
A genome-wide study of preferential
amplification/hybridization in microarray-based
pooled DNA experiments
H.-C. Yang, Y.-J. Liang, M.-C. Huang, L.-H. Li, C.-H. Lin, J.-Y. Wu,

Y.-T. Chen and C.S.J. Fann*

Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan

Received March 29, 2006; Revised May 5, 2006; Accepted June 9, 2006

ABSTRACT

Microarray-based pooled DNA methods overcome
the cost bottleneck of simultaneously genotyping
more than 100 000 markers for numerous study indi-
viduals. The success of such methods relies on
the proper adjustment of preferential amplification/
hybridization to ensure accurate and reliable allele
frequency estimation. We performed a hybridization-
based genome-wide single nucleotide polymorph-
isms (SNPs) genotyping analysis to dissect prefer-
ential amplification/hybridization. The majority of SNPs
had less than 2-fold signal amplification or suppre-
ssion, and the lognormal distributions adequately
modeled preferential amplification/hybridization
across the human genome. Comparative analyses
suggested that the distributions of preferential
amplification/hybridization differed among geno-
types and the GC content. Patterns among different
ethnic populations were similar; nevertheless, there
were striking differences for a small proportion
of SNPs, and a slight ethnic heterogeneity was
observed. To fulfill appropriate and gratuitous
adjustments, databases of preferential amplification/
hybridization for African Americans, Caucasians and
Asians were constructed based on the Affymetrix
GeneChip Human Mapping 100 K Set. The robust-
ness of allele frequency estimation using this
database was validated by a pooled DNA experi-
ment. This study provides a genome-wide investi-
gation of preferential amplification/hybridization
and suggests guidance for the reliable use of the
database. Our results constitute an objective foun-
dation for theoretical development of preferential
amplification/hybridization and provide important
information for future pooled DNA analyses.

INTRODUCTION

Large-scale international human genomic/genetic studies,
such as the Human Genome Project (1), International Hap-
Map Project (2) and ENCODE Project (3), have contributed
to the further understanding of the human genome and
genetic disorders. These breakthroughs were made mainly
possible by the advent of mature genotyping techniques
[e.g. MALDI-TOF mass spectrometry (4) and oligonucleotide
microarrays (5)].

Although, high-throughput genotyping techniques are read-
ily available, the cost is still very high for large-scale genetic
studies that usually involve two high-dimension variables,
i.e. large sample sizes and a large number of genetic markers.
Thus, the development of pooled DNA experiment (allelo-
typing) technology would help reduce the cost associated
with large sample sizes. Allelotyping involves mixing
genomic DNAs from different study subjects to reduce the
number of samples, and it is an economical alternative com-
pared with individual genotyping experiments. Allelotyping
has been broadly used in disease gene association mapping
(6–11), polymorphism identification/validation (12–15), and
analysis of genetic diversity (16,17). This technique has
been used to type single nucleotide polymorphisms (SNPs)
(18–20), short tandem repeat polymorphisms (STRPs) (21),
and restriction fragment length polymorphisms (RFLPs)
(22). The use of allelotyping in these methods has been com-
prehensively reviewed (23,24).

On the other hand, the need to reduce the cost of genotyp-
ing large numbers of SNPs has prompted the development
of modern microarray-based genotyping methods (5,25).
For example, the Affymetrix GeneChip Human Mapping
100 K Set provides genome-wide genotyping for each indi-
vidual using only a set of two dense oligonucleotide arrays
(26). This technique greatly reduces the costs of primer
design and assay reagents. Integration of pooled DNA experi-
ments and microarray-based genotyping creates a very cost-
effective and high-throughput marker-typing platform for
conducting large-scale genetic studies (27–32).
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The success of a pooled DNA experiment mainly relies on
the accurate and reliable estimation of allele frequencies of
genetic markers. The estimation procedure mustly consider
an adjustment for an imbalance of nucleotide reaction—
referred to as ‘preferential amplification’ and/or ‘differential
hybridization’. Preferential amplification/hybridization is a
function of the characteristics of different nucleotides. It is
a natural phenomenon that could occur during several typing
stages, such as PCR amplification, primer extension, array
hybridization or signal detection (23,33), and its magnitude
is quantified as the coefficient of preferential amplification/
hybridization (CPA) (34,35). As the name suggests, preferen-
tial amplification/hybridization means that one allele tends
to be amplified or hybridized more efficiently than another.
Thus, for heterozygous individuals the fluorescence intensity
of two alleles containing a SNP may differ. By definition,
CPA is the ratio of average peak intensities of two alleles.
A CPA > 1 indicates that the first allele tends to be amplified/
hybridized more efficiently than the second allele; when
CPA ¼ 1, there is no preferential amplification/hybridization;
if CPA < 1, the first allele tends to be amplified/hybridized
less efficiently than the second one. This factor might have
little impact on genotype calling for individual genotyping;
however, it distorts the estimation of allele frequency in
DNA-pooling allelotyping, where allele frequencies are esti-
mated by calculating relative peak intensities of two alleles
accumulated in a DNA pool.

