produced by myofibers, fibroblasts 
and satellite cells

[270]
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IL-10 that switches pro-inflammatory M1 macrophages to 
anti-inflammatory M2 macrophages, which drives an anti-
inflammatory response. The levels of IL-10 and its receptor 
are also higher in DMD muscles [71]. However, as previ-
ously mentioned, IL-6 shows a pleiotropic phenotype during 
muscle repair, and despite its anti-inflammatory and regen-
erative effects, it can also aggravate inflammation [100]. 
Specifically, Pelosi et al. showed that forced expression of 
IL-6 exacerbates muscle pathology while its receptor block-
ade has the opposite outcome in mdx mice [79, 100].

LIF is an example of an IL-6 class cytokine involved in 
bone remodeling and shows higher expression in dystrophic 
muscles (Table 1). In particular, the study by Matsushita 
et al. showed that LIF inhibits osteogenesis via the STAT3/
SOCS3 signaling pathway [101]. Bone weakness in DMD 
patients is also driven by osteopontin (OPN), a well-known 
inhibitor of bone mineralization and a factor that pro-
motes fibrosis in dystrophic muscles [102] (Table 1). This 
osteokine, among others, is produced by inflammatory cells, 
e.g., macrophages; therefore, its expression level greatly 
increases during inflammation. Proinflammatory cytokines 
engaged in bone homeostasis, such as IL-1 and IL-17, 
are also elevated in DMD [93, 103, 104]. Thus, potential 

therapeutic treatments based on reducing the level of various 
molecules driving inflammation to alleviate inflammation 
in diseased muscles can be envisioned. Such approaches, 
however, require in-depth knowledge of the remote effects 
of these compounds in various organs. For example, IL-15 
treatment is potent enough to improve the pathophysiology 
of dystrophic muscle in mdx mice [105] but was also shown 
to stimulate osteoclast differentiation, reduce the number 
of both osteoclasts and osteoblasts in bone marrow, and 
increase the bone mineral content [71].

Under pathological conditions of dystrophin loss-medi-
ated muscle fiber degeneration and decreased Klotho levels, 
TGF-β is released in high amounts from the bone matrix, 
which contributes to muscle weakness. TGF-β promotes 
myofibroblast differentiation and increases tissue fibrosis 
by stimulating the canonical Wnt/β-catenin pathway that 
regulates bone homeostasis and myogenesis (Table 1). In 
particular, Wnt/β-catenin decreases osteoclast differentiation 
by promoting the synthesis and secretion of osteoprotegerin 
(OPG), an osteoclastic inhibitor [106]. Although therapeutic 
overexpression of Klotho indeed improves the functioning of 
muscles [92], it was also shown to inhibit mineralization and 
osteogenic activity in cultured osteoblastic cells, presumably 

Fig. 3  Chronic inflammation in DMD skeletal muscles. Pathological 
alterations related to chronic inflammation are listed in boxes. Arrows 
illustrate the release of various factors, while dashed line arrows 
depict the transformation of one type of cell to another. Molecular 
mechanisms underlying ongoing processes of sarcolemma instabil-
ity and DAMP release a, activation of the innate immune response 
b, development of adaptive immune response c, muscle fibrosis d, 
and inter- and intracellular signaling driving inflammatory response e 
are described in the text. Abbreviations: extracellular matrix (ECM), 

damage-associated molecular patterns (DAMPs), major histocompat-
ibility complex I (MHCI), matrix metalloproteases (MMP), fibroadi-
pogenic progenitors (FAPs), interferon γ (INFγ), tissue necrosis 
factor (TNF), receptor of TNF (TNFR), TNFR Associated Factor 2 
(TRAF2), IκB kinase (IKK), IKB, phosphorylated IKB (P-IKB), 
nuclear factor-κB (NF-κB), high-mobility group box  1 (HMGB1), 
Toll-like receptors (TLR2/4), TNFR associated factor 6 (TRAF6), 
myeloid differentiation primary response 88 (MYD88), interleukin 
(IL), transforming growth factor-β (TGFβ)
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due to decreased Wnt/β-catenin and downregulation of OPG 
[71]. OPG is produced by osteoblasts and prevents the inter-
action of receptor activator of NF-κB (RANK), which is 
located on preosteoclastic cells, with RANKL, thus inhibit-
ing the NF-κB pathway [90] (Table 1). RANK is also pre-
sent in the sarcolemma of muscle fibers, while RANKL and 
OPG were found to be expressed in the myoplasm and can 
be secreted from myofibers, indicative of the bidirectional 
interaction between both tissues. Moreover, RANK/RANKL 
signaling is disrupted in mdx/utrn+/−, with significantly 
upregulated RANKL and RANK protein levels observed in 
mdx/utrn+/− muscle samples [90]. Overall, the current data 
indicate that the RANK/RANKL/OPG pathway may be an 
important platform for muscle–bone crosstalk, which is dys-
functional in DMD patients.

