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Abstract

Humic acids derived from Chinese weathered coal were oxidized with hydrogen peroxide

(H2O2) under various conditions, and their chemical composition and structure were exam-

ined. The raw material humic acids (HA) and oxidized humic acids (OHAs) were character-

ized by elemental analysis and ultraviolet visible (UV-Vis), Fourier transform infrared (FTIR),

and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Our results show that

aromatic functional groups accounted for more than 70% of the HA and OHAs and there

were significant differences in their structures and compositions. Compared to the HA, the

average H and N contents of the OHAs decreased by 5.15% and 2.52%, respectively, and

the average O content of those of the OHAs increased by 5.30%. The hydrophobicity index

(HI) of HA is higher than those of the OHAs. Importantly, in the hypothesis test between the

properties and preparation conditions of humic acid using SPSS, the partial η2 of the tem-

perature, hydrogen peroxide concentration, liquid-solid ratio, and time were 0.809, 0.771,

0.748 and 0.729, respectively; thus, among the preparation conditions, temperature is the

most important factor affecting the humic acids properties.

Introduction

Weathered coal is formed when near-surface or shallow-surface coal is exposed to physical

and chemical weathering for a long period [1]. Due to the influence of long-term weathering,

weathered coal has a high oxygen content and low calorific value. However, it is rich in humic

substances and has a variety of functional groups, such as carboxyl, hydroxyl, phenolic

hydroxy thiol groups, etc., resulting in a high capability to enhance bioactivity. For instance,

weathered coal can be used as a good natural adsorbent because of its adsorption, complexa-

tion and exchange properties [2–5]. Furthermore, humic acids are economically important

because of the abundant global reserves of weathered coal, i.e., approximately 100 billion tons

in China alone [6]. The content of humic acids of weathered coal is greater than that of lignite

and peat [7]. However, research and applications of humic acids have mainly focused on the

humic acids from peat and lignite [8–12], only relatively few reports were on the humic acids
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derived from weathered coal. Humic acids from weathered coal may have good prospects and

advantages, that are worthy of investigation [7].

Existing research has been directed at characterizing humic acids through their degradation

into individual monomers using hydrolysis, reduction, oxidation etc [13–15]. Among all deg-

radation methods, oxidation can primarily release phenolic compounds and degrade aromatic

rings containing oxygen to increase the contents of products such as benzenecarboxylic acids,

phenolic acids and aliphatic dicarboxylic acids [16]. Some research has also found that oxida-

tion can increase the oxygen-containing functional groups such as hydroxyl, ketone, and car-

boxyl groups of humic acid [16–17]. Currently, there are various oxidation methods and

aqueous hydrogen peroxide is a suitable oxidant for coal oxidation from an industrial technol-

ogy viewpoint because it is commonly available and environmentally friendly [13,18]. Impor-

tantly, oxidation by hydrogen peroxide can increase the content of carboxyl groups, whose

protons participate in ion exchange, and have potential for separation and extraction of metal

cations [19]. Zherebtsov et al found that during oxidation by hydrogen peroxide, the decrease

in aromatic content lowers the content of free radicals, and the number of oxygen-bearing

groups increased [20]. Doskocil et al found that the hydrogen peroxide degradation of humic

acids resulted in oxidation of aromatic structures and cleavage of aromatic units. A high con-

tent of short chain carboxylic acids was detected in which malonic acid and succinic acid were

predominate [21]. However, these studies mainly focused on the detection of hydrophilic frac-

tions by producing many kinds of molecules. Few studies have tried to research the composi-

tion and functional groups of the “core” of humic acids and then prepare the materials for

further study.

The reactivity of humic acids is determined by their chemical composition, structure,

molecular weight and other properties [22–23]. Humic acids are used in various industries: in

chemical industry, the presence of carboxyl groups can promote ion exchange and complex

formation as well as facilitate the separation and extraction of metal cations from different

media [1,24–25]; in the medical industry, the phenolic and anthraquinone structures in humic

acids molecules may be involved in the electron transport system of biological redox [26–27];

in agriculture, some research has suggested that functional carboxylic and hydroxylic groups

and hydrophobicity could play a major role in determining the activity of humic substances

[28–29].

The objectives of this work are twofold: (1) to obtain oxidized humic acids with different

structures and compositions to create knowledge base for the investigation of suitable applica-

tions for these oxidized humic acids and (2) to promote the development of efficient utilization

technologies for the weathered coal in producing value-added fertilizers and other chemicals.

