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The levels of the astrocyte markers (GFAP, S100B) were increased unevenly in patients
with schizophrenia. Reactive astrogliosis was found in approximately 70% of patients with
schizophrenia. The astrocytes play a major role in etiology and pathogenesis of
schizophrenia. Astrocytes produce the components that altered in schizophrenia
extracellular matrix system which are involved in inflammation, functioning of
interneurons, glio-, and neurotransmitter system, especially glutamate system.
Astrocytes activate the interneurons through glutamate release and ATP. Decreased
expression of astrocyte glutamate transporters was observed in patients with
schizophrenia. Astrocytes influence on N-methyl-d-aspartate (NMDA) receptors via D-
serine, an agonist of the glycine-binding site of NMDA receptors, and kynurenic acid, an
endogenous antagonist. NMDA receptors, on its turn, control the impulses of dopamine
neurons. Therefore following theories of schizophrenia are proposed. They are a)
activation of astrocytes for neuroinflammation, b) glutamate and dopamine theory, as
astrocyte products control the activity of NMDA receptors, which influence on the
dopamine neurons.

Keywords: schizophrenia, astrocyte, N-methyl-d-aspartate, glutamate, glial fibrillary acidic protein, S100B,
kynurenic acid
INTRODUCTION

Schizophrenia is a mental disorder, determined as a complex of positive, negative and cognitive
symptoms (Carbon and Correll, 2014). Positive symptoms are the symptoms that present in
patients with schizophrenia, but not healthy people, such as psychosis. Negative symptoms are the
symptoms, associated with lack of functions, such as lack of motivation, reduction in spontaneous
speech, and social withdrawal. Cognitive symptoms related to neurocognition: difficulties in
memory, attention, and executive functioning (Van Os and Kapur, 2009). However, positive
symptoms are more noticeable in patients than negative and cognitive symptoms, which helps in
diagnosis of schizophrenia.

The dopamine theory of schizophrenia, based on hyperactive dopamine projections in the
mesolimbic system and reduced dopamine projections in the mesocortical system
in.org February 2020 | Volume 10 | Article 16121
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(Juárez Olguín et al., 2016), is the prevalent explanation of
schizophrenia symptoms now. Alterations in striatal D2 receptors
cause positive symptoms, and impairments in the prefrontal cortex
D1 receptors cause negative and cognitive symptoms (Lau et al.,
2013). Traditional pharmacotherapy, based on the dopamine
theory of schizophrenia, has several significant limitations. The
use of antipsychotics improves predominantly positive
symptoms, although there is evidence of improvement of negative
symptoms with the use of clozapine (Kane, 1988) and aripiprazole
(Veerman et al., 2017). Approximately 25% of patients are resistant
to therapy (Remington et al., 2017), in addition, the rate of
metabolic syndrome among patients was 32.5% (Mitchell
et al., 2013), which worsens life quality and predisposes to
cardiovascular diseases.

Glutamate theory of schizophrenia is based on the ability of
N-methyl-d-aspartate (NMDA) antagonists, such as ketamine,
induced schizophrenia-like psychosis (Steeds et al., 2015).
Disturbances in NMDA receptors in interneurons lead to the
absence of inhibition impulses to the glutamate neurons,
increasing glutamate activity especially in the prefrontal cortex,
which can be related to negative symptoms of schizophrenia. The
agonists of metabotropic glutamate receptors mGluR2
demonstrate the antipsychotic activity in clinical trials
(Moghaddam and Javitt, 2012).

Neuroinflammation theory of schizophrenia is based on
increased expression of proinflammatory agents and the
presence of autoantibodies. Epidemiological studies associate
schizophrenia with autoimmune disorders, autoantibodies
affect synapses and NMDA-type glutamate receptors and cause
damages in the brain (Sawa and Sedlak, 2016). Inflammation
processes, in its turn, are connected with oxidative stress—the
imbalance between the production of reactive oxygen species
radicals and antioxidant system. Interconnections of neurons
and glia mediate the inflammation processes, that means that
altered glial state will be an important point in schizophrenia
research (Leza et al., 2015).

The glial theory of schizophrenia assumes that initial
disturbances in glial cells can lead to the abnormalities of the
neurons and neurotransmitters. The glial theory of
schizophrenia based on the proven inflammatory response and
elevated levels of the characteristic markers of active glia—S100B
and glial fibrillary acidic protein (GFAP) (Wang et al., 2015). In
schizophrenia patients there is an accumulation of the metabolite
of tryptophan—kynurenic acid (KYNA) (Plitman et al., 2017),
acting as an antagonist of NMDA receptors and altered
glutamate transport—which binds glial and glutamate theory,
as well as due to the influence on interneurons. Obviously,
astrocytes as the most abundant glial cells, are the objects of
careful attention at the researchers of a lot of central nervous
system (CNS) diseases. But its role in the development of
schizophrenia is insufficiently studied. The concept of our
paper is the generalization of previously obtained data in this
field. This review analyses the action of astrocyte both on
schizophrenia symptoms and on the related with them factors,
such as inflammation processes, extracellular matrix, and
different neurotransmitters.
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Evidences of Alterations in Astrocyte
System in Different Brain Areas
Patients with schizophrenia show increased activation of glia,
especially astrocytes, which play a role in the development and
functioning of synapses, glutamate release, water-electrolyte
balance, regulation of blood circulation, and neuroprotection
(Blanco-Suárez et al., 2017; Sullivan et al., 2018). The functions of
astrocytes are related to the functions of other glial cells:
protective functions of astrocytes can be changed by microglia,
and also astrocytes, interacting with oligodendrocytes, play a role
in myelination (Iglesias et al., 2017), which makes their role in
schizophrenia even more significant.

