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Abstract: Glutathione peroxidase 3 (GPx3) is the only extracellular selenoprotein (Sel) that enzymati-
cally reduces H2O2 to H2O and O2. Two GPx3 (CqGPx3) cDNAs were characterized from crayfish
Cherax quadricarinatus. The nerve cord CqGPx3a isoform encodes for a preprotein containing an
N-terminal signal peptide of 32 amino acid residues, with the mature Sel region of 192 residues
and a dispensable phosphorylation domain of 36 residues. In contrast, the pereiopods CqGPx3b
codes for a precursor protein with 19 residues in the N-terminal signal peptide, then the mature
184 amino acid residues protein and finally a Pro-rich peptide of 42 residues. CqGPx3 are expressed
in cerebral ganglia, pereiopods and nerve cord. CqGPx3a is expressed mainly in cerebral ganglia,
antennulae and nerve cord, while CqGPx3b was detected mainly in pereiopods. CqGPx3a expression
increases with high temperature and hypoxia; meanwhile, CqGPx3b is not affected. We report the
presence and differential expression of GPx3 isoforms in crustacean tissues in normal conditions
and under stress for high temperature and hypoxia. The two isoforms are tissue specific and condi-
tion specific, which could indicate an important role of CqGPx3a in the central nervous system and
CqGPx3b in exposed tissues, both involved in different responses to environmental stressors.

Keywords: Cherax quadricarinatus; glutathione peroxidase; GPx3; gene expression; temperature;
hypoxia; Pro-rich

1. Introduction

Regulation of reactive oxygen species (ROS) is critical for all known organisms. ROS
are important regulators of metabolism and exert essential physiological functions. Hydro-
gen peroxide is a ROS that is produced from a superoxide ion, and its modulation is given
to the enzymatic level from peroxidases that hydrolyze H2O2 to H2O and O2. Although
most peroxidases have heme in their active site, some others contain selenocysteine (Sec).
Selenoproteins (Sels) are a family of proteins that contain Sec [1], where SECIS—a cis-acting
selenocysteine insertion sequence in their mRNA—is essential for Sec incorporation into the
proteins [2]. Glutathione peroxidases (GPxs) are selenoproteins that catalyze the reduction
of H2O2 to water, usually using glutathione (GSH) as a reducing agent [3]. Sec in the active
site of glutathione peroxidase is encoded by the termination codon TGA [4], and is the
cause of increased affinity for hydroperoxide and reducibility for GSH.

GPxs are important components of the REDOX system, but until now only a few genes
have been reported in crustaceans [5]. The GPx from penaeid shrimp Metapenaeus ensis

Genes 2022, 13, 179. https://doi.org/10.3390/genes13020179 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13020179
https://doi.org/10.3390/genes13020179
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0001-6386-5392
https://orcid.org/0000-0002-0791-3211
https://orcid.org/0000-0001-6852-0406
https://orcid.org/0000-0002-9516-0087
https://orcid.org/0000-0002-4762-9135
https://doi.org/10.3390/genes13020179
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13020179?type=check_update&version=3


Genes 2022, 13, 179 2 of 20

(MeGPx) has high similarity with human glutathione peroxidase 3 (GPx3) [6]. Selenium-
dependent glutathione peroxidases (Se-GPx) were also identified from the shrimp Fen-
neropenaeus chinensis and Litopenaeus vannamei, both similar to GPx1 from some species [7,8],
while the GPx cDNA from Procambarus clarkii (PcGPx) shares high similarity with vertebrate
GPx1 and GPx2 [9]. In addition, of the two known Penaeus monodon GPxs (GPx1 and GPx7),
only GPx1 was reported as a selenoprotein [10].

In contrast to the few GPxs identified in crustaceans, at least eight glutathione peroxi-
dases (GPx1–GPx8) are known in mammals, and GPx3 is the only known Sec-dependent
extracellular and membrane-associated GPx [11]. GPx3 expression reduces extracellular
H2O2 concentration in human muscle cells regulating H2O2 levels and its function as a
second messenger, and the inhibition of GPx3 is associated with unbalance in the redox
system, insulin resistance and diabetes mellitus [12]. Particularly, GPx3 in the nervous
and muscular systems is associated with pathogen resistance, survival and inflammatory
response. For instance, GPx3 and thioredoxin-like 1 (TXNL1) expression are induced by the
transcription factor NeuroD6 in the spinal cord, producing the ROS depletion involved in
the attenuation of inflammation [13]. Furthermore, knockdown of GPx3 in human skeletal
muscle precursor cells using siRNA resulted in a higher production of reactive oxygen
species [14], while the expression of GPx3 was threefold higher in fat cells compared to non-
fat cells of continuously stressed adipose tissue from morbidly obese women, indicating an
inflammatory response [15].

Hypoxia alters GPx3 expression in a tissue-specific manner in mammals. Human
bone marrow mesenchymal stem cells cultured in hypoxic conditions showed an increase
in cell fitness, evidenced by an improvement in clonogenicity and improved differentia-
tion potential towards adipocyte and chondrocyte lineages. Under these circumstances,
GPx3 expression rose 4.5-fold [16]. In the butterfly-shaped interscapular brown adipose
tissue (iBAT) of myoglobin knockout (MBko) mice, GPx3 expression decreased signifi-
cantly compared to the wild type, indicating anoxia-related diminishment of H2O2 and a
ATP synthesis decrease [17]. Variants or isoforms of GPx3 have been reported in differen-
tial expression patterns. In kidney embryonic cells HEK-293, GPx3 was down-regulated
in thioredoxin reductase 1 variant 1 (TXNRD1_v1) overexpressing cells; interestingly, no
change in GPx3 expression was identified in thioredoxin reductase 1 variant 2 (TXNRD1_v2)
overexpressing cells [18]. Furthermore, GPx3 exhibits a high expression level in aquatic ani-
mals in response to biotic and abiotic stressors such as handling and high temperature [19],
bacterial infection [20] and toxin detoxification [21,22], probably playing a major role in the
balance of oxidative stress.