Materials and methods

Materials

The weathered coal employed for research were extracted from weathered coal of Qipanjing

(E 107˚120, N 39˚210; Ordos City, Inner Mongolia Autonomous Region, Northeast China).

The samples were collected from coal powder pulverized to 80-mesh and placed into a plastic

bag for use. The humic acids used in the present investigation are representative, and they

were extracted and purified from the weathered coal following the IHSS (International Humic

Substance Society) methodology (alkali extraction method) with some modifications with the

help of a company [30]. The sampled region has a temperate continental climate. The extracted

humic acids accounted for 50.40% of the weathered coal weight. The ash content was 19.21%.

The humic acids were stored in a sealed plastic bottle to prevent absorption of moisture from

Structural characteristics of humic acids under different oxidizing conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0217469 May 31, 2019 2 / 15

https://doi.org/10.1371/journal.pone.0217469


the air. The weathered coal in our research had high degree of weathering and oxidation [31],

making it similar to the weathered coal in Huolinhe [32].

Experimental method

An orthogonal experimental design was applied to the humic acids oxidation experiment with

four oxidation parameters at three different levels: the H2O2 concentrations of (5%, 10%, and

15%), liquid-solid ratio (0.5:1; 1.0:1; and 1.5:1), exposure time (1 h, 3 h, and 5 h) and tempera-

ture (40˚C, 60˚C, and 80˚C). Samples subjected to the different oxidation parameters and lev-

els are identified by the treatment code name shown in Table 1. Taking the preparation of

OHA1 as an example, the details are as follows: 1 g of dried humic acids was dissolved in 10

mL water and mixed in an electric mixer to form a solution in a reactor. After heating the solu-

tion to 60˚C, 0.5 mL H2O2 at concentration of 5% was instilled into the reactor under stirring

conditions for 1 h to oxidize the humic acids. After the reaction completed, the reactor was

immersed in an ice water at 0˚C to quench the reaction. The process is shown in Fig 1 and oxi-

dation conditions are tabulated in Table 1 together with the codes of the resultant OHAs. The

prepared OHAs were freeze-dried and stored in a sealed plastic bottle.

Humic acids characterization

The prepared OHAs and original humic acids were characterized by using an elemental ana-

lyzer and UV-Vis, FTIR and NMR spectroscopy to investigate the effect of different oxidation

conditions on the structures and functional groups.

Table 1. OHAs and oxidation conditions.

Treated

Sample1)
Concentration of

hydrogen peroxide

Liquid-to-solid ratio (mL/g) Time

(h)

Temperature (˚C)

OHA1 5% 0.5:1 1 40

OHA2 5% 1.0:1 3 60

OHA3 5% 1.5:1 5 80

OHA4 10% 0.5:1 3 80

OHA5 10% 1.0:1 5 40

OHA6 10% 1.5:1 1 60

OHA7 15% 0.5:1 5 60

OHA8 15% 1.0:1 1 80

OHA9 15% 1.5:1 3 40

1) HA, original humic acids which is derived from Chinese weathered coal; OHA1-OHA9, humic acids under different oxidation conditions.

https://doi.org/10.1371/journal.pone.0217469.t001

Fig 1. Schematic diagram of H2O2 oxidation of humic acids.

https://doi.org/10.1371/journal.pone.0217469.g001
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Elemental analysis. Elemental analysis was carried out with a Vario Micro Cube Elemen-

tar instrument (Elementar Analysensysteme GmbH, Germany). About 1mg dried humic acids

was placed into the elemental analyzer to analyze the contents of C, H, N and O. The results

were calculated as the molar ratios of C/N, C/H and O/C. The reference standards were acet-

anilide (C: 71.09%; N: 10.36%) and benzoic acid (H: 6.71%; O: 26.2%) to ensure the accuracy

of the measurements. Each sample was measured three times.

UV-visible light scanning. The UV-Vis spectroscopy analysis of humic acids was per-

formed by dissolving humic acids samples in a 0.05 M NaHCO3 solution (pH 8.3) to obtain a

final concentration of 40 mg/L. UV-Vis spectra were obtained from 200 to 900 nm at room

temperature with an Analytik SPECORD 200 PLUS UV/VIS spectrophotometer (Analytik

Jena, Germany) at a scan speed of 600 nm min−1. The absorbance at 465 nm was divided by

the value measured at 665 nm to determine the E4/E6 ratio coefficient, and the ratio of the

absorbance of HA and OHAs at 280 and 360 nm was calculated as E2/E3 [33].