In addition to RANK and RANKL, the expression of 
many other bone-regulating myokines is altered in DMD, 
and they include the extracellular matrix proteins periostin 
(POSTN) and osteonectin (also known as SPARC), which 
are upregulated in DMD muscles and play important roles 
in bone remodeling as well as maintaining bone mass and 
quality by a variety of mechanisms [104] (Table 1). Fur-
thermore, fibroblast growth factor 21 (FGF21) was reported 
to be elevated in DMD muscles [104] and to negatively 
regulate bone homeostasis by potentiating peroxisome 

proliferator-activated receptor gamma (PPAR-γ) activity, 
resulting in adipogenesis stimulation and osteogenesis inhi-
bition from bone marrow stem cells. Increased FGF21 levels 
were also found to indirectly promote osteoclastogenesis, 
presumably by increasing the RANKL/OPG ratio [107] 
(Table 1).

Activin and myostatin are growth factors that belong to 
the TGF-β superfamily, and they are known to have nega-
tive effects on muscle and bone mass [108, 109]; therefore, 
their downregulation might be considered a therapeutic 
approach to prevent muscle wasting and bone degeneration 
in DMD patients [71]. Follistatin modulates bone metabo-
lism presumably via activin and myostatin signaling, and 
follistatin-based gene therapy was shown to have positive 
effects on muscles [110–112]. However, myostatin seems to 
have a positive impact on tendons. Specifically, in myostatin-
deficient mice, tendons have a stiff, brittle and hypocellular 
phenotype. Stiffness of tendons would worsen the course of 
DMD and lead to higher sensitivity to contraction-induced 
injury [113].

Tendons allow movement by providing physical muscle 
interaction with the skeleton. In DMD patients, the ongoing 
cycles of myofiber degeneration and regeneration increase 
fibrosis and results in pseudohypertrophy of certain muscles, 
especially in the early stages of the disease [114], which 
results in excessive strain on tendons and in their shortening 
and contracture (often the case with the Achilles tendon) 
[115]. The elastic properties of dystrophic tendons are also 
compromised due to the presence of a higher number of dead 
cells and collagen concentration as well as the reduction in 
proteoglycans and infiltration of inflammatory cells [115, 
116]. The architecture of myotendinous junctions (MTJs), 
i.e., specialized structures located on the muscle–tendon 
interface, is also affected in DMD. Specifically, dystrophic 
MTJs contain a reduced number of sarcolemmal folds [43, 
117], with the compensatory upregulation of a number of 
proteins, including utrophin, α7 integrin, vinculin, and talin 
[118, 119].

Muscle–microvasculature relation

Skeletal muscle is a highly vascularized tissue. The presence 
of necrotic muscle bundles due to local ischemia was one 
of the first described causes of muscle weakness in DMD 
before the discovery of the dystrophin gene [120]. Indeed, 
proper vascularization is obligatory for normal functioning 
and regeneration of muscle tissue. In addition to myofibers 
and satellite cells, DMD is expressed in vascular smooth 
muscle and endothelial cells, and a lack of full-length dys-
trophin directly affects the formation of blood vessels [47]. 
Impaired signaling between the muscle tissue and surround-
ing capillaries also aggravates the phenotype of the patients 
(Fig. 5).

Fig. 4  Muscle–bone relation in Duchenne muscular dystrophy. 
DMD symptoms related to bones and tendons associated with skel-
etal muscles are listed in boxes. Molecular mechanisms underly-
ing pathogenesis in the muscle–bone relation are described in the 
text. Abbreviations: transforming growth factor-β (TGF-β), Wnt/β-
catenin (Wnt/β-cat), receptor activator of NF-κB (RANK), RANK 
ligand (RANKL), osteoprotegerin (OPG), interleukin (IL), leukemia 
inhibitory factor (LIF), fibroblast growth factor 21 (FGF21), periostin 
(POSTN), osteonectin (SPARC), integrin α7 (ITGA7)
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The vascular hypothesis of DMD indicates the critical 
role of the neuronal nitric oxide synthase (nNOS) pathway 
[72, 121] (Table 1). In healthy myofibers, the muscle-spe-
cific isoform of nNOS (nNOSμ) is anchored to the sarco-
lemma by binding with dystrophin spectrin-like repeat 17 
through α-syntrophin [122] (Fig. 1). nNOSμ-derived nitric 
oxide (NO) diffuses to neighboring capillaries, where it 
increases the concentration of cyclic guanosine monophos-
phate (cGMP) and counteracts vasoconstriction caused by 
norepinephrine released from sympathetic nerves. Dystro-
phin deficiency causes displacement of nNOSμ from the sar-
colemma to the cytoplasm, where its amount is also greatly 
reduced [123, 124]. Consequently, DMD myofibers are more 
susceptible to functional muscle ischemia during exercise 
and injury due to a reduction in paracrine signaling [123, 
124]. The ischemic phenotype inspired multiple studies 
aimed at targeting the nNOS-NO pathway in DMD patients 
based either on the expression of dystrophin minigenes to 
provide the nNOSμ binding site, direct overexpression of 
the nNOS gene, supplementation with L-arginine (nNOS 
substrate), delivery of NO-donating drugs, or inhibition of 
phosphodiesterase 5A (PDE5A) to prolong the half-life of 
cGMP [72].