On the other hand, since crayfish lack the adaptive immunity of vertebrates, they
depend totally on their innate immune system to fight infections. Antimicrobial pep-
tides (AMPs) are one of their lines of defense, as in other crustaceans, usually inhibiting
protein, RNA or DNA synthesis to kill microorganisms with expression cell or tissue
dependence [23,24]. Pro-rich is an AMP that kills bacteria by binding to ribosome and
chaperone proteins [25]. Astacidin is an AMP of 20 amino acids Pro-rich peptide identified
in P. clarkii with this function, capable of antimicrobial activity against Staphylococcus aureus
and Vibrio anguillarum [26]. It is known that temperature can affect the REDOX response in
this crustacean.

A significant increase in total glutathione and lipid peroxidation occurred when these
animals were exposed to 29 and 33 ◦C [27], but no antioxidant genes expression has
been studied under stressful temperatures. Additionally, in Macrobrachium nipponense,
transcriptomic analysis revealed that under hypoxia, the expression of oxidoreductase
genes was higher [28]. Additionally, anoxia increased the NADPH concentration by the
activation via phosphorylation of glucose-6-phosphate dehydrogenase in the crayfish
Orconectes virilis [29]. No gene expression studies are available in C. quadricarinatus under
hypoxia. However, in normal conditions, transcriptomic analysis in gills reported the
presence of antioxidant coding genes [30], and although reduced GSH was lower in starved
animals [31] no glutathione peroxidase gene has been specifically reported in these animals.
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The objective of the present work was to analyze two GPx isoforms in C. quadricarinatus
nervous tissues in normal and stress conditions. We report the complete cDNA and deduced
proteins sequences of GPx3a (CqGPx3a) and GPx3b (CqGPx3b), their expression in nerve
cord (NC), cerebral ganglia (CG), antennule (Ante), ocular peduncle (OP), pereiopods (Pe),
pleopods (Pl) and antennae (Ant). Finally, tissue-specific and stress-specific expressions of
these isoforms under temperature and hypoxia stress were detected for the GPx3 isoforms.

2. Materials and Methods
2.1. Animals and Bioassays for Temperature and Hypoxia

Sixty C. quadricarinatus male juveniles (21 ± 1.5 g) were donated by Biohelis, CIBNOR,
Baja California Sur, Mexico. Crayfishes were acclimated for two weeks in 50 L freshwater
plastic tanks at 23.3 ± 1.26 ◦C, with constant aeration (7.86 ± 0.73 mg/L dissolved oxygen),
12 h light: 12 h dark photoperiod conditions, culture density of 14 m−2, and fed ad libitum
daily with commercial feed (Golden Bites, Biomaa, México). Only healthy inter-molt
juveniles were chosen for all the experimental groups. Before the experiments, crayfishes
were separated in 18 L glass aquaria. One-third of the water volume was changed twice
daily to prevent ammonia accumulation; uneaten food particles and feces were removed
daily. Optimum conditions experiment used to determine the expression of CqGPx3
(n = 8, N = 56), CqGPx3a, and CqGPx3b isoforms (n = 8, N = 96) in a tissue-specific manner
in the nervous system and muscle were kept at 23.0 ± 1.01 ◦C, with constant aeration
(7.80 ± 0.56 mg/L dissolved oxygen), photoperiod conditions of 12 h light: 12 h dark,
culture density of 14 organisms m−2, and fed ad libitum daily with commercial feed (Golden
Bites, Biomaa, México). To analyze the expression of CqGPx3a and CqGPx3b isoforms (n = 4,
N = 15) in a tissue-specific manner under stressful conditions, a control group and three
stressful conditions groups were subjected to hypoxic stress (3 ± 1.5 mg/L DO), moderate
temperature stress (27.5 ± 1 ◦C) and severe temperature stress (LD50) (30 ± 2.1 ◦C). A
photoperiod of 12 h light: 12 h dark, culture density of 14 organisms m−2, and feeding ad
libitum daily with commercial feed (Golden Bites, Biomaa, Mexico) conditions were kept
in all experiments. The control group was held at 23.2 ± 1.12 ◦C and constant aeration
(7.83 ± 0.62 mg/L dissolved oxygen). Hypoxia was induced by modulating aeration in
the aquarium and was monitored with a dissolved oxygen meter (YSI 55, Yellow Spring,
OH, USA). The temperature was adjusted with a submersible thermostatic heater, and the
variables were measured three times a day, with adjustments made if necessary. After two
weeks of stress challenge, tissues of interest were dissected and processed.

2.2. RNA Isolation, Amplification and Cloning of Partial GPx cDNA Fragments

Nerve cord (NC), cerebral ganglia (CG), antennule (Ante), ocular peduncle (OP),
pereiopods (Pe), pleopods (Pl) and antennae (Ant) were dissected from crayfishes and kept
at −80 ◦C until used. Total RNA was extracted using TRI® (Sigma-Aldrich, San Luis, MO,
USA) according to the instructions of the manufacturer. RNA integrity was confirmed by
1% agarose gel electrophoresis. Reverse transcription (RT) was performed using Quantitect
Reverse transcription (Qiagen, Hilden, Germany). Next, 1 µg of total RNA was reverse
transcribed with oligo dT (20 mer). Degenerate primers were designed based on conserved
amino acid identified from the sequence alignments of related GPxs. Internal cDNA
partial amplification of NC, CG, Ante, OP, Pe, Pl and Ant were obtained using different
combinations of GPxF4, GPxF5, GPxF6, GPxR3 and GPxR4 primers (Table 1). The 25 µL
reactions containing 12.5 µL AmpliTaq Gold®360 Master Mix, 0.5 µL Fw primer (10 µM),
0.5 µL Rv primer (10 µM), 10.0 µL Milli Q water and 1 µL of the respective cDNA under
the following conditions: 94 ◦C for 5 min, followed by 94 ◦C for 1 min, 47 ◦C for 1 min and
72 ◦C for 1 min per cycle for 38 cycles and finally, 72 ◦C for 7 min in a DNA Thermal Cycler
(Bio-Rad T100). PCR products were cloned in the pGEM-T Easy Vector System I (Promega,
Madison, WI, USA) and transformed in DH5α Escherichia coli competent cells (Invitrogen,
Carlsbad, CA, USA). Recombinant plasmids were sequenced in both DNA directions by
the dideoxy chain-termination method (Macrogen Co., Seoul, Korea). cDNA sequence and
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deduced proteins were compared to nucleotide and protein GenBank databases using the
BLAST algorithm [32] at the National Center for Biotechnology Information, Bethesda, MD.

Table 1. Degenerated and specific primers used.