Fourier transform infrared spectroscopy. FTIR spectra were collected for random pow-

der specimens dispersed in dried KBr pellets using a Bruker VERTEX 70 FTIR spectrometer.

The pellets (2.0 mg of sample dispersed in 200 mg of KBr) were ground with an agate mortar

before being pressed. FTIR spectra were recorded in the range of 4000–400 cm-1 with a 4 cm-1

resolution, and 64 scans were performed on each sample. To quantify the relative absorption

intensity of each region of the carbon band, the spectra were baseline corrected and integrated

with OMNIC 8.2 software. The major FTIR absorption bands and assignments are shown in

Table 2.

Solid-state 13C–nuclear magnetic resonance spectroscopy. Solid-state 13C-CP/MAS–

NMR spectroscopy was performed using a Bruker AVANCE III NMR 400 spectrometer

(Bruker, Switzerland) [34–36]. A 4 mm magic angle spinning (MAS) probe was selected to

determine the functional group assignments of the humic acids. Freeze-dried humic acids

(approximately 100 mg) was packed into a zirconia rotor, and spectra was obtained by 13C

cross-polarization/magnetic angle pinning (CP/MAS) NMR. The NMR measurements were

carried out with the following parameters: temperature: 293.7 K, NMR-tube diameter: 4 mm,

speed of spinning: 5 kHz, number of scans: 2048, CP time: 1 ms, 1H 90˚ pulse length: 4 μs, and

recycle delay time: 0.8 s. The carbon-type content was determined by integration of the 13C

NMR spectra according to the following chemical shift regions: alkyl C (CAlk–H, R): 0–45 ppm;

methoxyl and N–alkyl C (CAlk–O, N): 45–60 ppm; O–alkyl C (CAlk–O): 60–91 ppm; di–O–alkyl

Table 2. Major FTIR absorption bands and assignments for humic acids.

Frequency

(cm-1)

Assignment

3450–3300 O–H stretching, N–H stretching (trace)

2940–2900 Aliphatic C–H stretching

1725–1720 C = O stretching of COOH and ketones (trace)

1660–1630 C = O stretching of amide groups (amide I band), quinone C = O and/or C = O of H–bonded C = O in

conjugated ketones

1620–1600 Aromatic C = C, strongly H–bonded C = O of conjugated ketones

1590–1517 COO−symmetric stretching, N–H deformation + C = N stretching (amide II band)

1460–1450 Aliphatic C–H

1400–1390 OH deformation and C–O stretching of phenolic OH, C–H deformation of CH2 and CH3 groups,

COO−antisymmetric stretching

1280–1200 C–O stretching and OH deformation of COOH, C–O stretching of aryl ethers

1170–950 C–O stretching of polysaccharide or polysaccharide-like substances, Si–O of silicate impurities

900–600 C–H surface deformation and vibration

https://doi.org/10.1371/journal.pone.0217469.t002
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C (anomeric) (CAlk–di–O): 91–110 ppm; aromatic C (CAr–H, R): 110–142 ppm; O–aromatic C

(CAr–O): 142–156 ppm; carboxyl C (CCOO–H, R): 156–186 ppm and carbonyl C (CC = O): 186–

230 ppm [37]. The MestReNova 9.0.1 software was used for baseline correction and area

integration.

Statistical analyses

One-way analysis of variance (ANOVA) was used with Duncan’s test to evaluate significant

differences (P< 0.05) in the elemental composition and the E2/E3 and E4/E6 ratios of the

humic acids in SAS for Windows (Version 9.1). Principal component analysis (PCA) using the
13C–CP/MAS–NMR spectral data of the humic acids was performed using the software

Canoco (version 4.5). A multivariate analysis of variance (MANOVA) was performed using

SPSS (Version 20) to determine the relationship between the properties of humic acids and the

preparation conditions.

Results

Changes in the elemental composition of the humic acids

Table 3 shows the elemental composition and atomic ratios of the HA and OHAs. The C, H, N

and O contents of HA is 47.00%, 4.89%, 1.04% and 33.56%, respectively, and those of the

OHAs varied, the C content was 44.96–50.61%, the H content was 4.20–4.97%, the N content

was 0.90–1.10%, and the O content was 33.56–36.52%. Compared to those of HA, the average

C, H and N contents of the OHAs decreased by 0.34%, 5.15% and 2.52%, respectively, and the

average O content of the OHAs increased by 5.30%. The C content of OHA3 and OHA4,

which were oxidized at 80˚C, was higher than that of HA, and the contents of the other OHAs

were lower than that of HA. The higher O content is obviously due to the oxidation process.

