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Urine as a true non-invasive sampling source holds great potential for biomarker discovery.While approximately
2000 proteins can be detected bymass spectrometry in urine from healthy people, the amount of these proteins
vary considerably. A systematic evaluation of a large number of samples is needed to determine the range of the
variations. Current biomarker studies often measure limited number of urine samples in the discovery phase,
which makes it difficult to determine whether proteins differentially expressed between control and disease
groups represent actual difference, or are just physiological variations among the individuals, leads to failures
in the validation phasewith the increased sample numbers. Here, we report a streamlinedworkflowwith capac-
ity of measuring 8 urine proteomes per day at the coverage of N1500 proteins. With this workflow, we evaluated
variations in 497 urine proteomes from 167 healthy donors, establishing reference intervals (RIs) that covered
urine protein variations. We demonstrated that RIs could be used to monitor physiological changes by detecting
transient outlier proteins. Furthermore, we provided a RIs-based algorithm for biomarker discovery and valida-
tion to screen for diseases such as cancer. This study provided a proof-of-principle workflow for the use of urine
proteome for health monitoring and disease screening.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Urine is a commonly used biological fluid for discovery of disease
markers, diagnostics, and health statusmonitoring. Urine presents several
distinct advantages over blood. For example, its sampling is truly non-in-
vasive, therefore can be repeated frequently; the urine proteome is also
simpler than the plasma proteome and more amenable to proteomic
analysis (An andGao, 2015; Shao et al., 2011b). Proteins in urine originate
from glomerular filtration of plasma and secretion of urogenital system
roteomics, National Center for
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(Pisitkun et al., 2004, 2006; Sun et al., 2005;Wang et al., 2006) and chang-
es in urinary protein composition can reflect physiological and patholog-
ical status of the human body (Decramer et al., 2008;Wu and Gao, 2015).

Much effort has been made to characterize protein composition of
urine using mass spectrometry (MS) during the last decade (Adachi et
al., 2006; Kentsis et al., 2009; Khristenko et al., 2016; Marimuthu et al.,
2011; Nagaraj and Mann, 2011; Sun et al., 2009; Thongboonkerd et al.,
2002). Databases, such as Max-Planck Unified Proteome database
(http://mapuproteome.com/) (Zhang et al., 2007), the Human Kidney
and Urine Proteome Project (http://www.hkupp.org/) (Yamamoto et
al., 2008), the Human Urinary Proteome Database (http://mosaiques-
diagnostics.de/diapatpcms/mosaiquescms/front_content.php?idcat=
257) (Coon et al., 2008), Urinary Protein Biomarker (UPB) database
(http://www.mybiosoftware.com/upb-20130710-urine-protein-
biomarker-database.html) (Shao et al., 2011a), and Urine Proteomics.
org (http://urineproteomics.org/databases.html) (Kentsis et al., 2009),
documented lists of urinary proteins, providing convenient resources
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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for keeping track of published urine proteomes. However, none of these
databases provided quantitative information about the urine proteins.

A number of clinical proteomics studies have generated a long list of
candidate urine protein biomarkers of various diseases (Beretov et al.,
2015; Goodison et al., 2009; Rodriguez-Suarez et al., 2014; Shao,
2015); however, no biomarkers derived from ‘discovery’ studies were
successfully translated into clinical practice to influence patient care
andmanagement (Fuzery et al., 2013; Mischak et al., 2010). One reason
for these translational failures was the small sample size included in the
studies, which did not have enough statistical power to distinguish be-
tween the difference resulting from pathological changes and the phys-
iological variations among different individuals (Rifai et al., 2006;
Rodriguez-Suarez et al., 2014).

At present, proteomics studies have revealed that intra-personal
variation of urine proteomes is substantial (Nagaraj and Mann, 2011);
the variation is further compounded by normal geno-proteomic differ-
ences among individuals. However, due to the lack of systematic evalu-
ation of variations in human urine proteomes based on large population
or long time span of sampling, it is still not clear whether these varia-
tions reflect fluctuation within a certain range in healthy persons and
further, whether it is feasible to establish a protein reference range for
the human urine proteome.

In clinical diagnosis, a normal range for a laboratory test is customar-
ily established by a reference interval (RI) for its distributions in the
population. Measurements of hundreds to thousands of people are re-
quired to make reliable empirical estimates (CLSI, 2010; Thompson et
al., 2004). Typically, 2.5th and 97.5th percentiles of RI, which cover
95% of reference population are used as lower and upper limits, where
outlier values are thought to signal potential problems for the test sub-
ject (CLSI, 2010). This approach is effective and widely used in diagnos-
tics. But the concept has not been adopted in proteomics, as it requires
the measurement of large number of samples.

Here we report a streamlined workflow to measure urine proteome
fromhigh-speed sediment of urine at the level of N1500 proteinswithin
3 h of MS running time. We measured 497 samples from 167 healthy
donors, enabling us to evaluate day-to-day and inter-personal varia-
tions of the human urine proteome in a two-center setting. This dataset
allowed us to establish intra-personal and pan-human RIs that covered
variations of the human urine proteome. We presented examples using
these RIs to identify outlier proteins that associated with physiological
or pathological states, which might be used for health monitoring. Our
study paved a way for biomarker discovery and validation for disease
diagnosis and health monitoring by using urine proteome.