Primer Sequence Amplified DNA Fragments

GPxF2 5′-CTCGTCATTCTTGGTTTTCC-3′ qPCR CqGPx3
GPxR2 5′-CCGGGTTCGGGGCTTG-3′

GPxF4 5′-GYAAGGTRSTDYTBRT-3′

Internal cDNA partial amplification of CqGPx3
GPxF5 5′-GARRRYRBVVVCAGAAWHHWC-3′

GPxF6 5′-RGRRGGYDKWYGGBVRBRYTT-3′

GPxR3 5′-HBYYRRGHWSKDNBYBD-3′

GPxR4 5′-SAGCCCWRMCCMDCBBAT-3′

GPxF7 5′- CTCGTCATTCTTGGTTTTCCATGTAACC-3′ RACE 3′ CqGPx3a

GPxR5 5′- GGTTCGGGGCTTGCCATTCCTAC-3′ RACE 5′ CqGPx3a

GPxF19 5′-ATATTTTATGAACCCAAACGAGTTGGA-3′ RACE 3′ CqGPx3b
qPCR CqGPc3b

GPxR12 5′-CTGAGACAGAGTAGGAACCTCTTCGT-3′ RACE 5′ CqGPx3b

GPxF21 5′-GTGTTCTACGAGCCAAAGAGAGTTG-3′ qPCR CqGPx3a
GPxR15 5′-CTACCCGCTAAAGAGCTGAGAAAT-3′

L12F1 5′-CCTCTAAGTGTGTTTGCGGTGT-3′ qPCR L12
L12R1 5′-AGCATCTGGTCAAGGGTCAG-3′

2.3. CqGPx3a and CqGPx3b Rapid Amplification of cDNA Ends (RACE) for Nerve Cord
and Pereiopods

Fragments containing 5′ and 3′ cDNA ends were obtained using SMARTer RACE
(Invitrogen, Carlsbad, CA, USA). Approximately 1 µg of total RNA from NC or Pe was
used for cDNA synthesis following the manufacturer’s recommendations. Based on a
known partial sequence of CqGPx3a or CqGPx3b isoforms, the specific primers GPxF7,
GPxF19, GPxR5 and GPxR12 were designed as shown in Table 1. For the 5′ and 3′ ends,
amplification of CqGPx3a R5 and F7 were used, and R12 and F19 for the 5′ and 3′ ends
amplification of CqGPx3b, respectively, following the manufacturer’s recommendations
(63 ◦C of alignment temperature and 3 min to elongation). RACE-PCR products were
cloned and sequenced for both DNA chains as mentioned above. cDNA sequences and
the deduced proteins were compared to nucleotide and protein databases using BLAST.
Complete cDNA sequences analyses were made with ExPASy bioinformatic tools available
online: http://web.expasy.org/translate/ (accessed on 5 October 2021). SECIS secondary
structures were deduced using SECISearch 2.19 algorithm available online: http://genome.
unl.edu/SECISearch.html (accessed on 5 October 2021).

2.4. CqGPx3a and CqGPx3b mRNA and Deduced Amino Acid Sequence Analysis

Amino acids and glutathione peroxidase domain were deduced using the ExPASy
translate tool and SMART sequence identifier, respectively, available online: http://smart.
embl-heidelberg.de (accessed on 5 October 2021). Mature CqGPx3 proteins 3D model
based on human glutathione peroxidase 3 were obtained using RaptorX available online:
http://raptorx.uchicago.edu/ (accessed on 5 October 2021). SMART sequence identifier
was used to identify putative N-terminal signal peptide and extracellular NIDO domain.
Prosite ExPASy was used to identify possible carboxyl-terminal phosphorylation sites
available online: http://prosite.expasy.org/prosite.html (accessed on 5 October 2021).
The SECISearch 2.19 program was used to predict UTR 3´ selenocysteine insertion se-
quence (SECIS) available online: http://genome.unl.edu/SECISearch.html (accessed on
5 October 2021). Alignments were performed with CLUSTAL X 2.0 [33] and the visualiza-
tion and statistical report were performed with GeneDoc 2.7.0 [34]. The LG + G model
(0.442 for the γ distribution) was selected by the model test of MEGA for the tree search.

http://web.expasy.org/translate/
http://genome.unl.edu/SECISearch.html
http://genome.unl.edu/SECISearch.html
http://smart.embl-heidelberg.de
http://smart.embl-heidelberg.de
http://raptorx.uchicago.edu/
http://prosite.expasy.org/prosite.html
http://genome.unl.edu/SECISearch.html
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The confidence at each node was assessed by 500 bootstrap replicates and the phylogenetic
tree was constructed using Maximum Likelihood with MEGA 6.0 software [35].

Pro-rich peptides tertiary hypothetical structure was predicted by Phyre2 and Rap-
torX available online: http://www.sbg.bio.ic.ac.uk/phyre2/ http://raptorx.uchicago.edu
respectively (accessed on 5 October 2021). Physicochemical properties, Grand Aver-
age hydropathy value (GRAVY) and Boman Index were predicted using APD3 avail-
able online: https://aps.unmc.edu/ (accessed on 5 October 2021). ProtScale software
was used to calculate Kyte–Doolittle and Hopp–Woods scales available online: https:
//web.expasy.org/protscale/ (accessed on 5 October 2021). Amino acids flexibility prob-
ability was calculated using FlexPred and structure homology flexibility was predicted
in PredyFlexy available software online: http://flexpred.rit.albany.edu/ http://www.
dsimb.inserm.fr/dsimb_tools/predyflexy/ (accessed on 5 October 2021). Peptide cutter
and PROSPER software were used to identify serine endopeptidases excision sites, avail-
able online: http://web.expasy.org/peptide_cutter/ https://prosper.erc.monash.edu.au/
(accessed on 5 October 2021).