OHA3 which was prepared at a hydrogen peroxide concentration of 5%, a liquid-to-solid ratio

of 1.5:1, a reaction time of 5 h and a reaction temperature of 80˚C, had the highest C content

among all the samples, and OHA6 which was prepared at a hydrogen peroxide concentration

of 10%, a liquid-to-solid ratio of 1.5:1, a reaction time of 1 h and a reaction temperature of

Table 3. Elemental composition and atomic ratios of HA and OHAs under different oxidizing conditions.

Sample1) Element content (%) Atomic ratios Ash contents

C2) H N O C/N C/H O/C

HA 47.00±0.22 c3) 4.89±0.05 ab 1.04±0.02 ab 33.56±0.12 e 52.97±1.09 b 0.80±0.01 bc 0.54±0.00 c 19.21±0.56 bcd

OHA1 45.86±0.10 cd 4.74±0.12 abcde 1.01±0.01 b 35.38±0.17 c 52.95±0.36 b 0.81±0.02 bc 0.58±0.00 ab 19.31±0.44 bcd

OHA2 46.29±0.22 cd 4.66±0.13 bcde 1.02±0.02 ab 35.87±0.24 b 52.94±1.17 b 0.83±0.02 bc 0.58±0.01 ab 18.22±0.78 de

OHA3 50.61±1.08 a 4.53±0.05 de 1.10±0.01 a 34.88±0.29 d 53.90±0.99 b 0.93±0.03 a 0.52±0.01 c 17.77±0.76 e

OHA4 48.48±2.60 b 4.81±0.23 abc 1.06±0.12 ab 35.15±0.06 cd 53.82±4.19 b 0.85±0.08 b 0.54±0.03 c 17.66±0.40 e

OHA5 45.69±0.23 cd 4.76±0.15 abcd 0.90±0.04 c 35.14±0.09 cd 59.51±2.55 a 0.81±0.02 bc 0.58±0.00 ab 18.54±1.28 cde

OHA6 46.57±0.45 c 4.97±0.01 a 1.01±0.03 b 36.52±0.49 a 53.79±0.93 b 0.78±0.01 c 0.59±0.01 a 19.76±0.69 bc

OHA7 46.42±0.39 cd 4.61±0.23 cde 1.04±0.02 ab 34.78±0.17 d 52.33±1.58 b 0.84±0.04 bc 0.56±0.01 b 19.89±0.18 ab

OHA8 44.96±0.17 d 4.49±0.12 e 0.90±0.07 c 34.79±0.25 d 58.45±4.95 a 0.84±0.02 bc 0.58±0.01 ab 18.71±0.88 bcde

OHA9 46.61±0.70 c 4.20±0.13 f 1.06±0.01 ab 35.52±0.11 bc 51.52±0.34 b 0.93±0.04 a 0.57±0.01 ab 20.99±0.08 a

OHA average 46.83 4.64 1.01 35.34 54.36 0.85 0.57 18.98

1) HA, original humic acids which is derived from Chinese weathered coal; OHA1-OHA9, humic acids under different oxidation conditions.
2) The mean of three analyses.
3) Different lowercase letters in a column mean significant difference at the 5% level.

https://doi.org/10.1371/journal.pone.0217469.t003
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60˚C, had the highest H and O contents. In this research, the average C/N, C/H and O/C ratios

of the OHAs increased by 2.63%, 5.35% and 5.71%, respectively, relative to those of HA.

OHA3 had the highest C/H ratio, and OHA6 had the smallest ratio. OHA6 showed C/H values

of 0.78, whereas HA, OHA1, OHA2, OHA5, OHA7 and OHA8 had C/H values in the range of

0.80–0.84. OHA3, OHA4 and OHA9 which were prepared at 80˚C and 40˚C showed C/H val-

ues between 0.85–0.93.