2. Materials and Methods

2.1. Sample Collection and Preparation

Midstream of the first-morning urine was obtained and stored at
−80 C. Informed consents were signed by all test subjects and the
study was approved by the Institutional Review Boards, Baylor College
ofMedicine (BCM) andBeijing ProteomeResearch Center (BPRC), respec-
tively. Research adhered to the standards indicated by the Declaration of
Helsinki. We used 10–20 ml of urine samples to establish the method.
After establishing the standard operation procedure (SOP), 20 ml was
used in the remaining experiments. Twenty milliliters of urine samples
were centrifuged at 200,000 g for 70 min to save the pellets. We used a
previously described method (Pisitkun et al., 2004) with modifications
to remove uromodulin (UMOD; GeneID 7369). Briefly, 400 μl of resuspen-
sion buffer (50mMTris, 250mMsucrose, pH 8.5) and dithiotheitol (DTT)
was added to the pellets to a final concentration of 50 mM and the sus-
pension was then heated at 65 °C for 30 min. Then wash buffer (10 mM
TEA, 100 mM NaCl, pH 7.4) was added and a second ultracentrifugation
was carried out for 30 min. The sediments were dissolved in sodium do-
decyl sulfate (SDS) buffer (1 % SDS, 50 mM Tris, pH 8.5) and half of the
samples were used for SDS-PAGE. Resolved proteins were visualized
with Coomassie Brilliant Blue and 6 gel pieceswere subjected to in-gel di-
gestion by trypsin as previously described (Malovannaya et al., 2010).
Sample metadata were summarized in Supplementary Table 1.

2.2. NanoHPLC-MS Analysis

The extracted peptides were re-suspended in 20 μl of loading solution
(5 % methanol containing 0.1 % formic acid) and 5 μl was analyzed. Ther-
mo Fisher Q Exactive and LTQ Orbitrap VelosPro coupled to nLC-1000
were used. A homemade trap column (2 cm × 75 μm) and an analytical
column (10 cm × 75 μm), both packed with Reprosil-Pur Basic C18 (3
μm, Dr. Maisch GmbH, Germany) were used. A 75 min gradient of 5–28
% acetonitrile at a flow rate of 400 nl/min was used for on-line HPLC-MS.

For Q Exactive, the full MS scan range was set to 375–1300 m/z and
trap size for MS1 and MS2 were 3 × 106 and 2 × 105, respectively. The
mass resolution for MS1 and MS2 were 140,000 and 17,500 respective-
ly. The top 25 ionswere selected for higher energy collision dissociation
(HCD)with collision energy set at 27. For LTQOrbitrap VelosPro, the full
MS scan range was set to 375–1300m/z and trap size for MS1 and MS2
were 3 × 106 and 3× 104, respectively. Themass resolution forMS1was
100,000. The top 20 ionswere selected for collision induced dissociation
(CID) with collision energy set at 29. Dynamic exclusion was used after
1st identification with 10 s repeat duration and 30 s exclusion duration.

2.3. Protein Identification and Label-free Quantification

ProteomeDiscoverer (PD, V1.4, ThermoFisher) withMascot (Mascot
V2.3, Matrix Science) was used to search raw data against Human
RefSeq database (the 2013.07.04). Mass tolerance for precursor ions
was set to 20 ppm; mass tolerances of fragment ions were 0.02 and
0.5 Da for Q Exactive and LTQ Orbitrap VelosPro, respectively. Carba-
midomethylation of cysteine, oxidation of methionine, acetylation of
protein N-terminal were included as variable modifications. A maxi-
mum of one missed cleavages was allowed. All assigned peptides
were filtered with 1 % false discovery rate (FDR) at peptide level. We
only kept identifications with ≥2 unique peptides (1 % FDR and ion
score N 20), which was stricter than 1 % FDR at the protein level.

All identified peptideswere quantifiedwith peak areas derived from
their MS1 intensity. The process was as followed: 1) MS raw data were
converted to theMS-platform independentmzXML format; 2) the spec-
tral assignments from PD1.4 were then channeled through an in-
housed pipeline to construct Extracted Ion Chromatogram (XIC) peaks
with their corresponding intensity values included in mzXML data. For
protein quantification, intensity based absolute quantification (iBAQ)
algorithm (Schwanhausser et al., 2011) was used. To normalize the dif-
ferences in loading amounts among samples, we then converted iBAQ
value to FOT (fraction of total) - iBAQ value of each protein divided by
the sum of all iBAQ values of all proteins in the sample. Thus, FOT num-
ber is a relative concentration for the protein in the total measurable
proteome. FOTs of most proteins in a sample were very small and
more than five decimal values were common. These small numbers
would be visually difficult for human eyes. Therefore, we multiplied
the FOT number with 105 to obtain iFOT5 to make easier visualization
of values. All missing values were substituted with zero.