Therapeutic strategies grounded on modulation of the 
nNOS pathway are oriented on increasing vasorelaxation of 
the vasculature to enable perfusion of diseased muscles. A 
different approach to obtaining the same effect is to enhance 
the density of the microvasculature network by boosting 
angiogenesis [47, 124]. Vascular endothelial growth fac-
tor (VEGF) is a glycoprotein synthetized and secreted by 

myofibers and SCs in muscle tissue, and it plays a crucial 
role in this process, mainly via the VEGFR-2 pathway [125] 
(Table 1). VEGF stimulates the proliferation, migration, 
and survival of endothelial cells upon binding to vascular 
endothelial growth factor receptors (VEGFRs) [125] and has 
antiapoptotic properties toward myogenic cells [126]. Impor-
tantly, VEGF levels increase during exercise in healthy 
muscles [47], a process that is abrogated in DMD patients 
because their physical activity is reduced and associated 
with tissue damage.

As mdx muscles undergo chronic degeneration–regenera-
tion routes, a strong upregulation of microRNA-206 (miR-
206), one of the key regulators of myogenesis synthesized 
in both muscles and SCs, is observed (Table 1). Apart from 
its role in muscle repair [127], miR-206 also represses the 
expression of the VEGF gene in myofibers and therefore 
negatively impacts angiogenesis [47]. Treatment strategies 
targeting VEGF signaling include inhibition of VEGFR-1 
(a negative regulator of angiogenesis, competing for VEGF 
with VEGFR-2), direct delivery of VEGF, administration 
of rAAV vectors carrying the coding sequence of VEGF, 
or in vivo transplantation of muscle-derived stem cells 
(MDSCs) with upregulated VEGF. Nevertheless, it is impor-
tant to note that a high dosage of VEGF can contribute to 
a profibrotic response and lead to serious adverse effects, 
e.g., endothelial cell-derived vascular tumors [47]. As an 
alternative approach, heme oxygenase 1 (HO-1) was found 
to regulate blood vessel formation and angiogenesis induced 
by VEGF and stromal cell-derived factor 1 (SDF-1) [128, 
129], and such effects in addition to other aspects of HO-1 

Fig. 5  Muscle–vasculature relation in DMD. Symptoms related to the 
microvasculature of striated muscles are listed in boxes. Molecular 
mechanisms underlying pathogenesis in the muscle-vasculature rela-
tion are described in the text. Abbreviations: neuronal nitric oxide 

synthase (nNOS), soluble guanylyl cyclase (sGC), cyclic guanosine 
monophosphate (cGMP), vascular endothelial growth factor (VEGF), 
hypoxia-inducible factor-1α (HIF-1α)
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signaling (see “Disrupted signaling in satellite cells”) under-
lie the rationale for the therapeutic modulation of HO-1 lev-
els to ameliorate DMD pathology. A treatment based on a 
different growth factor, angiopoietin 1 (ANG1), combined 
with VEGF or alone, was also proposed. Notably, adminis-
tration of ANG1 was shown to enhance muscle perfusion 
and slow the progression of fibrosis [130].

Signaling crosstalk between capillaries and SCs that are 
localized in their close proximity may also influence angio-
genesis and muscle regeneration. In particular, SCs derived 
from 12-month-old mdx mice showed a reduced ability to 
promote angiogenesis in vitro [131], presumably due to 
the age-related lower levels of proangiogenic VEGF and 
hypoxia-inducible factor-1α (HIF-1α) [131] (Table 1). Other 
reports indicate that in young dystrophic animals, showing 
intensive degeneration and regeneration cycles, angiogenesis 
is not altered or even enhanced [132, 133]. Interestingly, 
SCs also seem to be influenced by the muscle vasculature, 
e.g., Verma et al. showed that their direct interaction may 
influence the self-renewal and quiescence of SCs via Notch 
signaling [134] (Table 1). Increased distance between blood 
vessels and myofibers could also slow gas exchange and 
impede reciprocal signaling as a result of fibrosis-associated 
changes in ECM [135]. Latroche et al. compared the micro-
vasculature of 3- and 12-month-old mdx mice that differed 
in the content of the fibrotic tissue [136], and they identified 
very severe alterations of the microvascular network struc-
ture with reduced perfusion only in older mice. Overall, the 
current research data clearly indicate that hindered muscle 
vascularization contributes to the pathophysiology of DMD.

An additional issue associated with muscle-microvascula-
ture interactions is the therapeutic potential of pericytes that 
localize underneath the basal lamina of small vessels [137]. 
Pericytes differentiate with high efficiency into skeletal mus-
cle cells in vivo and those isolated from one biopsy can be 
expanded in vitro to amounts sufficient to treat a pediatric 
patient [138]. Pericytes are also suitable for systemic deliv-
ery because they can cross the vessel wall and are easily 
transducible with viral vectors [137, 138]. In contrast, SC-
derived cells do not efficiently cross the endothelial layer 
[139, 140] and are challenging to transduce with viral vec-
tors [141, 142].