The most part of postmortem human studies of astrocyte
alterations in schizophrenia have focused on the number of glial
cells. The number of astrocytes was reduced in the cingulate
cortex (Williams et al., 2013a), motor cortex (Benes, 1986),
medial, and ventrolateral regions of the nucleus accumbens
(Pakkenberg, 1990), basal nuclei (Williams et al., 2013b),
substantia nigra (Williams et al., 2014), but increased in the
periventricular space (Bruton et al., 1990) and is not altered in
the temporal and frontal cortex (van Kesteren et al., 2017), in the
hippocampus (Schmitt et al., 2009), amygdala, and ventral
pallidum in schizophrenia (Pakkenberg, 1990). The changes of
the astrocyte density in the prefrontal cortex vary depending on
the area of the dorsolateral prefrontal cortex of postmortem brain
tissue (Rajkowska et al., 2002). Studies of the number of
astrocytes in the mediodorsal nucleus of the thalamus vary:
one study showed a decrease in the number of astrocytes
(Pakkenberg, 1990), but another study showed increased GFAP
expression in the mediodorsal nucleus of the thalamus and in the
anteroventral, internal capsule, and putamen (Barley et al., 2009).
A positive correlation has been found between the age of
macaque monkey and the density of astrocytes in paralaminar
nucleus (Chareyron et al., 2012) which suggests that different age
of patients can contribute to the heterogeneity of
astrocyte density.

Selemon et al. have found an increased density of glia in the
prefrontal cortex in rhesus monkeys, chronically taking
antipsychotics (Selemon et al., 1999). This is contradicted by
the fact that the expression of clozapine- and haloperidol-
induced Fos—protein in Sprague–Dawley rats is not
colocalized with astrocytes, which suggests that haloperidol
and clozapine do not act on these glial cells (Ma et al., 2003).

Individual astrocyte genes are associated with schizophrenia,
which is proved by the increase in astrocyte Marker Gene Profile
in the thalamic region in the transcriptomics analyses of post-
mortem brain tissue (Toker et al., 2018). A significant number of
changes in gene expression in schizophrenia patients occur in the
anterior cingulate cortex, which is responsible for cognitive
function, error recognition, and motivation, while very few or
no significant expression differences in the dorsolateral
prefrontal cortex and nucleus accumbens (Ramaker et al.,
2017). Alterations in the expression of the two proteins are the
most common among patients with schizophrenia—aldolase C
(11 reports) and GFAP (9 reports), both expressed primarily by
astrocytes (Davalieva et al., 2016). Adult astrocytes also express
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calcium-binding protein S100B, glutamate-aspartate transporter/
excitatory amino acid transporter 1 (EAAT1), and glutamate
transporter (GLT-1) (Iglesias et al., 2017). Markers of enhanced
astrocyte response are usually GFAP and S100B (Kim et al., 2018;
Michetti et al., 2019).

Glucose metabolism finishes with the formation of oxidative
radicals, and astrocytes normally increase mobilization of
glycogen and glucose utilization in the case of oxidative stress
(Lavoie et al., 2011). Destruction of astrocyte lactate transporters
produces a loss of memory, suggesting the importance of lactate
transport in astrocytes for the formation of long-termmemory in
rats (Xia et al., 2016). Inhibition of glycogenolysis in rats impairs
memory, but it is improved by the use of lactate, which can be
related to the impairments in working memory in patients with
schizophrenia (Newman et al., 2011).

Marker of Enhanced Astrocyte Response GFAP
GFAP is expressed by the astrocytes, perisinusoidal stellate cells
of the liver, Leydig cells, glomeruli of the kidney, and
chondrocytes of elastic cartilage (Buniatian et al., 1998). GFAP
is a marker of reactive astrocytes, many astrocytes normally do
not release detectable GFAP levels (Kim et al., 2018). GFAP
expression is different in patients with schizophrenia (Catts
et al., 2014). It was elevated in the anteroventral and
mediodorsal thalamic nuclei and putamen (Barley et al.,
2009), and in dorsolateral prefrontal cortex in patients with
neuroinflammation (Catts et al., 2014). GFAP expression was
significantly reduced in the in the frontal cortex and cingulate
cortex of postmortem brain tissue (Williams et al., 2013b; Wang
et al., 2015). The level of GFAP and the number of GFAP-
positive cells were not statistically different in the hippocampal
and neocortical regions (Pantazopoulos et al., 2010; Schnieder
and Dwork, 2011). However, animal models of schizophrenia
showed an increase in the level of GFAP (Kim et al., 2018).
Variation in the data may be related to differences in age, causes
of death, the severity of the inflammatory response, genetic
characteristics, heterogeneity of schizophrenia symptoms
(Schmitt et al., 2009; Schnieder and Dwork, 2011; Catts et al.,
2014). The latter is also confirmed by the difference in astrocyte
activation of transgenic mice by alpha-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPAR)
modulators (Höft et al., 2014). Moreover, multiple injections of
the NMDA receptor antagonist that causes schizophrenia-like
symptoms has led to increase in the level of GFAP in the
hippocampus of rats (Yu et al., 2015) and in the medial
prefrontal cortex of mice (Gomes et al., 2015).