2.4. An algorithm for Screening Cancer

We first only kept proteins with ≥2 strict peptides (1 % FDR and ion
score N 20). In the rest 450 normal samples, we randomly selected 350
samples and calculate their RIs based on the iFOT5 values.We used non-
parametric 99.5th percentile values as the upper limits for selecting out-
lier proteins. We then randomly selected 45 cancer samples as the
training data set to find outlier proteins that are outside of the RI
upper limits, resulting in ~500 proteins. We then applied the same
scheme on the validation dataset and to obtain the outlier pools, we
then calculated the p-value for an overlap between the cancer outlier
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pool and the background proteins (total 15,447) based on the
hypergeometric test (equivalent to the Fisher exact test) (Draghici et
al., 2003). We repeated this procedure 20 times to remove potential
randomdrawing errors and for each time the receiver operating charac-
teristic curve (ROC) curve based on the test is plotted.We obtained final
cancer outlier pool with 509 proteins from the ROC curve of the best run
with the largest area under the curve (AUC) (0.957), and the
hypergeometric test's p-value cut-off 1.78 × 10−8 was obtained by set-
ting the specificity at 0.95.
2.5. Statistical Analyses

Personal and pan-human RIs were calculated with non-parametric
percentile method which is not dependent on distribution of data.
In cancer screening, the p-value for an overlap between cancer
outlier pool and sample-specific outlier proteins was calculated with
hypergeometric test.
3. Results

3.1. Development of a Streamlined Workflow for Profiling Urine Proteome

We first established a procedure to measure urine proteomes with a
throughput of up to 8 samples per day perMS (Fig. 1).We used a single-
step ultracentrifugation to collect high-speed sediment of the urine.
After ultracentrifugation, majority of the most abundant protein,
UMOD (Pisitkun et al., 2006; Raimondo et al., 2013), were removed by
reductionwithDTT (Supplementary Fig. 1). Sampleswere then separat-
ed by SDS-PAGE, cut into 6 slices and in-gel digested with trypsin. Ex-
tracted peptides were pooled and subjected to 2 MS runs, which took
3 h of machine time and typically resulted in the identification of
~1500 proteins. In the present study, we acquired 555 urine proteomes
from 180 healthy donors. Of these data, 57 (10 % of 555) urine
proteomes from 13 (7 % of 180) test subjects were collected during
the method establishment phase, during which centrifugation at low
speed before ultracentrifugation or different temperatures in DTT re-
duction step for removing protein UMOD were tested to optimize the
procedure. To keep technical consistency, these 57 urine proteomes
Fig. 1.A schematic description of theworkflow for fast profiling of urine proteome, establishing
algorithm. High-speed sediment of urinewas collected by ultracentrifugation and uromodulin w
PAGE for separation. After in-gel digestion, samples were pooled and measured by 2 MS run
proteomes from 180 healthy donors were acquired. Of these data, 57 urine proteomes fr
centrifugation at low speed before ultracentrifugation or different temperatures in DTT redu
technical consistency, these 57 urine proteomes were removed and only remaining 497 ur
dataset (17 donors, 319 urine proteomes) and a BPRC dataset (150 donors, 178 urine prote
normal dataset. Cancer dataset (154 donors, 154 urine proteomes) included 7 types of solid tu
was established to discriminate normal and cancer samples.
were removed and the remaining 497 urine proteomes from 167
healthy donors were included in further analysis (Fig. 1).

To assess technical variation in the workflow, we divided 16 urine
samples collected from 5 individuals over 5 days into 2 MS samples
each, and processed them in parallel. The Venn diagrams (Supplemen-
tary Fig. 2a) showed an approximately 90 % (1389/1695–2094/2190)
overlap between the same-sample splits at the level of ~1200–1600
protein identifications; the squares of Pearson correlation coefficients
for quantification (in iFOT5, Supplementary Fig. 2b) were between
0.93 and 0.96. These results indicated that combined variation in both
sample processing and MS running was small.

To demonstrate the stability of LC-MS systems, we presented the
quality control (QC) data of LC-MS (Velos and Q-Exactive,
ThermoFisher) used for acquiring all data in this study. QC datawere ac-
quired every three days to monitor the performance of eachmachine in
Baylor College of Medicine (BCM) and Beijing Proteome Research Cen-
ter (BPRC). Two hundred nanograms of commercial HeLa cell lysates
(ThermoFisher) or 500 ng of home-made 293 T cell lysates were used
for this purpose at BCM and BPRC, respectively. Twenty sets of QC
data from each machine that span two months were used to demon-
strate the stability of LC-MS. Analysis of Pearson correlation were per-
formed to evaluate not only inter-day variations from each machine
but also inter-machine variations in either center, as shown in Supple-
mentary Fig. 2c and d. Coefficients of correlation ranged from 0.83 to
0.97 for all QC data in both centers. Besides technical variation fromma-
chines, these comparisons also included variations from different batch
of QC samples. Results fromQCdata clearly suggested that themeasure-
ments from LC-MS platforms in both BCM and BPRC were stable and
repeatable.