Muscle–neuron relation

Neuromuscular junctions (NMJs) are specialized regions 
where terminal buttons of motor neurons contact muscle 
fibers to form chemical synapses. The signal is transmitted 
by a small molecule neurotransmitter, acetylcholine (ACh), 
which, following release from motoneurons, binds ACh 
receptors (AChRs) on the postsynaptic sarcolemma (called 
motor end-plate) (Table 1). This interaction enables ion flow 
across the sarcolemma that leads to local depolarization 

and induction of an action potential that travels across the 
myofiber membrane, eventually leading to muscle contrac-
tion. The structural organization of the sarcolemma and 
clustering of AChRs are important factors in efficient signal 
transmission, signified by the fact that some conditions, such 
as exercise [143, 144], aging [145], muscle or nerve injury, 
and lack of associated proteins [146], result in structural and 
functional alterations.

DAPC accumulates at the postsynaptic membrane of 
NMJs, where it is required for synaptic homeostasis [29]. 
Mdx mice show structural abnormalities that include loss 
in the number and depth of synaptic folds in the motor end-
plate, NMJ fragmentation (more scattered AChR clusters), 
and excessive nerve sprouting [146, 147] (Fig. 6). Such 
morphological alterations entail profound functional con-
sequences, as revealed by reduced end-plate potential (EPP) 
and depressed safety factor (the amplitude by which the EPP 
exceeds depolarization threshold) [148]. Utrophin is also 
present at the NMJs of healthy individuals and in higher 
amounts in DMD muscles [149], where it presumably com-
pensates for the absence of dystrophin [64]. Utrn−/− mice 
have a lower number of AChRs and reduced folding of the 
postsynaptic membrane; nonetheless, they show no signs 
of weakness, which suggests that utrophin is not essential 
but undoubtedly contributes to the organization and main-
tenance of NMJs [150]. This conclusion is further corrobo-
rated by qualitative assessment of NMJs in various DMD 
mouse models, e.g., mdx, mdx/utrn+/−, and mdx/utrn−/−, 
which revealed the most severe damage in mice devoid of 
both dystrophin and utrophin. However, AChR area frag-
mentation at NMJs was observed for all three DMD mouse 
models, with no significant difference among them [151].

Because disruption of NMJs is one of the main symp-
toms of DMD, therapeutic strategies are assessed to restore 
proper communication between nerves and muscles. 
Although estimates of how much dystrophin is required for 
the therapeutic effect depend on various factors, e.g., quanti-
fication method or reference samples [152, 153], the current 
results indicate that even a fraction of the normal dystro-
phin levels could be beneficial in dystrophic muscles. The 
proper formation and functioning of NMJs might require 
higher dystrophin amounts, estimated to range between 19 
and 50% of the normal content [154]. On the other hand, 
utrophin upregulation ameliorates muscle pathology in mdx 
mice and leads to increased AChR clustering and improved 
morphology of NMJs [155], which shows that either utro-
phin- or dystrophin-based therapies could be beneficial for 
the treatment of DMD [64]. In their review, Ng and Ljubicic 
[148] concisely reported observations regarding the mor-
phology and electrophysiology of NMJs obtained since the 
1970s and concisely presented potential therapeutic strat-
egies targeting neuromuscular transmission in dystrophic 
muscles.
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Sequence and structural similarity of dystrophin and 
utrophin enable the formation of protein complexes char-
acterized by partial functional interchangeability [40]. Both 
DAPC and utrophin-associated protein complex (UAPC) 
contain two subunits of dystroglycan that are of special 
importance at NMJs [156]. α-Dystroglycan is present at the 
cell periphery on the outer surface of the sarcolemma, where 
it interacts with a number of proteins, including agrin, a 
signaling molecule released by the nerve terminal that initi-
ates clustering of AChRs on the postsynaptic membrane, as 
well as laminin, collagen, entactin, and perlecan. Through 
the interaction with the latter, α-dystroglycan associates with 
acetylcholinesterase, which is important in acetylcholine 
breakdown [157]. Moreover, the transmembrane β subunit 
of dystroglycan stabilizes the structure of NMJs, thereby 
facilitating the formation of the cytoskeletal network needed 
for clustering and stabilization of AChRs at the sarcolemma 
[156].