Marker of Enhanced Astrocyte S100B
S100B is a calcium-binding protein, a biomarker of brain damage
and stress that is synthesized by oligodendrocytes and astrocytes.
It is also secreted by CD8T-lymphocytes and NK-cells during
their stimulation, inducing microglial migration through
increased cytokine expression (Michetti et al., 2019). The level
of S100B was increased by almost two times compared to the
healthy control groups, but its increase was observed in
schizophrenia patients is not uniform (Aleksovska et al., 2014).
The level of S100B was decreased in the postmortem brain tissue
Frontiers in Pharmacology | www.frontiersin.org 3
of deep layers of the anterior cingulate gyrus (Katsel et al., 2011)
and in the corpus callosum (Steiner et al., 2014b). In the animal
models, the level of S100B were heterogeneous (de Souza et al.,
2015) in the hippocampus. S100B-immunopositive glia was
elevated in paranoid as compared to residual schizophrenia
patients (Steiner et al., 2008). There is evidence that S100B can
be released by astrocytes in response to activation of 5-HT
receptor, which means that an excess of serotonin can provoke
the release of S100B, but this is opposed by serotonin and
norepinephrine reuptake inhibitor in the hippocampus of rats
(Michetti et al., 2019). Increased S100B expression can lead to
metabolic disturbances in astrocytes and neurons, for example,
reduced glucose uptake by astrocytes. The level of S100B in
serum correlates with the development of insulin resistance in
patients with schizophrenia (Steiner et al., 2014a). Intracellular
S100B provokes proliferation, extracellular S100B provokes cell
differentiation in small doses and induces cell death in large ones
(Aleksovska et al., 2014). It was noted that antipsychotics
(haloperidol and clozapine) reduce the level of S100B in the
cell cultures (Steiner et al., 2010). The level of S100B in serum
positively correlates with the manifestation of negative
symptoms before treatment, while negative symptoms may be
predictors of increased S100B. The level of S100B does not
change during 6 months of treatment and the level of S100B
also kept high after 6 months of treatment in patients with high
rates of negative symptoms. Patients with increased S100B had
problems with expression of emotions, communication with
others, initiative, while mice with increased S100B showed
impaired memory and learning ability (Rothermundt et al.,
2004). Mice with S100B deletion had better fear memory in the
contextual fear conditioning (Nishiyama et al., 2002).

Morphology of Astrocytes in Schizophrenia
Data about the presence of changes in the morphology of
astrocytes in schizophrenia is also different: despite the
hypertrophy of glial fibrillary acidic protein-containing cellular
processes, the volume of tissue accessed by individual astrocytes
of mice remains unchanged (Wilhelmsson et al., 2006). Reactive
astrogliosis was found in approximately 70% of patients with
schizophrenia in the thalamus, l imbic system, and
periventricular space (Mallya and Deutch, 2018), although
reactive astrogliosis was not found in the entorhinal cortex
(Casanova et al., 1990; Schnieder and Dwork, 2011). Gliosis at
the rostral and caudal ends was more common in patients with
late onset of schizophrenia (Nasrallah et al., 1983; Schnieder and
Dwork, 2011). Differences in the data can be partly explained by
differences in the age of the patients (Schmitt et al., 2009). The
morphology of astrocytes depends on the measure of the
inflammatory response in patients with schizophrenia, so
the differences in morphology can partially explain the
different data about the levels of GFAP (Kim et al., 2018).
Morphological changes of astrocytes can also alter neuronal
networks, which can apparently contribute to the development
of schizophrenia symptoms (Poskanzer and Yuste, 2011). The
appearance of astrogliosis can be expected due to the continuous
patients neurodegenerative state, which can be predicted by
altering the volume of brain areas (Brugger and Howes, 2017),
February 2020 | Volume 10 | Article 1612
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but the data on its manifestation is different, which can be
explained by the presence of different types of astrogliosis and
the short duration or blockade of astrocyte reactions in many
people with schizophrenia (Catts et al., 2014). Normal
astrogliosis has provided several significant benefits, including
protection of neurons, recovery of the blood-brain barrier, and
reducing inflammation in the central nervous system, while
small and medium astrogliosis can look the same with healthy
astrocytes of the CNS (Sofroniew, 2015). Pathological astrogliosis
can lead to harmful effects: to provoke and increase
inflammation, to produce molecules that destroy the blood-
brain barrier and facilitate the migration of leukocytes into the
CNS parenchyma (Leza et al., 2015; Sofroniew, 2015). The
relationship between taking atypical antipsychotics and the
suppression of astrogliosis, (including that caused by NMDA
antagonist) have been also discovered (Catts et al., 2014).

Reactive hypertrophic astrocytes lose spontaneous Ca2+

oscillations in situ after stab wound injury, controlling the
emission of gliotransmitters, which may be related to the
neural network (Rossi, 2015). There is evidence that the release
of high concentrations of tumor necrosis factor (TNF)-a by
reactive microglia shows Ca2+-dependent release of
gliotransmitter glutamate by astrocytes, leading to neuronal
damage (Bezzi et al., 2001).

Myoinositol is a marker of glial activation, for which the
connection with astrocytes for schizophrenia spectrum disorders
patients has been found (Chiappelli et al., 2015). Its level may be
associated with inflammation and increased in untreated
individuals. The level of myoinositol in the striatum positively
correlates with the level of glutamate in untreated patients and
positive symptoms, but not correlated with negative or
symptoms at all (Plitman et al., 2016).

Prenatal Infection and Mother Deprivation Lead
to Schizophrenia
Prenatal infection is one of the suspected causes of schizophrenia
and it can make astrocytes hypersensitive to stimuli in the future,
which may cause an enhanced response in the central nervous
system (Takahashi and Sakurai, 2013). Maternal immune
activation on day 12 of mice embryonic development leads to
changes in astrocytes and microglia and increases the GFAP
levels, which indicate astrogliosis in the amygdala (O'Loughlin
et al., 2017), but in another study, mice prenatal immune
activation did not change astrocyte density (Giovanoli et al.,
2016). Activation of astrocytes during rat embryonic
development can disrupt the cortical and thalamocortical
formation (Beamer et al., 2017).