3.2. Intra-individual Variation and Personal Reference Interval of the Urine
Proteome

We recruited 17 apparently healthy individuals from Baylor College
of Medicine (BCM) to investigate short-term (within 24 h and over
three consecutive days) and long-term (months) intra-individual varia-
tions in theurineproteome (Supplementary Table 2). To record 24-hour
change in the urine proteome, urine samples from a test subject were
separately collected in every ~6 h and measured. In this way, we
a reference interval (RI) of urine proteins for healthy humanbeing and a cancer recognition
as removed by reductionwith dithiotheitol. Then protein pellet was subjected to 1D SDS-
s. Normal dataset was acquired in an international two-center mode. Totally, 555 urine
om 13 test subjects were collected during the method establishment phase in which
ction step for removing protein UMOD were tested to optimize our procedure. To keep
ine proteomes from 167 healthy donors were included in further analysis, with a BCM
omes). Personal and pan-human RI of urine proteomes were established with data in
mors. Utilizing pan-human RI and data in cancer dataset, a cancer recognition algorithm

Image of Fig. 1
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obtained a total of four datasets from test subject U001 (three datasets)
and U002 (one dataset) containing 3 to 5 urine proteomes in each
dataset. Intra-personal coefficient of variations (CV) were calculated
for all datasets using only proteins with non-zero quantification values.
Variations of urine proteomes within 24 h were represented with the
spread of intra-personal CVs from each dataset in a box-plot format
(Fig. 2a). While the median CVs of four 24-hour datasets ranged from
0.29 to 0.33, themaximumCVwas as high as 2.0 for proteins that varied
substantially. Furthermore, we investigated intra-personal variations
during a few day period. One urine sample was collected in eachmorn-
ing from a test subject over 3 consecutive days. In this way, we acquired
35 datasets from 16 donors, resulting in at least 1 dataset for each per-
son and as many as 5 datasets for one person. Intra-personal CVs were
calculated from proteins with non-zero quantification values in all
three samples in the 3-day dataset. As shown in Fig. 2a, the median
CVs within 3 days ranged from 0.23 to 0.5, slightly higher than intra-
personal variations within 24 h.

Intra-personal variations in long term (N60 days) were evaluated
with datasets from 14 donors that resulted in 6 to 62 proteomes in
each dataset, with the longest time span of 314 days (Supplementary
Table 2). The spreads of intra-personal CVs were displayed in Fig. 2b
with median CVs ranging from 0.45 to 0.87. It was clear that intra-per-
sonal variation in long term was larger than that in short term (Fig. 2a
and b). As shown in Fig. 2b, intra-personal CVs did not change linearly
with the time span. Thus, intra-personal variations were relatively sta-
ble over a period, making it possible to obtain personal RIs of the
urine proteome.

Next, we investigated how many urine samples were sufficient to
establish stable personal ranges. For the top 2 largest personal datasets
(containing 62 and 51 samples from U001 and U002, respectively), we
tested a sub-sampling method to determine the effect of sample size
on variation. We used proteins that were detected and quantified in at
least 10% of the samples (7/62 for U001 and 6/51 for U002) to focus
on proteins thatwere frequently detected in the urine.We sub-sampled
sets of 3 to 25 samples, andmade100 iterations for each subset. We cal-
culated CVs of mean iFOT5 for each protein in each subset and plotted
overall spreads of CVs for all proteins against the sample size (Fig. 2c
and Supplementary Fig. 3). It was clear that overall spreads of CVs im-
proved with sample size and become stable with 15 to 20 samples.
This suggested that approximately 15 to 20 samples were sufficient to
establish reliable personal RIs for frequently detected proteins in the
urine.
3.3. Comparison of BCM with BPRC Dataset, Inter-personal Variations, and
Pan-human Reference Intervals

The BCMdataset focused onmeasuring diverse samples froma small
population (17 subjects, 319urine proteomes).We also acquired a BPRC
dataset at Beijing Proteome Research Center (BPRC) in Beijing, China, in
which samples from a relative large population (150 subjects, 178 urine
proteomes) were collected. For both datasets, collection, storage and
preparation of samples as well running of the LC-MS systems followed
the same standard operation procedure and were performed at each
site independently, resulting in 497 urine proteomes from 167 test sub-
jects combined (Fig. 1).

We first evaluated the compatibility of the two datasets using pro-
teins detected in N10% of the samples in each dataset (32/319 for BCM
and 18/178 for BPRC).We named these proteins as frequently identified
proteins. The BCM and BPRC datasets contained 1950 and 2071 fre-
quently identified proteins, respectively, with 1770 proteins in com-
mon. The totally identified urine proteins in both datasets were 5405
at 1 % protein FDR level. The frequently identified 2000 proteins consti-
tuted the common human urine proteome, while the other 3000 pro-
teins reflected the normal geno-proteomic differences among
individuals under different physiological conditions. As keratins
(KRTs) were often found as contaminations from the sample operators,
we did not include KRTs in the protein list for urine protein RIs.

We calculated the 2.5th, 25th, median (50th), 75th, and 97.5th per-
centile values from common proteins with their non-zero iFOT5 values
from both datasets. The Pearson correlations were shown in Fig. 3a. The
reference intervals (2.5th and 97.5th percentile) in both datasets were
highly correlated. These tight correlations from two independent
datasets suggested that abundance of proteins in urine fluctuated with-
in a stable range.