α- and β-Dystroglycan are also necessary for the proper 
organization of other membrane protein assemblies, includ-
ing the multiprotein complex associated with muscle-spe-
cific kinase (MuSK) (Table 1). MuSK is distributed in the 
postsynaptic sarcolemma, where it plays a pivotal role in 
AChR clustering and end-plate maintenance [158]. In DMD, 
loss of dystroglycans leads to reduced levels of MuSK, 
which presumably directly impacts NMJ morphology and 
function. Consistent with this finding, Musk−/− mice cannot 
move and breathe and die at birth due to neuromuscular 
transmission loss [158]. Additionally, conditional inacti-
vation of MuSK in adult mice resulted in the absence of 

AChRs, disassembly of the postsynaptic organization, severe 
muscle weakness and premature death [159]. Other studies 
have shown that the MuSK complex drives the aggregation 
of AChRs in response to agrin binding, which initiates the 
autophosphorylation of MuSK and the formation of a stable 
and active MuSK complex. This process in turn initiates 
a downstream signaling cascade that results in recruitment 
of rapsyn to AChRs and stabilization of the AChR clusters 
through the DAPC/UAPC linkage [160, 161] (Fig. 6). Rap-
syn is also involved in recycling and lifetime regulation of 
AChRs, a process that is under control of cAMP/PKA sign-
aling, which is shown to be disturbed at dystrophic NMJs 
[162].

Loss of dystrophin and agrin signaling at the NMJ alters 
the organization of the microtubule network [66, 163]. 
Importantly, despite being upregulated at NMJs, utrophin 
cannot restore the microtubule lattice in dystrophic mus-
cles, as it does not contain the microtubule-binding domain 
observed for dystrophin (Fig. 1) [66]. Microtubules main-
tain the right shape of the cell and allow for positioning of 
organelles and alterations in their network could affect mito-
chondrial density and function, thereby leading to excessive 
production of ROS [147, 164]. Another important aspect 
linked to DMD pathology is the presence of embryonic-type 
AChRs, as revealed in regenerating muscle fibers of mdx 
mice [165]. Specifically, Pijl et al. speculated that longer 
open embryonic-type AChRs in constantly regenerating 
dystrophic muscles may induce  Ca2+ overload and contrib-
ute to myofiber focal necrosis by activating  Ca2+-dependent 
proteases [151].

Fig. 6  Pathological alterations in dystrophic NMJs. DMD symptoms 
at NMJs are listed in boxes. The molecular mechanisms underlying 
the pathogenesis of NMJs are described in the text. Abbreviations: 

muscle-specific kinase (MuSK), acetylcholine (ACh), acetylcholine 
receptor (AChR), reactive oxygen species (ROS)
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Disrupted signaling in satellite cells

SCs are muscle stem cells that are localized along the 
myofiber between the sarcolemma and the surrounding ECM 
(also termed basal lamina) and responsible for postnatal tis-
sue growth and regeneration [166]. In the process of muscle 
repair, SCs are supported by other cell types that compose 
the regenerative milieu, including infiltrating immune cells 
(macrophages, eosinophils, regulatory T-cells, neutrophils), 
vascular endothelial cells, pericytes, fibroblasts, and FAPs, 
also called mesenchymal stromal cells [167]. In particular, 
the latter was recently reported to play crucial roles in mus-
cle repair and maintenance. Experiments in mice revealed 
that paracrine signaling between SCs and FAPs supports 
myogenesis by influencing the proliferation and differentia-
tion of SCs [167] while depletion of FAPs results in lessen-
ing of the SC pool, regenerative deficit, and muscle atrophy 
[73]. Some interstitial cells may also have myogenic poten-
tial, including myoendothelial [168], CD133 + [169, 170], 
PW1 interstitial [171], muscle-derived stem cells (MDSCs) 
[172, 173], Twist2 + progenitor [174] and muscle side popu-
lation cells [167, 175]. Nonetheless, it is important to note 
that they are unable to regenerate muscle in the absence of 
SCs [176].

Quiescence of SCs in resting muscle is maintained by 
expression of the paired box 7 (Pax7) gene controlled by 
the Notch pathway, which is activated by binding of Notch 
ligands distributed at the sarcolemma to Notch receptors 
located on the SC membrane [177] as well as various epi-
genetic mechanisms [11]. Specifically, nonmethylated Pax7 
protein limits the expression of myogenic factor 5 (Myf5) 
while its methylation enables recruitment of epigenetic 
machinery to the Myf5 promoter and in turn SC activation, 
division and differentiation into myotubes [178]. Impor-
tantly, SCs can divide in two ways: symmetrically and 
asymmetrically [179]. While symmetric divisions (occur-
ring parallel to the contiguous myofiber in a planar orienta-
tion) preserve the stem cell pool by generating two identical 
daughter cells, asymmetric divisions (occurring in apicoba-
sal orientation, perpendicular to myofiber) result in two dif-
ferent daughter cells, with one of them returning to the state 
of quiescence and the other entering the myogenic path-
way. The expression of Myf5 is characteristic of myoblasts, 
while quiescent cells remain Myf5-negative and a direct 
contact with the basal lamina on one side and the myofiber 
sarcolemma on the other is a suspected factor determining 
the polarity of dividing SCs [180]. Notably, during muscle 
regeneration, SCs can also migrate to interstitial areas of the 
muscle, where they can proliferate and differentiate into new 
fibers [181, 182]. A detailed description of the intrinsic and 
extrinsic mechanisms regulating SC activity can be found 
elsewhere [178, 179, 183].