Mother deprivation in rats leads to specific behavioral
symptoms of schizophrenia, which may be associated with
corticosteroids. Mother deprivation provokes a higher level of
GFAP and a large number of GFAP-positive astrocytes, which
may indicate reactive gliosis (Llorente et al., 2009). At the same
time, it has been found that mother deprivation provokes an
increase in GFAP-positive cells only in male rats (López-
Gallardo et al., 2008).
Frontiers in Pharmacology | www.frontiersin.org 4
Contribution of Astrocytes in Neuron-
Neuron and Neuron-Glia Interaction
Inflammatory Processes and Astrocytes
Oxidative and nitrostress are the main mechanisms by which
inflammation can generate cell damage (Leza et al., 2015).
Hypotheses of oxidative stress as a cause of schizophrenia
suggest that inflammation can act in the embryonic period of
development and induce oxidative stress in fetal cells through
cytokines that cross the placenta; or an inflammatory agent, such
as an infection that causes an immune response and oxidative
stress, can act on the brain in adolescence, causing characteristic
changes (Figure 1). At the same time, oxidative and nitro stress
can be caused by non-inflammatory stimuli (mitochondrial
dysfunction, dopamine, hyperhomocysteinemia, smoking,
hypofunction of NMDA receptors, etc.) (Leza et al., 2015;
Nedic Erjavec et al., 2018). Oxidative stress is observed in the
prefrontal cortex, anterior cingulate cortex and hippocampus,
which matches with the places of altered astrocyte activity in
schizophrenia. Oxidative stress inhibits the activity of NMDA
receptors, which can lead to the appearance of ketamine-like
symptoms, and has inhibitory effects on glycogen metabolism in
mice (Lavoie et al., 2011). In this case, free radicals can cross the
blood-brain barrier, which becomes more permeable due to the
product of lipid peroxidation 4-hydroxynonenal (Nedic Erjavec
et al., 2018) and other agents, causing an inflammatory response
and a decrease in pH as a result of chronic stress (van Kesteren
et al., 2017). However, under the influence of certain
circumstances astrocytes can emit molecules, such as sonic
hedgehog, which provoke the repair of blood-brain barrier
(Sofroniew, 2015)

Interneurons are very sensitive to damage from oxidative
stress, especially at the beginning of postnatal development
(Grace, 2016). Prolonged stress increases the activity of
dopamine neurons through the ventral tegmental area and
increases the level of dopamine in the prefrontal cortex and
nucleus accumbens. The medial prefrontal cortex regulates the
amygdala’s response to stress. Stress-induced hyperreactivity of
the amygdala leads to the loss of parvalbumin interneurons
(Grace, 2016) and changes in their proportions in the
hippocampus, which leads to even greater hyperexcitation of
dopamine systems, and this causes symptoms of schizophrenia
(Grace, 2016).

The main cells of the immune response in the CNS are
astrocytes and microglia. In this case, microglia mainly
produces type 1 cytokines, such as interleukin (IL)-12, and
astrocytes inhibit the production of IL-12 and produce type 2
cytokines, for example, IL-10 (van Kesteren et al., 2017). The
dysregulation of this balance can damage the neurons, cause a
deficit of interneurons, leading to alteration of oligodendrocytes
and inhibition of gamma-aminobutyric acid (GABA)
interneurons (Nedic Erjavec et al., 2018). IL-1b and IL-6
promoted dopaminergic transmission (Purves-Tyson
et al., 2019).

Stimulation of mGluR5 and a1-noradrenergic astrocyte
receptors provokes mild inflammatory processes, including the
February 2020 | Volume 10 | Article 1612
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release of prostaglandins and other eicosanoids, which can
regulate communication between neurons and blood vessels
(Rossi, 2015).

Experimental and clinical observations have shown that loss
or dysfunction of astrocytes can seriously exacerbate
CNS inflammation and tissue damage. Normal astrocytes
produce pro-inflammatory agents, such as cytokine Il-6, IL-10,
IL-17, and IL-1ß that attract leukocytes through vasodilation.
Then the astrocytes exhibit a modulatory role to form the
necessary barriers to limit the inflammation or enhancing the
anti-inflammatory process through vasoconstriction mechanism.
Hence astrocyte transcriptome changes that are shifted by
pathogen-associated molecular patterns (PAMPSs) including LPS
and associated cytokines (Sofroniew, 2015). Astrocytes also
regulate the function of microglia during injury or recovery
of the brain via secreted cytokines (Miyake et al., 2011;
Frontiers in Pharmacology | www.frontiersin.org 5
Bouzier-Sore and Pellerin,2013; Bernstein et al., 2015; Andrade
2016; Dean et al., 2016).

The Role of Astrocytes in the Functioning of the
Extracellular Matrix
During pathogenesis of schizophrenia, glia loses the ability to
form compartments and connections, which leads to disruption
of perception and an inability to think, which can be included in
the development of cognitive symptoms in schizophrenia.
Supposing that astrocyte gap junctions are the site of memory
formation and intentional programming, their functions must be
essential for cognition and higher information processing
(Mitterauer, 2011). This suggests changes in extracellular
matrix system, plays a role in the pathogenesis of
schizophrenia (Berretta, 2012; Takahashi and Sakurai, 2013).
The extracellular matrix is synthesized by neuronal and glial
FIGURE 1 | Relationship between astrocytes, interneurons, and transmitters. Astrocytes express proinflammatory cytokines, which provokes the destruction of
gamma-aminobutyric acid (GABA)ergic interneurons. GABA influences on astrocytes and via Ca2+-dependent stimulates expression of different gliotransmitters
(glutamate, ATP, cytokines). Glutamate and ATP have an activating impact on interneurons. Adenosine operates on A2A receptors of astrocytes, related with the
dopamine receptors, and inhibits them. Astrocytes control the amount of glutamate via glutamate transporter (GLT)-1, excitatory amino acid transporter (EAAT)1,
and also metabotropic glutamate receptors (mGluRs). Astrocytes express D-serine and kynurenic acid (KYNA), while D-serine is the agonist of N-methyl-d-aspartate
(NMDA)-receptors, and KYNA is the antagonists of glycine site of NMDA-receptors. NMDA-receptors activate dopamine neurons.
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cells. In humans, unlike other mammals, there is a large number
of astrocytes, synthesizing chondroitin sulfates as extracellular
matrix in the amygdala. The patients with schizophrenia showed
a large increase in chondroitin sulfate proteoglycan (CSPG) -
positive glial cells in the deep amygdala and entorhinal cortex
and the density of GFAP - positive cells was not changed at some
studies (Pantazopoulos et al., 2010). CSPGs play a role in adult
synaptic plasticity (Chelini et al., 2018). The extracellular matrix
influences synapses’ stabilization and maturation in different ways.
Firstly, the rate of viscosity of the matrix and the interaction
between the negatively charged chains of the glycosaminoglycan-
proteoglycan and glutamate controls the diffusion of
neurotransmitter in the extracellular space (Deutsch et al., 2010).
Secondly, the extracellular matrix at the level of hyaluronan
separates the surface of neurons, limiting the surface mobility of
integral membrane proteins, including glutamate receptors in rats
(Frischknecht et al., 2009). Also, the altered composition of
extracellular matrix can lead to excessive diffusion of dopamine
into the extracellular space from excessive stimulation extrasynaptic
D2 receptors.