2.5. CqGPx3, CqGPx3a and CqGPx3b mRNA Isoforms Quantification

Total RNA was extracted from NC, CG, Ante, OP, Pe, Pl and Ant of juvenile male
crayfishes (n = 8, N = 56) using TRI® (Sigma-Aldrich). Next, 1 µg of total RNA was reverse
transcribed using QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany) with
oligo dT (20 mer) according to the manufacturer’s instructions. CqGPx3 transcripts were
amplified using the primers GPxF2 and GPxR2 (309 pb amplicon) (n = 8, N = 56). CqGPx3a
isoform transcripts were amplified with GPxF21 and GPxR15 primers (258 pb amplicon)
and CqGPx3b isoform transcripts were amplified with GPxF19 and GPxR12 primers (169 pb
amplicon) (n = 8, N = 96). cDNAs were used as a template and qPCR was performed on a
CFX96 Real Time PCR (Bio-Rad, Hercules, CA, USA) in two separated PCR reactions for
each individual crayfish and tissue in 20 µL final volume contained 10 µL of 2X iQ SYBR
Green Supermix (Bio-Rad), 8.5 µL of H2O, 0.25 µL of each primer (10 µM) and 1 µL of
cDNA (equivalent to 50 ng of total RNA). The ribosomal protein L12 (GenBank accession
no. AEL23104.1) cDNA was amplified side by side for comparisons using the forward
and reverse primers L12F1 and L12R1 (amplicon 300 pb) under the same conditions. The
RT-qPCR procedure consisted of 95 ◦C for 3 min, followed by 95 ◦C for 30 s and 64.1 ◦C for
35 s per cycle for 40 cycles, then a melting curve analysis was carried out by a slow increase
(0.5 ◦C/5 s) from 65 to 95 ◦C, to examine primer-dimers presence and non-specific amplifi-
cation. Standard curves for CqGPx3, CqGPx3a, CqGPx3b and L12 were run to determine
the efficiency of amplification using dilutions from 5 × 10−4 to 5 × 10−9 ng/µL of purified
amplicons. For each measurement, expression levels (ng/µL) were normalized to L12 and
expressed as relative expression values (CqGPx3/L12, CqGPx3a/L12, CqGPx3b/L12).

2.6. Statistics

One-way analysis of variance (ANOVA) and Tukey and LSD test (α < 0.05) were
applied to the data. The Minitab 17 statistical software was used.

3. Results
3.1. Two Isoforms of GPx3 Were Identified in Nervous System Tissues

Using GPxF2 and GPxR2 primers (Table 1), PCR fragments of CqGPx3 cDNA were
obtained from NC, CG, Ante, OP, Pe, Pl and Ant and sequenced. Two isoforms were
identified and denominated as CqGPx3a and CqGPx3b. The CqGPx3a predicted protein
partial sequence is identical in NC, CG and Ante, while the CqGPx3b deduced protein
partial sequence is identical in Pe, Pl and Ant.

The cDNA complete sequence of CqGPx3a from NC is 1082 bp (Figure 1). It does not
have a 5′ untranslated region (UTR) and has a coding sequence of 780 bp corresponding
to 260 amino acids and 29.26 kDa, with a stop codon at position 781, and a 302 bp 3′ UTR.
The characteristic Sec UGA insertion codon was identified at position 237. The 3′ UTR

http://www.sbg.bio.ic.ac.uk/phyre2/
http://raptorx.uchicago.edu
https://aps.unmc.edu/
https://web.expasy.org/protscale/
https://web.expasy.org/protscale/
http://flexpred.rit.albany.edu/
http://www.dsimb.inserm.fr/dsimb_tools/predyflexy/
http://www.dsimb.inserm.fr/dsimb_tools/predyflexy/
http://web.expasy.org/peptide_cutter/
https://prosper.erc.monash.edu.au/
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contains a consensus polyadenylation signal (AAUAAA) and a poly-A tail. In the 3′ UTR, a
SECIS type 2 structure was predicted. A putative pro-peptide comprises the signal peptide
identified by SMART (32 amino acids), the mature CqGPx3a protein of 192 amino acids
and two asparagine N-linked glycosylation sites (amino acids 56 and 120) were identified
using Prosite. The N-terminal signal peptide cleavage site is at 32 amino acid (GLG-KI)
and the C-terminal cleavage site is at 224 amino acid (LY-EL). In the C-terminal domain,
there are two different recognition phosphorylation sites identified in the PPEVP and RRIS
sites by Prosite ExPASy (36 amino acids). Complete pro-peptide modeling is important
to determine the non-catalytically viable characteristics of the protein. In this sense, the
C-terminal 228 residues RaptorX analysis shows CqGPx3a with (100% of the sequence)
were modeled with p-value: 9.83 × 10−11, uGDT(GDT): 146(64) and uSeqId(SeqId): 85(37).
Adequate folding is presumed when serin proteases liberate the C-terminal in natural
circumstances. For CqGPx3a without C-Terminus, 192 residues (100% of the sequence)
were modeled with p-value: 6.47 × 10−11, uGDT(GDT): 145(76) and uSeqId(SeqId): 84(44).
CqGPx3a proteins were modeled using human GPx3 (selenocysteine to glycine mutant) as
template with 1.85 Armstrong resolution and 100% confidence. The newly found GPx was
named CqGPx3a and was deposited in GenBank under accession no. KX685410.

The full-length CqGPx3b is 1025 nt. The cDNA nucleotide and deduced amino acid
sequences are shown in Figure 2. It contains a 45 bp 5′ UTR, 735 bp coding sequence
(245 amino acids) and 245 bp in the 3′ UTR. The initiation methionine codon (ATG) is
found at nucleotide 46 and a stop codon is present at position 781. CqGPx3b contains a TAG
codon (244 nt), corresponding to Sec residue at the 67th codon (U).

Analysis of both CqGPx3 SECIS predicted conformation showed a typical type 2 struc-
ture with an additional helix upstream of the adenosine bulge (Figure 3). The putative
pro-peptide comprises the signal peptide (19 amino acids), the mature CqGPx3b protein
(184 amino acids) and the C-terminal domain (42 amino acids). SMART domains analyses
showed an N-terminal signal peptide from amino acid 1 to 19 and a cleavage site (GLG-
EI, probability of 0.992) in the SignalP 3.0 Server. Prosite identified asparagine N-linked
glycosylation sites (amino acid positions 43 and 107). The C-terminal cleavage site is
present at residue 203 (LK-SD). GPx-conserved motifs PCNQF, VNG and WNFEKFL are
presented in the CqGPx3b sequence (Figure 2) [7]. CqGPx3b complete pro-peptide modeling
is also important to determine the non-catalytically viable characteristics of the protein.
RaptorX analysis shows CqGPx3b with C-Terminus; 226 residues (100% of the sequence)
were modeled with p-value: 1.26 × 10−10, uGDT(GDT): 143(63) and uSeqId(SeqId): 83(37).
Additionally, adequate folding is presumed when serin proteases liberates the C-terminal in
natural circumstances. CqGPx3b without C-Terminus, 184 residues (100% of the sequence)
were modeled with p-value: 6.60 × 10−11, uGDT(GDT): 136(74) and uSeqId(SeqId): 82(45).
CqGPx3b proteins were modeled using human GPx3 (selenocysteine to glycine mutant) as
template with 1.85 Armstrong resolution and 100% confidence. The newly found GPx gene
was named CqGPx3b and was deposited in GenBank under accession no. KX685411. The cal-
culated molecular mass of CqGPx3b was 27.06 kDa. CqGPx3a and CqGPx3b Selenocysteine
Insertion Sequence (SECIS) have putative type 2 secondary structures (Figure 3).