In healthy muscles, dystrophin distributes unevenly in 
activated SCs, thus providing the background for their asym-
metric division and myogenic differentiation by anchoring 
to the plasmalemma microtubule affinity regulating kinase 
2 (MARK2) and β1-syntrophin (Fig. 1), with its associated 
mitogen-activated protein kinase (MAPK) p38γ (also known 
as MAPK12) [184]. In dystrophic SCs, the greatly reduced 
content of MARK2 as well as affected polarization of par-
titioning defective protein 3 (PARD3) and localization of 
phosphorylated Aurora kinase A (Aurka), impair the apico-
basal mitotic spindle orientation, centrosome amplification 
and division kinetics [46, 184] (Fig. 7; Table 1). Loss of 
β1-syntrophin and dysregulated p38γ signaling, on the other 
hand, disable transportation of Carm1 to the nucleus, with-
out which Pax7 cannot be efficiently methylated to trigger 
Myf5 transcription [185]. Carm1 not only contributes to dis-
turbances in epigenetic control of myogenic gene expression 
but also induces autophagy-related and lysosomal genes as a 
coactivator of transcription factor EB (TFEB) via increasing 
dimethylation of histone H3 Arg17 [186]. Dystrophin loss-
mediated Carm1 absence in the nucleus could thus explain 
the autophagy defects in DMD muscles in addition to per-
sistent activation of Akt and mTOR triggering autophagy-
inhibiting pathways [187, 188] (Table 1). Importantly, the 
failed autophagy pathway may result in the inability to clear 
damaged mitochondria that could drive the accumulation of 
ROS and SC senescence [189].

Although asymmetric division is disrupted, stem cell 
hyperplasia is observed in muscles of DMD patients and 
mdx mice, as demonstrated by the elevated numbers of 
Pax7-positive cells, presumably as a consequence of pref-
erable symmetric SC division [190–192] (Fig. 7). This 
surplus of SCs, however, does not seem to contribute to 
muscle repair, and over time, the Pax7 + /Myf5 + muscle 
progenitor pool declines [46]. Apart from the proliferation 
deficits, factors that contribute to this reduction include 
susceptibility to oxidative stress, progressive telomere 
shortening due to insufficient telomerase activity and high 
muscular fibroblast growth factor 2 (FGF2) content, which 
leads to loss of stem cell quiescence [193] (Table 1).

The simultaneous decrease in the level of HO-1 enzyme 
with the upregulation of myoblast determination protein 
(MyoD), myogenin (Myog) and miR-206 also implies 
enhanced differentiation of dystrophic cells that do enter 
the myogenic differentiation program [194]. Repression of 
the HO-1-encoding Hmox1 gene in DMD SCs is linked to 
downregulation of Atf3, MafK, Foxo1 and Klf2 transcrip-
tion factors as well as attenuation of NO-mediated cGMP-
dependent signaling [194]. More intensive differentiation 
of HO-1-deficient SCs and myoblasts was associated with 
changes in the activity of miRNA processing enzymes 
and, consequently, alterations in the miRNA transcriptome 
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[194, 195]. Moreover, diminished HO-1 levels in mdx SCs 
were linked to increased content of Casp3 [194], which is 
known to target Pax7 and activate SC differentiation [196]. 
Interestingly, in myofibers and inflammatory leukocytes, 
the level of HO-1 is elevated in mdx mice compared to 
control mice, which presumably has an anti-inflamma-
tory and alleviating effect. Pietraszek-Gremplewicz et al. 
showed that supplementation of differentiating dystrophic 
SCs with CO (one of the products of HO-1 enzyme) and 
NO (induces Hmox1 expression) normalizes the differen-
tiation of mdx SCs [194]. Targeting HO-1 is thus a poten-
tially attractive therapeutic target.

Notch signaling determines many stages of muscle regen-
eration, including the fate of SCs, proliferation of myo-
blasts, and the transient inhibition of terminal differentia-
tion of myoblasts into mature myofibers [197]. Moreover, 
a wide variety of Notch receptors and ligands have to be 
precisely regulated in a time- and space-restricted manner 
[197]. Both the quiescent and active states of SCs depend 
on Notch signaling, and the oscillation of Hes (Notch effec-
tor) was found to determine the level of MyoD [198]. In 
DMD muscles, Notch signaling is dysregulated. Specifi-
cally, Mu et al. showed that inhibition of Notch signaling, 
which is overactivated in DMD muscles and SCs, delays 
the depletion and senescence of muscle progenitor cells and 
reduces inflammation and fibrosis in mdx/utrn−/− mice [199]. 
In contrast, the results from experiments on two mildly 
affected golden retriever muscular dystrophy (GRMD) dogs 
[200], which showed a higher content of Jagged 1 (a Notch 