Reduced expression of Reelin, which is also a part of
extracellular matrix, was noted in patients with schizophrenia
in several brain regions, including the hippocampus, prefrontal
and temporal cortex, cerebellum and caudate nucleus (Eastwood
and Harrison, 2006; Guidotti et al., 2011). In adulthood, Reelin is
expressed mainly by GABAergic interneurons (Dong et al.,
2007). Reduction of Reelin regulation is usually accompanied
by a decrease in glutamic acid decarboxylase expression,
indicating a strong functional relationship between Reelin
expression and GABAergic neurotransmission (Eastwood and
Harrison, 2006). Therefore, the changes in extracellular matrix
have an influence on release of neurotransmitters both directly
and via inhibitory GABAergic interneurons.

Astrocyte-Related Changes in
Transmitters Systems
Glutamate System
In schizophrenia, there is hypofunction of NMDA receptors,
which leads to a decrease in prefrontal cortex functions (Herédi
et al., 2017). Weakened prefrontal cortex function associated
with NMDA receptor hypofunction may be involved in the
development of negative and cognitive symptoms. This is
confirmed by the detection of anti-NMDA antibodies in
patients with the first episode of schizophrenia (Levite, 2014).
The use of antagonists of NMDA receptors phencyclidine and
ketamine, cause the psychotic reactions and leads to
hyperactivation of dopamine (Rial et al., 2014). NMDA
receptors are involved in synaptic plasticity, which plays a role
in learning and memory (Parpura and Verkhratsky, 2012). MK-
801 is an NMDA antagonist, increasing the number of GFAP-
positive astrocytes in the prefrontal cortex (Gomes et al., 2015).
Clozapine reduces the manifestations of these changes, however,
an indirect connection through the dysfunction of GABAergic
interneurons is possible. Also, an increase in the level of
astrocytes can be compensation in response to a decrease in
the level of glutamate.
Frontiers in Pharmacology | www.frontiersin.org 6
The basis of the modified glutamate transmission is increased
glutamate excretion in the hippocampus, in which the
dysfunction of inhibitory interneurons in the hippocampus
and prefrontal cortex also plays a role (Millan et al., 2016).
Reduced activation of NMDA on inhibitory interneurons leads
to increased release of glutamate by pyramidal hippocampal
neurons (Tayeb et al., 2019).

The reason for the decrease in the activity of parvalbumin
neurons in schizophrenia patients in the reduced access to
glutamate (Chung et al., 2016). Postmortem studies of patients
with schizophrenia showed a simultaneous decrease in the levels
of parvalbumin interneurons (caused by changes in the
expression of parvalbumin) and glutamic acid decarboxylase in
the dorsolateral prefrontal cortex (Toker et al., 2018). In this case,
NMDA antagonists cause a decrease in the level of mice
parvalbumin neurons in the prefrontal cortex, but not in the
hippocampus (Gomes et al., 2015). Astrocytes transformer at the
activity of the inhibitory GABA from interneurons to excitatory
glutamate activity increases synaptic transmission. Astrocytes
also induce the increase of inhibitory synaptic connections of
interneurons through glutamate release and activation kainate
receptors in the inhibitory terminals (Perea et al., 2016), ATP
secreted by astrocytes, has also an activating effect on mice
interneurons (Bowser, 2004).

Ketamine, NMDA antagonist, decreases Ca2+ transients in
astrocyte cell culture, which affects the secretory activity of
astrocytes (Lasič et al., 2019). In this case, ketamine does not
regulate exocytosis directly through cAMP. Ketamine-induced
increase in the density of cholesterol domains in astroglial
plasmalemma may stimulate the release of cholesterol
molecules by astrocytes to neurons, which may be critical for
the morphological plasticity of synapses. Structural changes in
astroglial plasmalemma likely involve adenylate cyclase, which
increases cAMP in the absence of stimulation of G-protein-
coupled receptor (Figure 1).

Glutamate transporters GLT-1 and EAAT1 are localized in
astrocytes and are responsible for glutamate uptake in astrocyte
(Rial et al., 2014). Astrocytes are also responsible for the
conversion of glutamate to glutamine, and changes in the
glutamate/glutamine cycle that impact the energy exchange
between neurons and astrocytes to cause schizophrenia
(Sullivan et al., 2018).

In schizophrenia, there is a decreased expression of GLT-1 in
the hippocampus of postmortem brain samples (Shan et al., 2013)
and prefrontal cortex of genotyped patients (Spangaro et al.,
2012). The blockade of GLT-1 increased the tonic activation of
presynaptic metabotropic glutamate receptors (mGluRs)
(Fleming et al., 2011), some of which protect neurons from
excessive excitability and regulate the functioning of working
memory of rhesus macaques (Jin et al., 2018). It was also noted
that agonist mGluR2/3 ameliorates symptoms of schizophrenic
psychoses (Segnitz et al., 2009).