UV-Vis spectra of the humic acids

The E2/E3 and E4/E6 ratios are tabulated in Table 4, and it is clear that both the ratios are

higher for the OHAs than HA. The E2/E3 and E4/E6 values of HA were 1.57 and 3.10, respec-

tively. The E4/E6 ratios of the OHAs were between 3.52 and 3.69, and the E2/E3 ratios of the

OHAs were in the range of 1.88–1.97. Compared with HA, the average E2/E3 and E4/E6 ratios

of the OHAs increased by 23.57% and 17.74%, respectively. The E2/E3 ratio of OHA1 and

OHA8 was lower than that of the other OHAs. The E4/E6 ratios of OHA1, OHA3 and OHA8

was lower than that of the other OHAs.

Structural differences among the humic acids revealed by FTIR

spectroscopy

The FTIR spectra of the different humic acids are shown in Fig 2. The HA and OHAs have

similar primary absorption bands as follows: (1) 3427 cm–1: broad absorption peak at 3500–

3400 cm–1 due to C = C stretching in aromatic rings and O–H stretching in alcohol and phenol

groups. (2) 1580 cm–1: peak due to COO–symmetric stretching, N–H deformation and C�N

stretching (amide II band). (3) 1382 cm–1: peak indicating OH deformation and C–O stretch-

ing of phenolic OH, C–H deformation of CH2 and CH3 groups, and COO–antisymmetric

stretching. (4) 1108 cm–1: peak due to C–O stretching of polysaccharide or polysaccharide-like

substances and the Si–O in silicate impurities. (5) 619 cm–1: peak due to C–H surface deforma-

tion and vibration.

When comparing the relative absorption intensities (Table 5), the relative absorption peak

of OHA3 at 3427 cm–1 is stronger than that of the other OHAs, and this peak is due to C = C

Table 4. E2/E3 and E4/E6 ratios of OHAs and HA under different oxidizing conditions.

Sample1) E2/E32) E4/E6

HA 1.57±0.02 c3) 3.10±0.02 c

OHA1 1.88±0.04 b 3.52±0.03 b

OHA2 1.97±0.06 a 3.68±0.01 a

OHA3 1.95±0.02 a 3.61±0.00 ab

OHA4 1.93±0.01 a 3.65±0.01 a

OHA5 1.95±0.01 a 3.68±0.01 a

OHA6 1.94±0.01 a 3.69±0.00 a

OHA7 1.94±0.01 a 3.67±0.02 a

OHA8 1.92±0.01 ab 3.59±0.01 ab

OHA9 1.93±0.01 a 3.64±0.01 a

OHA average 1.94 3.65

1) HA, original humic acids which is derived from Chinese weathered coal; OHA1-OHA9, humic acids under

different oxidation conditions.
2) The mean of three analyses.
3) Different lowercase letters in a column mean significant difference at the 5% level.

https://doi.org/10.1371/journal.pone.0217469.t004
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stretching in aromatic rings and O–H stretching in alcohol and phenol groups. OHA6 had the

weakest absorption peak at 3427 cm–1, and OHA3, OHA4 and OHA8, which were prepared at

80˚C, had higher relative absorption intensities at 3427 cm–1 than the other OHAs, prepared at

40˚C and 60˚C, with the exception of OHA1. OHA2 which was prepared at 60˚C had the

strongest absorption peaks at 1580 cm–1, and OHA3 had the weakest absorption peaks at 1580

cm–1. Absorption in this area is attributed to COO–symmetric stretching, N–H deformation

and C�N stretching (amide II band). OHA6 had the strongest absorption peaks at 1382 cm–1,

and OHA5 had the weakest. The absorption in this area is due to OH deformation and C–O

stretching of phenolic OH, C–H deformation of CH2 and CH3 groups, and COO–antisymmet-

ric stretching. HA had the weakest absorption peak at 1108 cm–1, which is due to the C–O

Fig 2. FTIR spectra of HA and OHAs under different oxidizing conditions. HA, original humic acids which is

derived from Chinese weathered coal; OHA1-OHA9, humic acids under different oxidation conditions.

https://doi.org/10.1371/journal.pone.0217469.g002

Table 5. Relative absorption intensity of the FTIR spectra of the HA and OHAs.