ligand) due to increased expression of Jag1, indicated the 
beneficial effects of Notch activation [201]. Compared with 
the severely affected GRMD dogs, these “escapers” dogs 
could run, jump and more easily stand on their hindlegs and 
had a normal lifespan despite the absence of muscle dystro-
phin [200, 201]. A transcription factor binding site analysis 
revealed that mildly affected dogs contain a novel myogenin 
binding site in the Jag1 promoter, which resulted in a myo-
genin-associated increase during muscle regeneration [201]. 
Experiments based on the sapje zebrafish, another severe 
DMD animal model, and an in vitro analysis of GRMD 
muscle cells from biopsies confirmed the beneficial effects 
of Jag1 overexpression. Other studies indicate that in addi-
tion to the muscle growth and expansion of the satellite cell 
pool, Jagged-activated Notch signaling promotes angiogen-
esis [202] and stimulates bone marrow-derived stromal/stem 
cells (BMSCs) to promote skeletal regeneration [203]. Over-
all, these findings show the therapeutic potential of either 
restoring proper Notch signaling or stimulating JAG1 over-
expression as a mediator of the regenerative process in DMD 
muscles independent of the presence of dystrophin.

Increasing the number of asymmetric divisions can be 
achieved independent from the polarized dystrophin distri-
bution at the membrane in activated SCs, e.g., via activation 
of epidermal growth factor receptor (EGFR) and Aurka sign-
aling pathways [204]. Promising results were also achieved 
following Wnt7a overexpression in EDL muscle and Wnt7a 
protein injection into TA muscles of mdx mice. In addition 
to an increase in muscle strength and a shift of induction 

Fig. 7  Altered functioning of DMD satellite cells. Pathological alter-
ations related to satellite cell function are listed in boxes. Examples of 
disturbed signaling pathways, altered gene expression and epigenetic 
changes are shown in the boxes. Molecular mechanisms underlying 
pathologies in DMD satellite cells are described in the text. Abbre-

viations: myogenic factor 5 (Myf5), microtubule affinity regulating 
kinase 2 (MARK2), partitioning defective protein 3 (PARD3), phos-
phorylated Aurora kinase (pAURK), reactive oxygen species (ROS), 
fibroblast growth factor 2 (FGF2), heme oxygenase 1 (HO-1), myo-
blast determination protein (MYOD), myogenin (MYOG)
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toward slow-twitch fibers, which reduced the level of con-
tractile damage, this treatment also regenerated the SC pool 
via an enhancement of the symmetric division rate [205]. 
Presumably, noncanonical Wnt7a signaling stimulates SC 
symmetric expansion through the planar cell polarity path-
way (polarizing distribution of VANGL2, a planar cell polar-
ity effector) and myofiber hypertrophy through the AKT/
mTOR  pathway [205, 206]. In turn, canonical Wnt signal-
ing, which is elevated in mdx mouse muscles, was shown to 
activate the TGFβ pathway, resulting in a fibrogenic phe-
notype in SCs [207]. Importantly, suppression of factors 
upregulated in DMD that inhibit myogenesis, such as TGFβ, 
myostatin, and activin, is possible with follistatin treatment 
[112]. It is important to note, however, that in addition to its 
beneficial effects on SCs, follistatin can also have detrimen-
tal effects on tendons [111, 113].

RNA-seq profiling of SCs from mdx and control mice 
demonstrated altered expression of over 1000 genes in qui-
escent SCs and 3000 genes in activated SCs [194]. Inter-
estingly, Boldrin et al. showed that mdx SCs retain their 
regenerative potential upon transfer to a healthy muscle 
environment [208], which shows that exploring SC signal-
ing and SC interactions with surrounding tissues can reveal 
the potential for effective therapies.

Cell signaling in the heart

Cardiac failure is the leading cause of premature mortality in 
DMD patients [209, 210]. Pathological symptoms develop 
with age and manifest in progressive fibrosis, left ventricular 
dilation, and overall reduced systolic function, resulting in 
cardiomyopathy and atrial arrhythmias [211]. Heart regener-
ation is particularly challenging because unlike skeletal mus-
cle tissue, this organ lacks resident stem cells/satellite cells 
that could regenerate the cardiomyocyte population [212]. In 
healthy tissue, cardiomyocytes, fibroblasts, endothelial and 
vascular smooth muscle cells are in homeostatic equilibrium 
[213], whereas in dystrophic muscle, high levels of inflam-
mation and fibrogenic cells in coronary advenitia aggravate 
the condition of the patients [214–216].

Cardiomyocyte death in DMD patients is associated 
with the absence of dystrophin-related mechanical func-
tions and signaling. As in skeletal muscle, cardiomyocytes 
struggle with an overload of  Ca2+, the absence of nNOS/
NO signaling [217–219] and the overproduction of ROS, 
which lead to the progression of pathological alterations. 
Law et al. [220] summarized known mechanisms respon-
sible for mishandling  Ca2+ in dilating cardiomyopathy in 
DMD hearts and reported experimental therapeutic targets 
that could address this issue. In particular, excess  Ca2+ 
and oxidative stress result in degeneration of mitochon-
dria [221], which cannot be removed effectively in the 