In order to see the impact of zero values (used for imputing missing
values in both datasets) onpercentile values,we also included both zero
and non-zero values to calculate percentile values and correlation be-
tween the two datasets (Fig. 3b). The correlation was not high for the
2.5th percentile values then improved considerably for higher percen-
tile values, and for above the 75th percentile values, they were as
good as those calculated from the non-zero values only. Therefore, it
might not matter that much including or not including zero values to
calculate and use 75th percentile values and above. For the later analy-
ses to identify outliers, we always used the high percentile and did not
use the lower percentile values for picking outliers.

Next, we calculated inter-personal CVs of frequently identified pro-
teins from the 5 datasets, namely the BCM, BPRC, BCM plus BPRC, fe-
male, and male datasets, containing 1950, 2071, 2025, 2011 and 1883
proteins, respectively. The CV spreads of the 5 datasets were similar
(Fig. 3c), with median CVs ranging from 1.01 to 1.19. The CV for the fe-
male dataset was slightly lower than that for the male dataset (median
CVs 1.01 vs 1.17). It was clear that the inter-personal variation was sig-
nificantly larger than intra-personal variation (Figs. 3c and 2b). These
datasets allowed us to calculate 5 RIs for frequently detected urine pro-
teins. The RIs derived from combined BCM and BPRC dataset was desig-
nated as the tentative pan-human RIs (Supplementary Table 3).

Among the 109 blood protein biomarkers approved by Food and
Drug Administration (FDA) (Anderson, 2010), forty-six of them were
found in the urine proteome with a RI (Supplementary Table 4). Addi-
tionally, six hundred and sixty-nine proteins in the common urine pro-
teome were associated with 656 Online Mendelian Inheritance in Man
(OMIM) (Hamosh et al., 2005) phenotypes. Of them, forty proteins
were linkedwith autosomal dominant or recessive diseases and 13 pro-
teins were associated with X-linked diseases (Supplementary Table 4).
Together it suggests that measuring human urine proteome have the
potential tomonitor ~50 % (46/109) of the blood protein biomarkers ap-
proved by FDA and offer the possibility to screen genetic diseases.

3.4. Potential Applications of Personal and Pan-human Reference Intervals
in Monitoring Health Status

To test whether the urine proteome can be used to monitor physio-
logical andpathological states, we first analyzed urine samples fromone
individual (U002) after trans-continental travels from Beijing, China to
Houston, Texas, USA,which took over 18 h of flight time andmight con-
fer physiological stress on the traveler. Two post-flight studies
(3 months apart) were performed with urine samples collected on se-
quential days after the travel for up to aweek. From the first trip, we de-
tected 377, 209, 223, and 110 outlier proteins that were above 97.5th
percentile of personal RIs (Supplementary Table 5) on day 1, 2, 5 and
7, respectively; we were able to repeatedly detect 44 outlier proteins
on day 1 from the second trip (Supplementary Table 5), indicating
that some physiological changes may be reproducible. As exemplified
in Fig. 4a, levels of some of the outliers demonstrated downward
trend of change post travel and gradually returned to their normal
levels. We concluded that our workflow is capable of detecting changes
in urine in response to physiological stresses.

We next analyzed urine samples collected from two test subjects
(U005 and U006) after they experienced flu-like symptoms such as
fever, runny nose and sneeze. U005 and U006 lived in the same house-
hold and presumably caught the same flu strain. With the pan-human
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RIs, we found 103 outliers above the 97.5th percentile of RIs (Supple-
mentary Table 5). Pathway analysis using Reactome Pathway Database
(http://www.reactome.org) (Croft et al., 2011) revealed that many
outliers were enriched in pathways associated with immune response
(Fig. 4c, Supplementary Table 5). For example, upregulation of IFIT1,
IFIT3, OAS2, ISG15, PML, MX1, and MX2 were indicative of activation of

http://www.reactome.org
Image of Fig. 2


Fig. 3. A comparison between the BCM and BPRC datasets and inter-individual variations of the urine proteome. (a) Correlations of 2.5th, 25th, Median (50th), 75th, and 95th percentile
values calculated from only non-zero quantification values (iFOT5) of proteins (1770) commonly identified in at least 10% of samples in both BCM and BPRC datasets. (b) Correlations of
2.5th, 25th,Median (50th), 75th, and 95th percentile values calculated fromboth zero and non-zeroquantification values (iFOT5) of proteins (1770) commonly identified in at least 10% of
samples in both BCM and BPRC datasets. (c) Inter-individual variations of urine proteomes from 5 datasets including BCM (17 donors, 319 urine proteomes), BPRC (150 donors, 178 urine
proteomes), BCM plus BPRC (167 donors, 497 urine proteomes), female (69 donors, 154 urine proteomes), and male (98 donors, 343 urine proteomes) datasets.
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antivirus response of the adaptive immunity (Fig. 4b) (Haller et al., 2006;
Stetson andMedzhitov, 2006). Notably, ISG15,MX1 and OAS2 are known
interferon-stimulated genes (Diamond and Farzan, 2013; Haller et al.,
2006), and have been validated as antiviral proteins in gene knockout
mouse models (Diamond and Farzan, 2013; Haller et al., 2006; Sadler
andWilliams, 2008). These results suggested that the anti-virus response
left a trace in the urine in test subjects who caught flu.