Alignment of the CqGPx3a and CqGPx3b predicted proteins with related crustaceans
and GPx3s of mammals and amphibians indicate that these enzymes conserved the signa-
ture sequences. P. clarkii and M. ensis GPx are not classified as GPx3 and are the only ones
that do not present the characteristic N-terminal signal peptide. Additionally, a 40 amino
acids C-terminal difference can clearly be recognized among CqGPxs and GPx3. CqGPx3a
and CqGPx3b have 44 and 46% identity with P. clarkii GPx (G9JJU2.1), 31 and 34% with M.
ensis GPx (ACB42237.1), 55 and 57% with P. monodon GPx (ALM09356.1) and 34 and 36%
with human GPx3 (P22352.2), respectively (Figure 4).
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Figure 1. cDNA nucleotide and amino acid sequences of C. quadricarinatus nerve cord glutathione 
peroxidase 3 isoform “a” (CqGPx3a). Initial methionine (ATG) and stop (TAG) codons are in bold. 
Sec (U) is marked with *. Pro-peptide is formed by a signal peptide (32 amino acids), a mature 
protein (192 amino acids) and a phosphorylation site (36 amino acids). N-terminal cleavage site at 
position 32 (GLG-KI) and C-terminal at 224 (LY-E) are marked. GPx signature sequence motifs, 
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adenylation signal (AAUAAA) is undulated and underlined. 

The full-length CqGPx3b is 1025 nt. The cDNA nucleotide and deduced amino acid 
sequences are shown in Figure 2. It contains a 45 bp 5′ UTR, 735 bp coding sequence (245 
amino acids) and 245 bp in the 3′ UTR. The initiation methionine codon (ATG) is found at 
nucleotide 46 and a stop codon is present at position 781. CqGPx3b contains a TAG codon 
(244 nt), corresponding to Sec residue at the 67th codon (U). 

Figure 1. cDNA nucleotide and amino acid sequences of C. quadricarinatus nerve cord glutathione
peroxidase 3 isoform “a” (CqGPx3a). Initial methionine (ATG) and stop (TAG) codons are in bold. Sec
(U) is marked with *. Pro-peptide is formed by a signal peptide (32 amino acids), a mature protein
(192 amino acids) and a phosphorylation site (36 amino acids). N-terminal cleavage site at position 32
(GLG-KI) and C-terminal at 224 (LY-E) are marked. GPx signature sequence motifs, PCNQF, VNG
and the extra active site motif, WNFEKFL, are shown in gray; 3′ UTR is underlined. Selenocysteine
Insertion Sequence (SECIS) start and end are marked by N and consensus polyadenylation signal
(AAUAAA) is undulated and underlined.
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uSeqId(SeqId): 83(37). Additionally, adequate folding is presumed when serin proteases 
liberates the C-terminal in natural circumstances. CqGPx3b without C-Terminus, 184 
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Figure 2. The nucleotide and amino acid sequences of C. quadricarinatus pereiopod glutathione
peroxidase 3 isoform “b” (CqGPx3b). Initial methionine (ATG) and stop (TGA) codons are in bold.
Sec (U) is marked with *. Pro-peptide is formed by a signal peptide (19 amino acids), mature protein
(184 amino acids) and Pro-rich peptide (42 amino acids). N-terminal cleavage site at amino acid
19 (GLG-EI) and C-terminal at amino acids 203 (LK-S), 208 (TA-L) and 239 (QI-S) are marked. GPx
signature sequence motifs, PCNQF, VNG and the extra active site motif, WNFEKFL, are shown in
gray; 5′ and 3′ UTRs are underlined. Selenocysteine Insertion Sequence (SECIS) start and end are
marked by N.
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Figure 4. Alignment of N C. quadricarinatus glutathione peroxidase 3 isoform “a” (CqGPx3a)
(KX685410) and N C. quadricarinatus glutathione peroxidase 3 isoform “b” (CqGPx3b) (KX685411)
predicted proteins with other Glutathione peroxidases (GPxs) from P. monodon GPx3 (ALM09356.1),
P. clarkii (G9JJU2.1), Metapenaeus encis (ACB42237.1), Xenopus laevis GPx3a (NP_001085319.2), X.
laevis GPx3b (NP_001086142.2), Homo sapiens GPx3 (P22352.2), B. Taurus GPx3 (P37141.2) and Rattus
norvegicus GPx3 (P23764.2). 100, 80, 60 and below 60 percent of identity between sequences are in
black, dark gray, light gray and white, respectively. Sec indicates selenocysteine (U) residue.

The three-dimensional structure of CqGPx3a and CqGPx3b with and without the
C-terminal domain analyzed with RaptorX indicates protein structure changes in the
presence or absence of the C-terminal domain (Figure 5). In both cases, the catalytic site
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is not available while the proteins are in the pro-peptide form, indicating a possible lack
of activity.
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RaptorX, mold PDB molecule: Homo sapiens glutathione peroxidase 3. PDB title: crystal structure of
human glutathione peroxidase 3 (selenocysteine to glycine mutant). (a) CqGPx3a with C-Terminus,
228 residues (100% of the sequence) were modeled with p-value: 9.83 × 10−11, uGDT(GDT): 146(64)
and uSeqId(SeqId): 85(37); (b) CqGPx3a without C-Terminus, 192 residues (100% of the sequence) were
modeled with p-value: 6.47 × 10−11, uGDT(GDT): 145(76) and uSeqId(SeqId): 84(44); (c) CqGPx3b
with C-Terminus, 226 residues (100% of the sequence) were modeled with p-value: 1.26 × 10−10,
uGDT(GDT): 143(63) and uSeqId(SeqId): 83(37); (d) CqGPx3b without C-Terminus, 184 residues (100%
of the sequence) were modeled with p-value: 6.60 × 10−11, uGDT(GDT): 136(74) and uSeqId(SeqId):
82(45) by the single highest-scoring template.