process of mitophagy [222]. These changes are probably 
due to dysfunction in the Pink1/Parkin1 pathway, which 
regulates the process of cleaning cells from nonfunctional 
mitochondria [222]. Affected cardiomyocytes also release 
exosomes containing miRNAs, which have been found 
to aggravate DMD pathogenesis [223]. Furthermore, 
enhanced Tgfβ1 signaling in coronary adventitial cells was 
identified as a factor that induces fibrotic changes. In a 
study by Ieronimakis et al. overexpression of Tgfβ1 ligand 
in endothelial cells stimulated coronary adventitial cells 
via the Tgfβ pathway to become fibrotic and produce type 
I collagen, resulting in perivascular fibrosis [215], which 
shows that targeting the TGFβ pathway in either skele-
tal or cardiac muscles could be a viable signaling-based 
therapeutic strategy in DMD. Therapeutic approaches to 
treat dystrophic cardiomyopathy that are currently in use 
or in development have been discussed in-depth in previ-
ous works [57, 224].

Conclusions

Although dystrophin and utrophin genes are ubiquitously 
expressed in various tissues, significant full-length dys-
trophin synthesis is limited to a few cell types, including 
myofibers, cardiomyocytes, smooth muscle cells, neurons, 
endothelial cells, and satellite cells [25, 184, 225]. DMD 
patients suffer particularly as a consequence of the absence 
of full-length dystrophin in the striated muscle tissue and 
succumb to the disease after years of progressive and debili-
tating symptoms [4]. Some of the dystrophin-related roles 
pertain to its mechanical functions and widespread inter-
actions with transmembrane as well as cytoskeletal pro-
teins, such as ankyrins, microtubules, plectin,  γ-actin and 
cyotokeratins that enable efficient transmission of forces 
and structural plasticity [66, 226, 227]. The dystrophin-
glycoprotein complex together with its associated proteins, 
however, is also responsible for the interaction with various 
signaling molecules [25, 184, 228] that regulate cell prolif-
eration, migration or maintenance via, in some instances, 
epigenetic and transcriptional changes, such as in the pro-
cess of myofiber repair [8, 9, 11]. Importantly, in addition 
to intracellular signaling, cell-to-cell communication is also 
affected in dystrophin deficiency, as shown, e.g., by vaso-
constriction related to nNOS downregulation and displace-
ment from the sarcolemma [121–124], abrogated satellite 
cell activation due to dysregulated Notch signaling [199], or 
changes in the production of myokines that affect the bone 
[71, 93, 98, 104]. Therapeutic approaches should thus focus 
not only on stopping myofiber degeneration and improv-
ing satellite cell division kinetics but also on normalizing 
abrogated signal transmission. For instance, although war-
ranted by observations of relatively mildly affected Becker 
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muscular dystrophy (BMD) patients, technological short-
comings and methodological feasibility, the rod domain of 
dystrophin has largely been ignored in either gene therapy- 
or antisense oligonucleotide-based therapeutic approaches 
[36]. However, the newly obtained data changed that para-
digm and resulted in addition of the nNOS binding domain 
to rAAV vectors carrying laboratory designed dystrophin 
coding sequences [229]. The MARK2 binding site might 
also be included in constructs that could be used in satellite 
cell therapeutic strategies.

Sodium nitrate (NO donor) as well as inhibitors of 
myostatin, HDAC and connective tissue growth factor 
are currently in clinical trials [11, 230–235], with others, 
including a WNT7a-like compound, in preclinical develop-
ment [236]. It is also important to note that corticosteroids 
significantly alleviate tissue damage by downregulating 
the activity of signaling molecules associated with chronic 
inflammation, and new treatments based on molecules with 
less severe side effects are being tested [237–239]. Thera-
peutic strategies modulating specific signaling pathways 
could be used either as adjuncts or stand-alone strategies. 
Importantly, approaches such as stimulation of EGFR-Aurka 
pathways or Jagged 1 upregulation have been successfully 
used in animal models and do not seem to require dystrophin 
to normalize the division kinetics of satellite cells or muscle 
function. Most of the treatments grounded on dystrophin/
utrophin gene delivery or exon skipping aimed at restoring 
the reading frame do not provide the fully functional dystro-
phin protein, and signaling approaches might be required as 
complementary strategies. Disturbances in noncoding RNA 
levels in DMD also provide an alternative strategy to moni-
tor the progression of the disease or treatment efficacy [67, 
240], and noncoding RNAs are under research as potential 
therapeutic targets [241, 242]. Other approaches would also 
need to be used in severely affected patients who lack large 
amounts of functional tissue. Here, therapies based on the 
reversal of pathological symptoms, such as conversion of 
fibroblasts to myoblasts by the induction of MYOD, could 
be employed [243].

In summary, DMD should be understood as a disease 
of not only affected myofibers and satellite cells but also a 
disorder in which abrogated communication between differ-
ent cell types occurs. Therefore, targeting affected signaling 
pathways in patients is a promising treatment strategy for 
DMD. We believe that by taking this systemic view, we can 
achieve safe and holistic treatment that can restore correct 
signal transmission and gene expression in diseased DMD 
tissues.
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