In schizophrenia, there is also a decrease in the expression of
EAAT1 in the prefrontal cortex. Mice with EAAT1 deficiency
showed schizophrenia-like behavior and were more sensitive to
locomotor hyperactivity caused by NMDA antagonists. Thus, the
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locomotor hyperactivity caused by the lack of EAAT1 was
reduced haloperidol. Mice with reduced EAAT1 levels also
showed cognitive symptoms. The lack of EAAT1 makes the
cells more sensitive to various traumatic factors (Mei et al., 2018).

Haloperidol and clozapine reduce GLT-1 and EAAT3 levels
in rodents, while aripiprazole reduces EAAT1 expression but has
minimal effect on GLT-1, which may further lead to differences
in effects on positive, negative, and cognitive symptoms (Segnitz
et al., 2009; Mei et al., 2018).

Glycine System
Glycine is an NMDA receptor agonist that can be released from
astrocytes through activation of glutamatergic non-NMDA-type
ionotropic receptors (Harsing and Matyus, 2013). In this case,
the synaptic form of NMDA has a low affinity for glycine, and
non-synaptic NMDA—high (Balu, 2016). Inhibitors of non-
synaptic GlyT-1, which lead to an increase in the non-synaptic
glycine concentration in rats (Harsing and Matyus, 2013), may
participate in the actions of drugs on patients, including the
previously described antipsychotic effect (Tsai et al., 2004) in
positive, negative, and cognitive symptoms. D-serine, produced
by astrocytes, is an agonist of the glycine-binding site of NMDA
receptors (Möller and Czobor, 2015). The association of serine
racemase, synthesizing serine enzyme, with schizophrenia was
found, as well as mice with a lack of serine racemase gene showed
behavior similar to schizophrenia (Takahashi and Sakurai, 2013).

Kynurenic Acid as N-Methyl-D-Aspartate Antagonist
Tryptophan is elevated in the cerebrospinal fluid of patients with
schizophrenia, along with one of its metabolites—kynurenic acid
(KYNA) (Linderholm et al., 2012; Kegel et al., 2017; Tayeb et al.,
2019). Ninety percent of tryptophan is metabolized in KYNA. In
schizophrenia discovered the lack of kynureninase in astrocytes
that can be one of the reasons for increasing the level of KYNA in
schizophrenia (Plitman et al., 2017). The conversion of kynuren
to KYNA takes place primarily within astrocytes, as these cells
contain KATs and therefore cannot degrade kynuren to its
metabolites. Of the four existing KATs, KAT II is thought to
be the main enzyme of KYNA production.

KYNA acts as an antagonist of all 3 ionotropic glutamate
receptors, including NMDA, AMPA, and receptors kainate,
while KYNA is the only currently known endogenous
antagonist of NMDA (Plitman et al., 2017). KYNA presumably
acts as an endogenous antagonist of the glycine site of the
NMDA receptor and as a negative allosteric regulator of the
nicotinic acetylcholine (nACh)-receptor a7 (Kozak et al., 2014).
Both NMDAR and nACh-receptor a7 contribute to the
functioning of working memory, and elevated levels of KYNA
may contribute to NMDA-hypofunction, cognitive deficits, and
negative symptoms. In high micromolar concentrations in rats
KYNA acts as an NMDA antagonist, and in lower concentrations
reduces the excitability of neurons through mechanisms
independent of NMDA (Alkondon et al., 2011).

Conversion kynurenine to KYNA occurs mainly in astrocytes
since these cells contain kynurenine aminotransferase (KAT)
(Plitman et al., 2017). In adult mouse brain KAT-2 is expressed
not only by astrocytes but also by neurons in several brain
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regions (hippocampus, substantia nigra, striatum, and prefrontal
cortex), while the structure of the brain consisting mainly of
GABAergic neurons (e.g., the substantia nigra), have the
strongest neuronal expression of KAT-2 (Herédi et al., 2017).
In rats KAT-2 inhibition reduces KYNA levels and improves
cognitive function (Kozak et al., 2014). Activation of astrocytes
can increase the production of KYNA (Plitman et al., 2017). The
introduction of IL-6 and an increase of prostaglandin E2 level in
cultured human astrocytes increases KYNA. Atrophic astrocytes
also showed increased production of KYNA.

The possible role of KYNA as a functional link between the
stimulation of dopamine receptors and the neurotoxicity of
NMDA in the striatum was noted in rats (Poeggeler et al.,
2007). An increase in KYNA leads to a decrease in the levels of
dopamine, acetylcholine, GABA, and glutamate (Plitman et al.,
2017). These inverse associations remain unclear in
schizophrenia, as typical neurotransmitter disorders, such as
increased synthesis and release of dopamine in the striatum,
and elevated levels of subcortical glutamate, seem incompatible
with the observed increase in KYNA levels. Antipsychotics
normalize the level of tryptophan and reduce the production of
KYNA (Müller et al., 2014). Pharmacologically important targets
are the enzymes kynurenic way, and also cyclooxygenase-2,
which reduces the level of KYNA.

The impact of the increased level of KYNA in schizophrenia
symptoms is ambiguous. Elevated levels of KYNA provoked
cognitive defects in animals: auditory sensory gating, prepulse
inhibition, contextual discriminations, spatial working memory
(Alexander et al., 2012). The level of KYNA in cerebrospinal fluid
positively correlates with overall psychotic symptoms positive
and negative symptoms. The symptom score included results
from the scales measuring positive and negative psychotic
symptoms (SAPS and SANS), the scale for schizotypal
personality traits (SPQ-B), and the interview for schizoid,
schizotypal, or paranoid personality traits (SCID-II interview
cluster A section) (Kegel et al., 2017). In animal models,
increased KYNA is associated with cognitive deficits, including
deficits in spatial and working memory (Kozak et al., 2014). The
higher initial level of KYNA in plasma was associated with a
greater reduction in positive symptoms on the Positive and
Negative Syndrome Scale as a result of therapy (Plitman et al.,
2017). Thus, preclinical studies have demonstrated the effect of
kynureninase acid as the behavior (e.g., cognitive function) and
neurotransmission (e.g., glutamatergic, dopaminergic).