Phylogenetic analysis showed that CqGPx3a and CqGPx3b isoforms are clustered with
MeGPx, PcGPx and P. monodon GPx3 (Figure 6).
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Figure 6. Maximum likelihood tree using the method LG with NNI as heuristic method and 500 
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Figure 6. Maximum likelihood tree using the method LG with NNI as heuristic method and
500 bootstrap replicates of Glutathione peroxidases (GPxs) amino acid sequences from different
species including the C. quadricarinatus glutathione peroxidase 3 isoform “a” (CqGPx3a) and C. quadri-
carinatus glutathione peroxidase 3 isoform “b”(CqGPx3b) protein isoforms. The branch lengths are
proportional to the amino acid differences. Only bootstrap values above 50 are shown.

3.2. CqGPx3b C-Terminal Domain Prediction of Pro-Rich Antimicrobial Function

In the C-terminal sequence of CqGPx3b, there is a 30-amino-acids fragment that has
a proline rich (Pro-rich) region. In this sequence, 10 amino acids have transmembrane
region homology. Phyre2 and RaptorX software modeled Pro-rich peptide as random coiled
tertiary structure using a hydrolase loop as a template (NDB ID: NA1014) (Figure 7). The
Pro-rich peptide is enriched with five proline residues (Pro-rich) and six valine residues
(Val-rich). The probability of target multiplicity increases by the <1 (0.83 kcal/mol) Boman
index result. The Pro-rich peptide has a 40% hydrophobic calculated region that forms an
N-terminal hydrophobic core. The Liu–Deber value of transmembrane region homology
is 0.59. The GRAVY Peptide solubility value is 0.1. N-terminal hydrophobic and C-
terminal hydrophilic cores were determined using Kyte–Doolittle and Hopp–Woods scales
in ProtScale software. Peptide cutter and PROSPER software were used to identify K
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(117), A (119) and Q (151) serine endopeptidases excision sites. Although three different
C-terminal peptides may be released, the analysis showed that a 31-amino-acids length
peptide has more possibilities to be the functional form.
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Figure 7. Predicted Pro-Rich antimicrobial peptide derived from C quadricarinatus glutathione
peroxidase 3 isoform “b” (CqGPx3b) pre-protein isoform in peripheral nervous system. (a) Predicted
random coiled tertiary structure, mold PDB molecule: Drosophila melanogaster exoribonuclease Xrn1.
PDB title: crystal structure of Xrn1-substrate complex, 31 residues (100% of the sequence) were
modeled with p-value: 1.54 × 10−3, uGDT(GDT): 17(55) and 100% coiled secondary structure.
(b) Calculated physicochemical properties. (c) Predicted tertiary structure of Pro-rich peptide after
C-terminus makes transition to α helix structure due to binding with target molecules.

3.3. Expression of CqGPx3, CqGPx3a and CqGPx3b Isoforms in a Tissue-Specific Manner in the
Nervous System and Muscle

Previously to the dissection and processing of the tissues of interest, a mobility behav-
ior reduction was identified in crayfishes subjected to hypoxia. No behavioral differences
compared to the control group were identified in the 27.5 ± 1 ◦C temperature group, and
the 30 ± 2.1 ◦C temperature group presented a mobility behavior reduction. The mean
cDNA Ct value of the ribosomal protein L12 for NC, CG, Ante, OP, Pe, Pl and Ant was
22.39 ± 2.03, therefore L12 has a comparable expression in all the tissues studied. CqGPx3
relative to L12 RT-qPCR analysis from different tissues (NC, CG, Ante, OP, Pe, Pl and Ant)
of C. quadricarinatus is presented proportionally to NC expression. Higher transcript levels
were detected in CG (1.7-fold in respect to NC), followed by Pe and NC. NC expression
is statistically different to CG, Ante and OP. Ant, Pl and Ante do not have significant
differences in expression. A very low quantity in OP and different from all other tissues
was detected (Figure 8).

The relative quantification analysis of CqGPx3a and CqGPx3b mRNA isoforms from
the same tissue, excluding OP, indicates that both isoforms are expressed in all tissues with
the exception of CqGPx3a in Pe and CqGPx3b in NC (Figure 9). The highest relative level
of CqGPx3a was identified in CG followed by Ante and NC (no significant differences).
The relative expression in Ant and Pl was 15 and 43-fold lower than CG, respectively.
Conversely, CqGPx3b was expressed mostly in Pe, followed by Ant, Ante and CG (no
significant differences) while the expression found in Pl was five-fold lower than Pe.
CqGPx3a is preponderant over CqGPx3b in CG, NC and Ante; meanwhile, CqGPx3b is
mainly found in Pe. No differences between CqGPx3a and CqGPx3b were identified in Pl
and Ant ANOVA (p = 0.05).
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3.4. CqGPx3a and CqGPx3b Expression in Stressful Conditons 
Different expression patterns of CqGPx3 isoforms were found under heat stress and 

oxygen deficiency (Figure 10). CqGPx3a expression increased in NC and Pe during tem-

Figure 8. Relative expression of C. quadricarinatus glutathione peroxidase 3 (CqGPx3) relative to nerve
cord in: NC: nerve cord; CG: cerebral ganglia; Ante: antennule; Pe: pereiopods; Pl: pleopods; Ant:
antennae and OP: ocular peduncle by RT-qPCR. Levels of transcripts were measured by duplication.
Bars represent mean ± standard deviation (n = 8, N = 56). Significant differences within tissues are
indicated by letters (ANOVA, LSD’s multiple comparisons p < 0.05).
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Figure 9. Relative quantification of C. quadricarinatus glutathione peroxidase 3 isoform “a” (CqGPx3a)
and C. quadricarinatus glutathione peroxidase 3 isoform “b” (CqGPx3b) mRNA isoforms in: NC:
nerve cord; CG: cerebral ganglia; Ante: antennule; Pe: pereiopods; Pl: pleopods and Ant: antennae
by RT-qPCR. Levels of transcripts were measured in duplicate. Bars represent mean ± standard
deviation (n = 8, N = 96). Significant differences within tissues are indicated by letters (ANOVA,
Tukey’s multiple comparisons p < 0.05).