Sample Relative absorption intensity (%)

3427 cm–1 1580 cm–1 1382 cm–1 1108 cm–1 619 cm–1

HA1) 72.13 14.75 3.33 0.24 9.56

OHA1 73.45 14.89 2.85 0.36 8.45

OHA2 70.14 17.43 3.30 0.34 8.79

OHA3 74.67 13.71 3.01 0.40 8.21

OHA4 73.77 13.92 2.94 0.30 9.07

OHA5 71.44 16.09 2.78 0.31 9.39

OHA6 69.85 16.38 3.73 0.33 9.71

OHA7 73.30 14.83 3.07 0.31 8.50

OHA8 73.36 14.99 3.23 0.31 8.11

OHA9 72.32 17.29 3.50 0.36 6.53

1) HA, original humic acids which is derived from Chinese weathered coal; OHA1-OHA9, humic acids under

different oxidation conditions.

https://doi.org/10.1371/journal.pone.0217469.t005
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stretching of polysaccharides or polysaccharide-like substances and Si–O from silicate impuri-

ties. The absorption peaks at 1108 cm–1 for OHA5, OHA7 and OHA8 were the same as those

prepared at 40˚C, 60˚C and 80˚C, respectively. The absorption peak of OHA6 at 619 cm–1 was

the strongest, followed by that of HA, and the peak at 619 cm–1 is due to C–H surface deforma-

tion and vibration.

Structural differences among the humic acids revealed by 13C–CP/MAS–

NMR spectroscopy

Solid 13C–CP/MAS–NMR spectra were obtained for HAs subjected to different treatments

and are shown in Fig 3. The relative distribution of the signal areas for the different treatments

is summarized in Table 6. The results showed that all the HA and OHAs contain alkyl, meth-

oxyl, N–alkyl, O–alkyl, di–O–alkyl, aromatic, O–aromatic, carboxyl and carbonyl carbons. As

shown in Fig 4, the highest abundance in all the spectra occurred in the chemical shift range of

110–142 ppm, which suggested that carbon was mainly present in the form of aromatic com-

pounds. The aromatic functional groups accounted for more than 70% of the carbon composi-

tion when the O–aromatic carbon was also taken into consideration. Additionally, the second

most abundant functional group, which was in the chemical shift range of 156–186 ppm, was

carboxyl carbon, which accounted for approximately 15%. The other functional groups

accounted for less than 15% of the total carbon composition.

The relative intensities of the different carbon chemical shifts differed in the ten samples.

The spectral data were divided into eight regions, as shown in Table 6, to quantify the carbon

functional groups by the method of Garcı́a et al [37]. Oxidation with H2O2 can change the

content of different carbon types depending on the oxidizing conditions. The CAlk–O, N and

CAr–H, R contents of HA were higher than those of the OHAs. However, the CAlk–di–O, CAr–O, N

and CCOO–H, R contents of HA were lower than those of the OHAs. The CAlk–H, R, CAlk–O and

CAlk–di–O contents of OHA5 were higher than those of HA and other OHAs. The CCOO–H, R

Fig 3. 13C–CP/MAS–NMR spectra of HA and OHAs under different oxidizing conditions. HA, original humic

acids which is derived from Chinese weathered coal; OHA1-OHA9, humic acids under different oxidation conditions.

https://doi.org/10.1371/journal.pone.0217469.g003
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content of OHA2, OHA6 and OHA7, which were prepared at 60˚C, was higher than that of

the others. Additionally, these results showed that the oxidation process has no significant

effect on the aromaticity and aliphaticity of HA. However, the hydrophobicity index (HI) of

HA is higher than that of the OHAs.

Fig 4 shows the PCA results with 90.91% of the total variance explained based on the rela-

tive number of carbon types for each kind of humic acids. The OHAs were clustered and dif-

ferent from HA. OHA2 and OHA6 were clustered in PC1 (59.30%) because of the

Table 6. Relative distributions (percentages) of carbon types in the 13C–CP/MAS–NMR spectra.

Sample1) CAlk–H, R CAlk–O, N CAlk–O CAlk–di–O CAr–H, R CAr–O, N CCOO–H, R CC = O Arom2) Alip3) HI4)