In a pooled DNA study, allele frequency estimates are
biased if adjustments are not made for preferential
amplification/hybridization. This issue has generated much
research interest (34–36). Under a feasible pooled
DNA experiment, the estimation bias relates to the extent

of preferential amplification/hybridization and ratio of
peak intensities (RPI) of two alleles (Figure 1). For example,
the positive (negative) bias for CPA ¼ 2 and RPI ¼ 1
(CPA ¼ 0.5 and RPI ¼ 1) is about 0.17 for allele frequency
estimation, and the positive (negative) bias for CPA ¼ 4 and
RPI ¼ 1 (CPA ¼ 0.25 and RPI ¼ 1) is about 0.30.

In many studies, additional heterozygous individuals
have been collected to perform a CPA adjustment
(7,35,37). Moreover, for two kinds of genotyping
experiments—sequential genotyping and large-scale
genotyping—one can calculate the required number of het-
erozygous individuals to yield a reasonably accurate and
precise estimation of CPA (34). The required number of
heterozygotes follows a negative binomial distribution in
the former experiment and a binomial distribution for the
latter. Allele frequency and RPI variability affect the
required number of heterozygotes. A SNP with a low
minor allele frequency and/or high RPI variability requires
a large number samples to attain the necessary precision.
However, additional genotyping of large numbers of het-
erozygous individuals increases both cost and effort. Thus,
the construction of a central resource (38) for information
on preferential amplification/hybridization or the use of a
robust empirical estimation (36) would help diminish the
cost of experimentation.

In the present study, we surveyed the distribution of CPA
across the human genome and established a statistical model
for CPA. We have constructed a publicly available database
of CPA for different ethnic populations, and we suggest
guidance for the use of CPA in DNA pooling studies. The
robustness of allele frequency estimation using the database
was validated by a pooled DNA experiment.

Figure 1. Relationships among CPA, estimation bias and RPI. (A) Both CPA and RPI are between 0.01 and 1. (B) CPA is between 1 and 5, and RPI is between
0.01 and 1. (C) CPA is between 0.01 and 1, and RPI is between 1 and 100. (D) CPA is between 1 and 5, and RPI is between 1 and 100.
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MATERIALS AND METHODS

Study subjects

The study included 199 subjects from two panels of data. The
first panel included 95 samples from the Taiwan Han Chinese
Cell and Genome Bank (39). The second panel included 42
Caucasians, 42 African Americans and 20 East Asians from
the Human Variation Panel (Coriell Cell Repositories). All
subjects were genotyped using the Affymetrix GeneChip
Human Mapping 100 K Set. Subjects in the first panel were
genotyped by the National Genotyping Center (http://ngc.
sinica.edu.tw) at Academia Sinica in Taiwan. Subjects in
the second panel were genotyped by Affymetrix, Inc., and
the data are available for download (no fee) upon request
at http://www.affymetrix.com/support/technical/byproduct.
affx?product=100k. Eighty-seven individuals with the best
DNA quality from the first panel were selected to form a
DNA pool for an allelotyping experiment.