Gamma-Aminobutyric Acid System
GABA acts on astrocytes through GABA receptors, contributing
to the release of chlorine and depolarization of astrocytes, and
GABA receptors, activating calcium-dependent mechanisms and
contributing to the growth of gliotransmitter (glutamate, ATP,
cytokines) (Losi et al., 2014; Rossi, 2015). Activation of
presynaptic GABA receptors increases the inhibitory effects of
interneurons. At the same time, the activation of GABAb
receptors leads to the activation of mGlu receptors of types 2
and 3, which leads to synaptic depression (Perea et al., 2016).
There is evidence that mGlu2/3 receptor agonists can be used as
atypical antipsychotics (Aghajanian, 2009).
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GABA entering the astrocyte is mediated by a GABA-
transporter operating on the principle of symport with sodium,
increasing the content of intracellular sodium can contribute to
the reversible operation of GABA-transporter (Losi et al., 2014).
Reduced GABA release by reactive astrocytes may be important
in reducing hippocampal synaptic plasticity, learning, and
memory in mice (Rossi, 2015). The blockade of astrocyte
GABA receptors improves cognitive abilities, and their
complete removal destroys the ability to learn.

Adenosine System
Adenosine acts through two types of receptors—A1 and A2 (Rial
et al., 2014). A1-receptors inhibit the release of neurotransmitters,
including glutamate. Activating A2A-receptors increases the
release of glutamate, supporting the activation of NMDA
receptors and inhibits A1-receptors (Boison et al., 2012). At the
same time, A2A receptors are not directly related to glutamate
release mechanisms. A2A receptors are located in areas rich in
dopamine: prefrontal cortex and striatum, and their activation
leads to vasodilation and decreased dopaminergic innervation.
The blockade of A2A receptors led to the delayed appearance of
interneurons in the hippocampus and degradation of working
memory (Kim et al., 2018). Activation of A1-receptors localized in
oligodendrocytes stimulates myelination, and A2-receptors
inhibit the proliferation of oligodendrocytes (Rial et al., 2014).

Recently gaining popularity adenosine theory of
schizophrenia. It consists of the hyper-activation of adenosine
kinase, which reduces the level of adenosine (Rial et al., 2014). It
is shown that selective elimination of astrocyte A2A receptors in
mice is related with deficits in GLT-1 activity (Matos et al., 2012;
Kim et al., 2018). Also, ATP released by astrocytes is converted
into adenosine, which inhibits the release of glutamate through
presynaptic A1 receptors (Losi et al., 2014). Preclinical studies
have shown that mice without adenosine A2A receptors in
astrocytes demonstrate a potential response to the NMDA
antagonist in the locomotor activity test (Kim et al., 2018).

Striatal astrocytes express the heterodimer native receptors
A2A-D2 (Cervetto et al., 2017). D2 receptors inhibit presynaptic
glutamate release, while A2A receptor activation eliminates the
effect of D2 receptor activation (Aliagas et al., 2013). A study was
carried out using a synthetic peptide VLRRRRRKRVN,
corresponding to the receptor region involved in the
electrostatic interaction between A2A and D2 receptors. It was
shown that this peptide eliminated the ability of the A2A receptor
to counteract the effect mediated by the D2 receptor (Azdad et al.,
2009). Hypofunction of A2A receptors in the striatum can lead to
hyperfunction of D2 receptors, which are involved in disorders
associated with neuroinflammatory processes, stimulating
immune responses and increasing the resistance of
dopaminergic neurons to neurotoxic damage. Dysfunction
striatal astrocytic A2A receptor, mediated damage of the D2
receptor, break down the homeostasis of glutamate and was
presumably associated with schizophrenia (Ciruela et al., 2006).

Dopamine System
The morphological basis of the accepted dopaminergic theory of
schizophrenia is the dysregulation of the dopaminergic system
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primarily in the striatum (Chuhma et al., 2017; Weinstein et al.,
2017), which includes not only an excess of stimulation of
dopaminergic neurons but also a violation of their
communication and activity (Laruelle, 2014).

Postmortem examinations showed an increase in the level of
dopamine in the striatum and an increase in the density of the
D2 receptor but without changes in dopamine active transporter
(DAT) densities (Howes et al., 2015). Interestingly, in individuals
who do not receive antipsychotics, the density of D2 receptors
has not been increased, unlike those treated with antipsychotics.
Most likely, this is because all currently licensed antipsychotics
bind to D2 and D3 receptors.

In schizophrenia, there was a decrease in the number of
synapses in the striatum, which controls the lateral ventral part
of the tegmental area and the black substance (Grace, 2016).
Impulses of dopamine neurons in the ventral sides are controlled
through NMDA receptors. Only in already activated NMDA
receptors, dopamine neurons can emit neurotransmitters (Azdad
et al., 2009).

Dopaminomimetic drugs, including amphetamine, in rodents
provoke an increased release of dopamine from the striatum and
induce positive symptoms similar to acute paranoid psychosis
(Peleg-Raibstein et al., 2008; Rial et al., 2014). Injections of
amphetamine in rats do not destroy cells or induce gliosis, as
evidenced by the absence of an increase in the level of GFAP in
dorsal caudate-putamen (Peleg-Raibstein et al., 2008). With
increasing levels of dopamine in the cerebral cortex of rats in
astrocytes, the co-localization of NMDA with GFAP significantly
decreased (Ding et al., 2014).