We also encountered an interesting test subject (U018)whose three
urine samples were collected and measured on November 13th, 2013,
March 20th, 2014, and April 10th, 2014 respectively. We found 13 com-
mon outliers (above 97.5th percentile of pan-human RIs) in all samples
Fig. 2. The effects of sampling time span and sample size on intra-personal variations of the ur
consecutive days) of urine sampling. Coefficients of variation (CVs) were calculated from p
represented sample number in each dataset. For variations within 24 h (median CVs 0.29–0.33
consecutive days (median CVs 0.23–0.5), 35 datasets were acquired from 16 donors (U001–
term (N60 days) of urine sampling. Number in parenthesis under X-axis represented sample
(N60 days) could be calculated from 14 donors (U001–U009, U011–U014, and U016). For co
urine sampling are 5, 17, and 18 days, respectively) were also plotted in the same graph (the
size on intra-personal variation of human urine proteome. The graph was plotted according
each dataset. CVs in Y-axis were calculated with 100 iterations of mean iFOT5 for each protein
and, according to Human Protein Atlas (Uhlen et al., 2015), four outliers
(KLK3, TGM4, ACPP, and STEAP2) were prostate enriched proteins (Fig.
4d). Four other prostate enriched proteins (RDH11, KLK2, NEFH, and
SLC30A4) were also detected as outliers in one of the 3 measurements.
While these proteins were occasionally detected as outliers in other
male subjects, their levels went back to normal range in the follow-up
measurement, and never were 4 of them detected as outliers at the
same time from any single test subject (Fig. 4e). Thus, U018 seemed to
possess a set of unique prostate enriched outlier proteins that may or
may not indicate any physiological or pathological conditions at pres-
ent, but may benefit from continuous monitoring.
ine proteome. (a) Intra-personal variations of urine proteomes in short term (24 h and 3
roteins quantified in all samples in each dataset. Number in parenthesis under X-axis
), 4 datasets were acquired from two individuals (U001 and U002); For variations over 3
U005 and U007–U017). (b) Intra-personal variations of human urine proteomes in long
number in each dataset. Of 17 donors in BCM dataset, intra-personal CVs for long term

nvenience of comparison, intra-personal CVs from U010, U015, and U017 (time span for
first 3 boxes). Median CVs for 17 donors range from 0.45–0.87. (c) The effect of sample
to the dataset of U001. Number in parenthesis under X-axis represented median CV in
in each subset size.

Image of Fig. 3


Fig. 4. Outlier proteins in urine proteome register physiological changes. (a) Outlier proteins and their changes up to a week from two transcontinental trips (3 months apart). The
empirical 2.5th, Median (Med) and the 97.5th percentile values are shown as the “normal” range. (b) Consistent outlier proteins and their changes in three days from two people who
caught flu. (c) Top 15 pathways enriched by Reactome analysis of the common outlier proteins in (b). (d) Persistent tissue-specific outlier proteins detected from an individual. Outlier
proteins of three different samples from test subject U018 (the 2014.03.20 sample was measured three times). The expression levels (mRNA in 32 tissues from the Human Protein
Atlas) are shown as the green-scale heat map, with darker green representing higher expression levels. (e) Abundance distributions of the 4 prostate-enriched outlier proteins from
the U018 test subject (measured 5 times) and the other 171 donors in the combined BCM and BPRC dataset. Occasionally, these 4 proteins were also detected as outlier proteins in the
other male subjects but they were not persistent, nor were they outliers with the 4 prostate enriched proteins at the same time for any other test subjects.
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3.5. Application in Cancer Screening

To investigate whether the RIs can be used for disease screening, we
measured 154 samples from patients with bladder (17 cases), breast
(4), cervical (25), colorectal (22), esophageal (14), gastric (47), and
lung cancers (25), and used the data and the pan-human RIs to establish
a cancer recognition algorithm (Fig. 5a).

The 497 normal samples were randomly divided into 3 groups.
Group I consisted of 350 samples for establishing the pan-human RIs;
Group II contained 100 samples for validation; and the remaining 47

Image of Fig. 4


Fig. 5. A workflow that combines marker discovery and validation in one and a cancer recognition algorithm using pan-human reference interval to distinguish samples from healthy
people and cancer patients. (a) A schematic description of the workflow for establishing a cancer recognition algorithm. Normal and cancer urine proteomes were split into 3 parts for
training, validation and prediction. The candidate cancer outlier pool was first generated by filtering out outlier proteins in at least 2 samples from the training dataset. Then its
performance for classifying cancer and normal samples were tested with the validation dataset and the hypergeometric distribution test. Then a receiver operating characteristic curve
(ROC) and area under curve (AUC) were generated. The process was iterated 20 times to obtain the final candidate cancer outlier pool (509 proteins) – “cancer markers”. At last, the
prediction was done according to the cancer markers and the hypergeometric test. (b) Reduction of cancer marker pool and its performance in classifying cancer and normal samples.
Reduction of dimension according to outlier frequency or its abundance reduced the cancer markers from 509 to 62 proteins with slightly improved power in classifying cancer and
normal samples.
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samples as Group III were used for further prediction. The 154 cancer
samples were similarly divided into 3 groups with 45, 61, and 48 sam-
ples for training, validation and prediction, respectively. While Group I
and II samples were permutated in each iteration, the prediction sets
(Group III) never participated in training or validation.