3.4. CqGPx3a and CqGPx3b Expression in Stressful Conditons

Different expression patterns of CqGPx3 isoforms were found under heat stress and
oxygen deficiency (Figure 10). CqGPx3a expression increased in NC and Pe during tempera-
ture and hypoxia stress (p = 0.05) but did not have a significant effect on CqGPx3b expression
in NC and Pe (p = 0.05). In NC, CqGPx3a expression increased 2.5-fold and 0.5-fold when
exposed to moderate or severe temperatures and four-fold times when exposed to hypoxia;
CqGPx3b expression was 900 to 4600-fold lower in NC than CqGPx3a under all stressful
conditions (p = 0.05). CqGPx3a expression in Pe changes from undetectable in normal
conditions to detectable with differences related to CqGPx3a in NC (p = 0.05). No change in
Pe CqGPx3b expression was detected among control and temperature and hypoxia-stressed
animals (p = 0.05). Interestingly, Pe CqGPx3b expression was significantly superior in the
control group compared to CqGPx3a (p = 0.05). In stressful conditions, CqGPx3a is still the
more abundant isoform expressed in NC.
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4. Discussion

Glutathione peroxidases are important components of the antioxidant system in most
cells. Until now in crustaceans, there are few reports of genes or cDNA sequences of
these enzymes and to our knowledge, this is the first report of extracellular GPxs that are
selenoproteins in crustaceans. In these two SeGPxs of C. quadricarinatus, the incorporation
of SeCys in the TGA codon, instead of termination, is clearly indicated by the SECIS
elements in the 3′ UTR. Two forms (1 and 2) of SECIS are known, with form 2 being more
common than form 1 [36]. In CqGPx3 isoforms, this SECIS appears to conform to the type 2
SECIS. Moreover, both SeGPxs are expressed in the nervous system, while the previously
identified GPxs in crustaceans, such as MeGPx and PcGPx, are expressed in ovary, but
not in the nervous system [6,9]. Similarly, no PcGPx expression was detected in brain,
ganglia and muscle from the red swamp P. clarkii [9] and also, no MeGPx expression was
detected in brain and ganglia of the shrimp M. ensis [6]. On the other hand, transcripts of a
peroxidase selenoprotein M (SelM) were reported in L. vannamei Pl and muscle [37].

Some interesting features were found in the GPxs from C. quadricarinatus. The N-
terminal signal peptides indicates that both, CqGPx3a and CqGPx3b are secreted proteins
that contain two and one predicted N-glycosylation sites, respectively, and it is known
that asparagine N-linked glycosylation sites are associated with secreted or membrane-
bound proteins [38]. Additionally, the CqGPx3a 36 amino acids C-terminal is possibly
a phosphorylation-regulated extension of the mature protein or may have a cleavable
function-associated domain of the protein in the GPx, as have the PCNQF-, VNG- and
WNFEKFL-conserved motifs (Figure 1) [7]. It is known that GPx1 phosphorylation induces
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stimulation of enzyme activity [39] and p47phox activation is induced by the phosphoryla-
tion of at least three C-terminal sites that relaxes the proteins’ constrained conformation [40].

N-terminal and C-terminal evidence, in addition to tissue-specific ovary but not
nervous system expression [6,9], suggests that although MeGPx and PcGPx are related to
CqGPx3s, they could have different metabolic functions. The characteristic presence of
N-terminal signal peptide and cleavage in the predicted sequences supports the hypothesis
that CqGPx3a and CqGPx3b are isoforms of extracellular GPx3. In humans, glutathione
peroxidase 3 is the only extracellular GPx [11]. The CqGPx3a and CqGPx3b isoforms possibly
have a similar function.

Structural pro-enzyme and enzyme differences are a strategy to regulate mature
protein availability and activity. The finding of two isoforms of a single GPx3 in the same
species is interesting. A single-nucleotide change in GPx3 sequence can generate important
availability consequences. For instance, serum levels of GPx3 are higher in subjects of a
Mexican population with metabolic syndrome and cardiovascular risk associated with
rs8177409 single-nucleotide polymorphism [41]. Thus, CqGPx3s may be involved in similar
regulation processes, and the presence of the C-terminal domain could be associated with
the regulation of its function and activity. Originally, MeGPx was clustered with vertebrate
GPx3 and GPx5 [6] and PcGPx was clustered with vertebrate GPx1 and GPx2 rather than
with GPx3 and GPx5.

The fragment enriched with prolines at the C-terminal end of CqGPx3b pro-peptide of
C. quadricarinatus indicates its possible function as an antimicrobial peptide [23]. Unfolded
structure infers about a high range of target molecules and it also propitiates the inter-
nalization to pathogens [42]. Proline abnormal content suggests an active antimicrobial
peptide (AMP) function [24]. Additionally, valine enrichment can be associated with target
cell selectivity and reduction in hemolysis and cytotoxicity against host cells [43]. AMP
enriched with proline and valine (Pro/Val-rich) simultaneously has not been known. A
Pro-rich APD3 software calculated -1 net charge indicates different action mechanisms
or targets from preponderantly cationic, previously reported AMPs [44]. Boman index
suggests that Pro-rich has a higher antimicrobial activity with fewer secondary effects [45].
An N-terminal hydrophobic core is needed to establish the primary contact with the target
cells [46]. A Liu–Deber scale of 0.59 (threshold: 0.4) and its transmembrane region homol-
ogy indicates that this fragment could act as a natural transmembrane mimetic that would
lead to insertion into bacteria membrane [47]. GRAVY index value denoted Pro-rich peptide
solubility in water and decreased cytotoxicity [48]. Amphipathicity has been described
as the most valuable property for AMPs activity [49]. FlexPred and PredyFlexy software
indicate that residues 18 to 30 have high possibilities of flexibility. Proline residues in the
C-terminal end could propitiate transition to α helix structure when the peptide interacts
with targets [50]. Pro-rich peptide cleavage and liberation in extracellular nervous system
space by serine endopeptidases is highly probable in crayfishes due to their presence in C.
quadricarinatus [51]. Pro-rich can potentially act over a wide range of microbial pathogens
as a protein synthesis inhibitor, binding to the ribosome or the chaperone protein Dnak [25]
without causing hemolysis or cytotoxicity in eukaryotic cells. Previously, a Pro-rich AMP
presence in crustaceans was reported as astacidin, a 20 amino acids Pro-rich AMP that was
found in P. clarkii [26]. Distinctive properties of proposed Pro-rich peptide as antimicrobial,
suggest the presence of a new AMP group with high potential of applicability.