HA 0.036 0.024 0.078 0.001 0.611 0.134 0.132 0.016 0.744 0.256 3.541

OHA1 0.033 0.009 0.061 0.011 0.588 0.151 0.149 0.020 0.739 0.261 3.234

OHA2 0.004 0.012 0.051 0.009 0.578 0.167 0.187 0.010 0.745 0.255 2.972

OHA3 0.028 0.019 0.076 0.006 0.579 0.142 0.139 0.012 0.72 0.280 3.301

OHA4 0.016 0.016 0.079 0.005 0.611 0.140 0.150 0.008 0.751 0.249 3.241

OHA5 0.043 0.019 0.092 0.018 0.562 0.133 0.141 0.009 0.695 0.305 2.907

OHA6 0.002 0.007 0.053 0.007 0.558 0.169 0.184 0.016 0.727 0.273 2.832

OHA7 0.003 0.004 0.049 0.002 0.562 0.166 0.202 0.015 0.728 0.272 2.732

OHA8 0.036 0.022 0.072 0.009 0.585 0.146 0.138 0.008 0.731 0.269 3.475

OHA9 0.018 0.009 0.079 0.008 0.569 0.151 0.159 0.008 0.719 0.281 2.948

1) HA, original humic acids which is derived from Chinese weathered coal; OHA1-OHA9, humic acids under different oxidation conditions.
2) Aromaticity: Arom = ([CAr–H, R (110–142 ppm) + CAr–O, N (142–156 ppm)/total peak area (0–230 ppm])�100
3) Aliphaticity: Aliph = (100 –Arom)
4) HI = [CAlk–H, R (0–45 ppm) + CAlk–O, N (45–60 ppm) + CAr–H, R (110–142 ppm) + CAr–O, N (142–156 ppm)] / [CAlk–O (60–91 ppm) + CAlk–di–O (91–110 ppm) +

CCOO–H, R (156–186 ppm) + CC = O (186–230 ppm)]

https://doi.org/10.1371/journal.pone.0217469.t006

Fig 4. Principal components analysis (PCA) for the data obtained from the 13C–CP/MAS NMR spectra of the HA and OHAs. HA, original humic acids

which is derived from Chinese weathered coal; OHA1-OHA9, humic acids under different oxidation conditions.

https://doi.org/10.1371/journal.pone.0217469.g004
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predominance of substituted aromatic and carboxyl carbon groups. OHA1, OHA5, OHA8

and OHA9 were clustered with negative values because of the predominance of aliphaticity

and di–O–alkyl carbon. OHA3 and OHA4 were clustered in PC2 (31.61%) because of the pre-

dominance of aliphatic and unsubstituted aromatic carbon groups. OHA7 was dominated by

carbonyl and aromaticity carbon.

Relationship between the elemental content and atomic ratios, E2/E3 and

E4/E6 of the humic acids and the oxidation conditions

A MANOVA was conducted to determine the relationship between the properties of humic

acids and the preparation conditions. The results from SPSS are shown in Table 7, which is

slightly modified for easier reading. The statistical test Wilks’ Lambda statistics are shown. The

values can be converted to an F statistic, which can then be used to calculate a p value, and

these values are displayed in Table 7. The MANOVA test statistics for the data are statistically

significant (p< 0.05). This result shows that the null hypothesis has been rejected, and the

hydrogen peroxide concentration, liquid-to-solid ratio, time and temperature have a statisti-

cally significant relationship with the properties of humic acids. In this hypothesis test, the

value for temperature is the largest which followed by hydrogen peroxide concentration, liq-

uid-to-solid ratio and time, indicating that temperature has the largest contribution to the

model. Temperature has the largest partial η2 and the largest contribution to the difference,

followed by the hydrogen peroxide concentration, liquid-solid ratio, and time. Thus, among

the preparation conditions, temperature is the most important factor affecting the properties

of humic acids.

Discussion

Effects of oxidizing conditions on the structural characteristics of humic

acids

The structural pattern of the humic acids derived from weathered coal according to the 13C–

CP/MAS–NMR assay was comparable with that of humic acids from weathered coals [32, 38],

lignite [20–21, 39–40], and even composted wastes [41–42]. This result demonstrated the sam-

ples in the present investigation well represent a general humic acids structural pattern. On

average, the oxidation with H2O2 decreased the C content, increased the O and O/C contents.

Among all the treatments samples, OHA3 and OHA4 showed relatively higher C contents

than the others. More importantly, HA had a higher C content than fulvic acid extracted from

soil, suggesting that the C content might be an indicator of molecular weight. OHA3 and

OHA6 showed the highest and lowest C/H contents, respectively and high C/H ratios are

thought to indicate high stability of humus and large degree of condensed structures [43]. In

addition, OHA6 and OHA3 had the highest and lowest O/C ratios, respectively, indicating

that OHA6 had higher contents of carbohydrates and carboxylic acids [43]. Oxidation with

H2O2 can increase the oxygen–bearing group content of humic acids, possibly resulting from

the oxidative reactions with hydrogen peroxide. It has been demonstrated by others that the

Table 7. Relationship between the elemental content and atomic ratios, E2/E3 and E4/E6 of humic acids and the oxidation conditions.