To establish a cancer outlier pool, we randomly picked 350 normal
and 45 cancer samples as training dataset to find outlier proteins
above 99.5th percentile of the pan-human RIs. We kept the outlier pro-
tein only if it was found in at least 2 samples in the cancer training
dataset. The validation dataset (61 cancer and 100 normal samples)
were individually compared with the cancer outlier pool and the signif-
icance of overlap between them was calculated with a hypergeometric
distribution test (Draghici et al., 2003) to obtain a p-value. When all p-
values from cancer and normal samples were combined, a ROC curve
was obtained and the AUC was calculated to assess the performance
and to determine the cutoff p-value (Pc) for classifying cancer. To min-
imize sampling bias, this process was iterated 20 times to obtain the
final cancer outlier pool that contained 509 proteins, with the best
AUC (0.957) of ROC (Supplementary Table 6, Fig. 5a). We then took
the outlier proteins from the prediction set (48 cancer and 47 normal
samples) to calculate p-values with the hypergeometric distribution
test. This algorithmmisclassified 2 samples as cancer out of the 47 nor-
mal samples (false positive rate 4.26 %), and 8 as normal out of the 48
cancer samples (false negative rate 16.67 %).

Image of Fig. 5
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To further reduce the number of proteins in the cancer outliner pool,
we applied the following constraints: 1) keep the outliers if it appeared
in N5 cancer samples; or 2) if its iFOT5 at 90th percentile of the RIs in the
cancer training set was N100. With these restrictions, the cancer outlier
pool was reduced from 509 to 62 proteins (Supplementary Table 6),
resulting in a ROCwith AUC of 0.916. Using the Pc with 95 % specificity,
this algorithmmisclassified 1 sample from the 47 normal samples (false
positive rate 2.13 %) and 7 from the 48 cancer samples (false negative
rate 14.58 %) (Fig. 5b). These results suggested that reduction of cancer
outlier pool by removing less common or low abundant proteins could
actually improve the performance of the cancer recognition algorithm.

4. Discussion

Here,we presented a streamlinedworkflow tomeasure several hun-
dred urine proteomes in an international, two-center setting.We aimed
to address several common and critical issues that might be relevant to
clinical urine proteomics, including 1) how variable is the human urine
proteome? 2) Can we establish reference intervals and howmany sam-
ples are sufficient? 3) Can we find a way to discover urine biomarkers
for disease diagnosis and health status monitoring?

We were able to establish RIs for 2000 commonly detected urine
proteins. As we measured 497 urine proteomes and only included pro-
teins that were detected in N10 % of the samples, every protein was de-
tected in N49 times with protein FDR b 1 %, thus the identification was
very stringent and error in protein identification was negligible. There
were 902 proteins with median value (50th percentile value) greater
than zero, these were relatively abundant urine proteins. The rest of
the 1098 proteinswere not detected in half of the samples but were de-
tected in N10 % of the samples. Their abundance may not be high, but
their RIs (up to 97.5th percentile) were accurate as they were derived
from at least 12 detectable measurements. The 99.5th percentile value
may not be accurate for a small portion of the proteins as they may be
calculated from fewer than 12 detectable measurements.

The current diseasemarker discovery and validation programs often
utilized two cohorts of samples - disease and control (Fuzery et al.,
2013; Pavlou et al., 2013; Rodriguez-Suarez et al., 2014) and unfortu-
nately, many markers from these studies did not pass the validation
phase. This was due in part to the “noise markers” resulting from phys-
iological fluctuation or individual differences (Gao, 2013). With limited
sample size in the discovery phase, it was understandably difficult to
cover the physiological variations of the control group. A case in point
was the protein TMEM256. As the second most abundant protein in
our dataset, its normal RI for the 2.5th percentile value was 7.1 while
the 97.5th percentile value was 9305 (see Supplementary Table 3),
spanning a factor of 1329 folds within the normal range! TMEM256
was identified as a candidate prostate cancer marker with ratio of 140
for the cancer and control group (Overbye et al., 2015), later it did not
validate from another cohort where the difference between cancer
and control was not significant when measured with immune assays
(Wang et al., 2017). By establishing a normal RI as presented here,
most of the “noise markers” or highly variablemarkers could be filtered
out in the first step. We had demonstrated the feasibility of obtaining
comparable data in an international, two-center (BCM in USA and
BPRC in China) setting. These datasets allowed us to evaluate intra-
and inter-personal variations in urine proteome and to establish per-
sonal and pan-human RIs, which could be used to identify associations
between the urine proteins and physiological or pathological condi-
tions. We showed that subtle, but consistent changes could be detected
as outliers of the urine proteome after trans-continental travel or catch-
ing flu, demonstrating a “proof-of-principle” for health state monitor-
ing. While outlier proteins detected in trans-continental travel were
also detected under normal conditions at lower abundances, many out-
liers detected with flu symptom were rarely detected under normal
conditions. This suggests that trans-continental travel was a milder
physiological perturbation, whereas catching flu led to more profound
changes. One interesting observationwas the consistent increase of pro-
teins involved in gastric function (PGC, MUC6) after inter-continental
travel, indicating that digestive system may experience major stress.
This was consistent with a common complaint of stomach discomfort
suffered bymany travelers adjusting to day and night jetlag.We believe
that this is the instance where MS-based urine proteomics was used to
measure, in an unbiased manner, significant deviations from normal
protein levels in urine due to minor physiological and pathological
changes. These results are suggestive that pathological conditions are
likely to leave discernable footprints in the urine proteome. While
these 2 examples are intriguing, systematic monitoring of urine prote-
ome for more cases were required to implicate any biological signifi-
cance. Nevertheless, our approach could be adopted for high risk
population screening before the disease symptoms became apparent,
and might have the potential to discover early disease markers.