Also, in schizophrenia, there was a lack of dopaminergic
stimulation of the prefrontal cortex. This may be the result of
impaired communication between the striatum and the
prefrontal cortex, including a violation of NMDA receptors, a
reduced level of which in schizophrenia is noted both in the
prefrontal cortex and in the striatum in postmortem brain study
(Errico et al., 2013).
CONCLUSION

As a result of our study, we can conclude that astrocytes allow us
to look at the etiology and pathogenesis of schizophrenia from a
new point of view. They can explain the disparate data on
morphological, metabolic and transmitter changes in the brain
in schizophrenia. Astrocytes perform a supporting function
for neurons, which is reflected in their ability to influence
the concentration of transmitters both inside and outside the
synaptic gap. Astrocytes mold the effects of dopamine in the
striatal and cortical pathways through the release of glutamate
and its effect on NMDA receptors. Other different mediators
(adenosine, GABA, glycine) also take part in it. The presence of
markers of activation of glia (S100B, GFAP, myoinositol) in
serum and cerebrospinal fluid indicates a growing activation of
astrocytes. Isolation of pro-inflammatory agents (cytokines,
interleukins, and chemokines) and KYNA indicates a violation
in the metabolism of astrocytes and surrounding cells. As a
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result, this leads to changes in the structure of the brain.
Morphological manifestations include a decrease in astrocyte
density in the frontal cortex, changes in the composition of the
extracellular matrix and glial hypertrophy. Of course, in addition
to the obvious changes in the brain, astrocytes make a significant
contribution to the negative, positive, and cognitive symptoms
of schizophrenia.

The number of astrocytes was reduced in the prefrontal cortex,
that connects altered astrocyte systemwithmesocortical system, and
nucleus accumbens, anterior cingulate cortex, which proves the
changes in glial cells in the mesolimbic system, although in the
hippocampus it was increased. The differences between the number
of astrocytes in themesocortical andmesolimbic systemcan affect on
themanifestation of schizophrenia symptoms. Associations between
GFAP and symptoms have not been found. At the same time the
levels of another astrocyte markers, S100B and myoinositol,
positively correlated with negative and positive symptoms,
respectively. This finding suggests the dual alterations in astrocyte
in brain regions, related with different symptom complexes.

The imbalance between microglia and astrocytes, which occurs
in neuroinflammation, influence on different neurotransmitters,
such asGABAanddopamine.GABAergic interneurons, affectedby
oxidative stress, modulate the activity of prefrontal cortex,
hippocampus and amygdala, that worsen alterations in dopamine
system and, therefore, symptoms of schizophrenia.

The contribution of glia to the development of cognitive
symptoms was unexpected; normally it forms compartments
and connections between neurons, but altered astrocyte
themselves and extracellular matrix, affected by them, disturbs
these interconnections.

NMDA receptors, related with all the groups of schizophrenia
symptoms, associated also with astrocytes, since NMDA
antagonist increased the number of GFAP-positive astrocytes
in the prefrontal cortex. Astrocyte affects as on the glutamate
system via KYNA and altered in schizophrenia glutamate
transporters, as on the glycine system via non-synaptic GlyT-1
and D-serine. NMDA receptors and adenosine receptors, on its
turn, control the dopamine release which is still considered the
main schizophrenia neurotransmitter.

The study of the contribution of astrocytes to the etiology,
pathogenesis, and symptoms of schizophrenia is associated with
certain problems. The researches have been focused on the study
of glia in different areas of the brain, which not only makes it
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difficult to generalize and analyze heterogeneous reactions of
astrocytes but also eliminates the relationship between these
areas and their respective astrocytes. In particular, the glia of
“striatum-prefrontal cortex” axis, which supposedly plays a
major role in the pathogenesis of schizophrenia, requires
further analysis to study the contribution of NMDA receptors.
Also, the study of the genetic patterns of astrocyte pathology is
needed. Some problems are associated with the astrocytes
themselves, for example, there is evidence of their
heterogeneity, which means that it is impossible to accurately
judge the suppression or activation of astrocytes in any structure
of the brain. This problem is supplemented by the dependence of
astrocyte functioning on the age of patients, which is not always
taken into account in case-control studies.

Further study of the effect of astrocytes on neurotransmission
may clarify the currently controversial aspects of brain function
in schizophrenia and explain the characteristic symptoms. For
example, it is not clear why a decrease in the expression of NMDA
receptors is observed in both the prefrontal cortex and the striatum,
if NMDA receptors have an activating effect on dopamine neurons.
A separate role in this can play KYNA,NMDA receptor antagonist,
an association of which was found with all types of symptoms of
schizophrenia. Special attention shouldbepaid to the studyofGLT-
1, whose effect on the symptoms of schizophrenia is heterogeneous
(Table 1). The increased level of astrocyte activation markers in
many areas of the brain indicates the need for further study of the
theory of inflammation in schizophrenia in general and astroglial/
microglial balance in particular. Finally, it is impossible to ignore
data on changes in the metabolism of neurons and glia in
schizophrenia, which can also contribute to the manifestation of
the disease (Table 1).
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TABLE 1 | Association between symptoms of schizophrenia and metabolites, receptors, and pharmacological agents related with astrocytes.

Positive symptoms Negative symptoms Cognitive symptoms

Myoinositol in striatum ↑ (Plitman et al.,
2016)
Kynourenic acid ↑
(Kegel et al., 2017)
EAAT1 ↓ (Mei et al., 2018)

S100B in serum ↑ (Rothermundt et al., 2004)
Kynourenic acid ↑ (Kozak et al., 2014; Kegel et al.,
2017)

S100B in serum ↑ (Nishiyama et al., 2002; Rothermundt et al.,
2004)
Kynourenic acid ↑ (Kozak et al., 2014)
Destruction of lactate transporters ↑ (Xia et al., 2016)
EAAT1 ↓ (Mei et al., 2018)
A2A receptors ↓ (Kim et al., 2018)

Agonists mGluR2/3 ↓ (Segnitz et al., 2009)
Inhibitors GlyT1 ↓ (Tsai et al., 2004)

Inhibitors GlyT1 ↓ (Tsai et al., 2004) Inhibitors GlyT1 ↓ (Tsai et al., 2004)
Inhibitors KAT-2 ↓ (Kozak et al., 2014)
↑—positive association, magnification of symptoms; ↓—negative association, diminution of symptoms.
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