The abundance of the GPxs in the C. quadricarinatus nervous system infers an important
role. It is known that GPxs have a protecting role in the nervous system. The increase
in survival and protection has been proven in a neuroblastoma cell line infected with a
lentivirus vector carrying the coding sequence for human GPx1 pLV-GPX1 [52]. Moreover,
specifically for GPx3, the mRNA expression is increased in the aquatic animals Hydra
magnipapillata and Oryzias javanicus in response to exposure to fluoxetine, a selective
serotonin reuptake inhibitor, which possibly helps buffer oxidative stress in their nervous
system [22]. GPx3 importance in stem cells is also increasing. In human blood stem cells,
Gpx3 is involved in cell viability and maintains characteristics of both normal and leukemic



Genes 2022, 13, 179 16 of 20

stem cells [53]. The rigorous regulation of intracellular H2O2 by GPx3 can indirectly activate
key transcription factors for cell survival via inducing kinases phosphorylation through
the phosphatase inhibition [54]. Finally, GPx3 4.5-fold expression increase under hypoxic
conditions indicates a crucial role of this gene in mesenchymal stem cells elevation in cell
fitness [16]. Due to the regeneration capabilities of Pe, Ant and Ante, and the undeniable
presence of stem cells in these tissues, it is very probable that GPx3a and GPx3b are
associated with their cells’ regulation and protection.

CqGPx3s may be involved in the regulation of inflammatory response and skeletal
muscle regeneration and similar processes. In injured spinal cord, the transcription factor
NeuroD6 induces the expression of GPx3 and TXNL1, which effectively scavenges excessive
reactive oxygen species (ROS) and attenuates inflammation [13]. In continuously stressed
tissue, such as adipose tissue obtained from morbidly obese women undergoing bariatric
surgery, the GPx3 expression was three-fold higher in fat cells compared with non-fat cells,
indicating an inflammatory response [15]. Knockdown of Gpx3 in human skeletal muscle
precursor cells using siRNA induced elevation in reactive oxygen species and cell death [14].
Activation of peroxisome proliferator-activated receptor γ (PPARgamma) induces GPx3 ex-
pression, which reduces human skeletal muscle cells’ extracellular H2O2 levels, improving
insulin sensitivity by increasing insulin-stimulated glucose uptake and insulin signaling,
suggesting it may be a therapeutic target for diabetes mellitus [12]. Pe is homologous to
skeletal muscle and the presence of GPx3 might be associated with stem cells viability. This
is very important due to the capacity of complete Pe regeneration after mutilation. As
in human skeletal muscle cells [14], CqGPx3b levels may have important implications for
the regeneration of Pe muscle. In a GPx3 similar response of iBAT MBko mice [17], it is
possible that GPx3b in NC and Pe of C. quadricarinatus under hypoxic conditions could
be related to an ATP production diminishment strategy. Multiple peroxidases regulation
patterns are known. In kidney embryonic cells, GPx3 was down-regulated in TXNRD1_v1
overexpressing cells [18], indicating that related peroxidases possibly have the same func-
tion in particular tissues. On the other hand, GPx3 and TXNL1 expression are induced
by the transcription factor NeuroD6 in spinal cord [13] indicating coordinated expression.
Likewise, GPx3, unlike other isoforms, is expressed mainly in bivalves (Chlamys farreri,
Patinopecten yessoensis) during their development, acting in the antioxidant defense system
for the detoxification of paralytic shellfish toxins [21]. GPx3 also increases its expression in
the skin and muscle of Labeo rohita fish in response to infection by Aeromonas hydrophila and,
after handling and high temperature stress in the liver of the yellow Perch (Perca flavescens),
being a main component in the immune defense and against stressful factors [19,20].

Increased oxidoreductases during stressful conditions have been demonstrated in
crustaceans [28,29]. For instance, the L. vannamei GPx increase, by effect of hypoxia, led to
reoxygenation and high temperature stress in a conditional and specific way [55–57]. Specif-
ically, changes in GSH occurred in C. quadricarinatus exposed to stressful conditions [27,31].
This response to transcriptional level could be enhanced by the HIF-1 transcription factor,
previously identified as strong regulator of human GPx3 [58]. The upward expression of
CqGPx3a in NC and Pe in stress events could have a similar response. The lack of response
of CqGPx3b expression in environmentally stressful conditions; the predicted antimicrobial
Pro-rich preprotein element of Pe CqGPx3b gene, and the significantly superior expression
of CqGPx3b in the control group compared to CqGPx3a, point to a possible pathogen-specific
response of CqGPx3b.

5. Conclusions

C. quadricarinatus possess two isoforms of GPx3 that are expressed in a tissue-specific
manner in the nervous system. CqGPx3a mRNA is preponderantly present in complex
and protected tissues as NC, CG and Ante, while CqGPx3b mRNA is mainly expressed in
exposed tissues as Pe. In both cases, there is a pro-peptide conformed by a cleavable signal
peptide, GPx3 functional protein and a cleavable C-terminal domain. CqGPx3a C-terminal
domain is susceptible to phosphorylation, a desirable characteristic to regulate the protein
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maturation process. CqGPx3b has a Pro-rich C-domain related to antimicrobial response.
There is a lack of information about GPxs isoforms expression in crustaceans, and herein
we report differential expression in optimal and under stress (hypoxia and temperature)
conditions, where hypoxia appears to have a stronger effect in CqGPx3a and CqGPx3b
expression. CqGPx3a isoform is more expressed than CqGPx3b when the crayfishes are
stressed by moderate and severe temperatures as well as with hypoxia. It will be very
interesting to continue the characterization of the Pro-rich C-terminal domain of CqGPx3b
as an antimicrobial peptide. Our data indicate that both GPx3s may contribute to the
maintenance of H2O2 extracellular levels associated with the regulation of a great variety
of factors such as intracellular second messengers availability, insulin response, glucose
accessibility, ATP synthesis strategies, stem cells differentiation, extracellular response
to microbial infection and inflammatory processes. GPx3 isoforms and their proteins are
promising objectives in crustaceans to determine initial extracellular regulation of metabolic
routes and cellular processes in normal as in stressful conditions.
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