Factors Value (Statistic) F p value Partial η2

concentration of hydrogen peroxide 0.052 3.746 0.003 0.771

liquid-to-solid ratio 0.064 3.293 0.006 0.748

time 0.074 2.985 0.010 0.729

temperature 0.036 4.706 0.001 0.809

https://doi.org/10.1371/journal.pone.0217469.t007
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E2/E3 and E4/E6 values are negatively correlated with the aromaticity, condensation and

molecular weight of humic acids [33,44]. All the OHAs had a higher E4/E6 ratio than the HAs

directly extracted from the Chinese weathered coal. This difference indicated that H2O2 oxida-

tion might decrease the molecular weight of humic acids. In addition, the E4/E6 ratio of HAs

in this work was different from that reported in previous studies. In the current situation, the

E4/E6 ratios of HA and OHAs were in the range of 3.1–3.69, while those in other investiga-

tions were in the range of 4.00–7.00 [45–46], and this difference suggest that the materials in

this research contained more condensed ring structures and had a higher molecular weight.

The biological activity of humic acids is determined by various functional groups, which

also reflect the origin materials and mechanism of formation. In addition, chemical modifica-

tion can also change the functional composition and structure of humic acids. In this research,

oxidation with H2O2 can change the content of different carbon types depending on the oxi-

dizing conditions. Some kinds of OHAs have more aromatic carbon and carboxyl/carbonyl

carbon groups than HA [47], while, the others have fewer groups. A previous study showed

that chemical modification by H2O2 can increase the contents of carbonyl and carboxyl carbon

groups, and groups containing oxygen atoms. Correspondingly, the contents of CAlk–H, R,

CAlk–O, and CAlk–O, N are reduced. The difference between the results from our work and pre-

vious research may be due to the reaction conditions. In this research, we attempted to obtain

humic acids with various functional groups to further investigate their application in nature

and technological processes to enable more effective use of these materials.

Potential utilization of humic acids with different functional groups in

agriculture

Humic acids contain various functional groups, a variety of trace elements and other beneficial

components [3–4]. Due to the presence of various active functional groups, humic acids have

the acidic, hydrophilic, interfacial activity, cation exchange, complexation, adsorption and dis-

persion function [48]. The OHAs oxidized at 60˚C showed a higher content of carboxyl/car-

bonyl carbon groups than the original humic acids. Previous studies have shown that HAs

with higher carboxyl group contents can perform better in chemical industry applications,

such as ion exchange and wastewater purification. Our research found that OHAs had lower

contents of aromatic carbon and higher contents of O–aromatic carbon and carboxyl carbon

than HA. In addition, previous studies have showed that O–aromatic carbon structures and

carboxyl groups can stimulate plant growth, indicating the great potential of OHAs for use in

agriculture [22–23, 49]. The hydrophobicity index of HA was higher than that of the OHAs.

Canellas et al [50] showed that lateral root emergence is mostly related to the hydrophobicity

index and hydrophilic carbon, and the content of hydrophobic carbon in humic acids is nega-

tively correlated with the induction of lateral root hair.

To investigate the effects of different kinds of OHAs in agriculture, an experiment was con-

ducted to explore the effect of HA and OHAs on maize roots. The dry weight and root activity

of maize root were measured. OHA6 which had the highest contents of O, O/C, highest E4/E6

ratio, relatively high carboxyl carbon content and lowest aromatic carbon content, showed the

optimal effect for promoting maize. OHA3, which had the highest contents of C and C/H, had

the lowest effect on maize root growth (Fig 5). Further work is underway to investigate the reg-

ulatory mechanism of humic acids on maize roots.

Conclusions

H2O2 oxidation altered the structure and composition of humic acids derived from Chinese

weathered coal. On average, H2O2 oxidation decreases the H and N contents and increases the
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O content. H2O2 oxidation can decrease the hydrophobicity index of humic acids. Among the

various studied preparation conditions, temperature is the most important factor affecting the

properties of humic acids. The prepared OHAs with different characteristics have potential to

serve as functional materials for further study in agriculture and other industries. An investiga-

tion into the application of HAs and OHAs to promote maize roots growth is currently

underway.
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