We also found that if the underlying cause were physiological varia-
tion, outlier proteins often went back to the normal range in the follow
upmeasurement, as exemplified in the intercontinental travel case. Per-
sistent detection of outlier proteinsmay be indicative of non-physiolog-
ical conditions. This is an intriguing hypothesis now and more
experiments are needed to test it. The outlier proteins enriched in pros-
tate as persistently detected in U018 may be one example. These pro-
teins were also sporadically detected as outliers in other test subjects,
but they went back to levels within RIs in the follow upmeasurements,
demonstrating a transient nature of the normal physiological response.
Periodical measurements of a person's urine proteome could establish a
personal health archive that would be valuable for detecting future
health issues.

Our study pointed to a way for biomarker analysis or discovery and
the possibility for cancer screening using the urine proteome. The algo-
rithm for cancer screening illustrated a way to detect cancer with re-
duced false positive rate while keeping false negative rate in a
reasonable range. Importantly, our algorithm demonstrated that with
pan-human RIs, it was possible to use relatively small number of sam-
ples (106 samples covering 7 cancers) to obtain a cancer outlier pool
that could distinguish samples from cancer patients and healthy indi-
viduals. Many proteins in cancer outlier pool have clear relationship
with cancer. For example, CEACAM1, CEACAM6, and CEACAM8 (see Sup-
plementary Table 6) are carcinoembryonic antigens that are utilized as
tumor maker in clinic (Hammarstrom, 1999). IDH2, MTOR and SF3B1
(see Supplementary Table 6) are encoded by cancer driver genes
(Rubio-Perez et al., 2015). IDH2 (isocitrate dehydrogenase 2) catalyzes
the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG)
while reducing NADP+ to NADPH (DeBerardinis et al., 2007). The dys-
function of IDH through mutation or alteration in expression level has
been observed in numerous types of cancers (Lv et al., 2012). MTOR,
mammalian target of rapamycin, has emerged as a critical effector in
cell-signaling pathways commonly deregulated in human cancers
(Guertin and Sabatini, 2007). Together, these examples suggested that
proteins closely related to cancer could be picked up by our algorithm.

We noted several limitations to the current study that warranted
further development. First, the current RIs were defined in iFOT and it
was only a relative concentration in the total measurable urine prote-
ome. The total urine proteome was used for normalization and there-
fore, RIs had no unit. We could not define the RIs in a clinical lab more
friendly fashion, i.e. in the unit of g or mol per mol creatinine (to nor-
malize for differences in urinary output). Second, we measured the
high-speed sediment of urine, not the total urine, to get rid of the
most abundant soluble urine proteins to favor MS detection, thus, our
RIs must be used with the same operational procedures – high-speed
urine sediment, SDS-PAGE then followed by LC-MS measurements.
Third, although the pan-human RIs established in this study were
based on the large dataset of urine proteomes from healthy persons,
the coverage of population was still limited when considering factors
of genders and age. Most of test subjects were in the age group of 25
to 55, while older people and children were not included. They were
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expected to have unique and different proteomes and must be dealt
with separately. Furthermore, as the dataset only include data frompeo-
ple of Chinese ethnicity, cautions should be taken when comparing
them to data from people of other ethnicities. Diversities of urine sam-
ples in gender, age, and ethnicities should be considered in future stud-
ies. Additionally, while our workflow is a good compromise between
throughput and the depth of the urine proteome, it would bemore use-
ful to automate the system, decrease sample preparation time, adopt a
gel-free method and further increase sample throughput (Court et al.,
2015; Santucci et al., 2015; Yu et al., 2014).

In summary, we showed that the human urine proteome contained
rich information related to health and disease.We envisioned that urine
proteome analysis, as a true noninvasive analytical tool, would find
widespread applications in health monitoring, disease detection and
even genetic disease screening in the near future.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2017.03.028.
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