Genotyping and genetic data

For each subject, leukocyte genomic DNA was isolated from
10 ml of blood using the Puregene genomic DNA purification
kit (Gentra Systems, MN, USA). The genotyping procedure
mainly followed the GeneChip Mapping Assay Protocol in
the Affymetrix GeneChip Mapping 100 K Assay Manual
(Affymetrix, CA). For each subject, a genotyping reaction
was performed with a total of 500 ng of genomic DNA.
And, 250 ng of DNA was processed by restriction enzyme
digestion with XbaI and HindIII, respectively, followed
by adapter ligation, PCR amplification, fragmentation, end-
labeling and hybridization to microarray chips. After wash-
ing, fluorescence hybridization signals were captured using
a GeneChip Scanner 3000 (Affymetrix, CA).

For each SNP genotyping, sense-strand (SS) probes and
antisense-strand (AS) probes were included in seven pairs
of probe quartets; each quartet contained a probe pair for
each allele of a given SNP. Each probe pair contained perfect
match (PM) and mismatch (MM) probe cells. Only five pairs
of high-quality probe quartets (40 fluorescence signals) were
selected for genotype determination. The genotype calls of
SNPs were determined using the Dynamic Model (DM) algo-
rithm (40) contained in the software GCOS version 1.2 and
GDAS version 3.0 (Affymetrix). The Affymetrix GeneChip
Human Mapping 100 K Set contained 116 204 SNPs with a
median intermarker distance of 8.5 kb and average hetero-
zygosity of 0.3 (26). We calculated the call rate for the geno-
typing of each SNP. Only data from SNPs having call rates
>0.9 were included in the follow-up CPA analyses.

For pooled DNA allelotyping experiment, the DNA
concentration and quality of the selected 87 subjects were
determined using NanoDrop ND-1000 Spectrophotometer
(NanoDrop Technologies, DE). The integrity of DNA was
also assessed by using gel electrophoresis with a 0.8% agar-
ose gel. The pooling procedure was carried out by mixing
equal amount of DNA at the same concentration from each
individual sample. The final concentration of the pooled
DNA was 50.06 ng/ml. A total of 500 ng of pooled DNA
was used for allelotyping using Affymetrix GeneChip
Mapping 100 K set following the genotyping procedure
described above.

Statistical analyses

CPAs were estimated using three methods: arithmetic mean
(35), bias-correction and geometric mean (34). Standard
errors and 95% confidence intervals based on a bootstrapping
procedure with 1000 replications were calculated. Appendix
1 gives details on the procedures used to estimate CPA;
Appendix 2 contains information on the calculation of stan-
dard error and confidence interval. The software Pooled
DNA Analyzer (PDA) (41) was used for the calculations.
Based on the bias-correction CPA, genomic distributions of
the estimated CPAs were investigated and model fitting was
conducted based on the Shapiro–Wilks normality test (42)
with Holm’s multiple-test correction (43). Comparative stud-
ies of CPAs in log scale among different attribute groups
(chromosomes, nucleotides, GC content and SNP location)
were carried out using analysis of variance (ANOVA) anal-
ysis of regression (AOR) and analysis of covariance
(ANCOVA). Correlations of CPAs among different ethnic
populations were assessed by comparing Pearson correlation
coefficients. The analyses were carried out using package
SAS/STAT version 8 (SAS Institute, NC). To evaluate the
performance of allele frequency estimation using CPAs,
three types of allele frequencies were estimated by using
PDA (41). Appendix 3 gives details on the allele frequency
estimation. Error rates and standard errors of the unadjusted
and adjusted allele frequency estimates were calculated, and
Pearson correlation coefficient of the true and adjusted allele
frequencies was calculated.

RESULTS

Whole-genome distribution of CPA

Figure 2 shows representative results based on the combined
population containing 199 study subjects. These data present
a global view of all estimated CPAs across the 22 human
autosomes. For the whole genome, most of the estimated
CPAs ranged from 0.5 to 2. Median, mean and standard
error of the CPA estimate were 1.021, 1.077 and 0.368,
respectively, and the minimum and maximum CPA were
0.238 and 4.041. The sample mode of CPAs on different
chromosomes was �1.0 (Figure 3). Extremely over-amplified
or under-amplified alleles (by definition: CPA > 2 and
CPA < 0.5, respectively) were observed for 5.6% of all
SNPs. And the distribution of CPA was skewed to the
right. These results suggest that the CPA adjustments should
be applied to yield good estimates of allele frequency for
all SNPs; otherwise, a serious bias may occur—especially
for the SNPs with extreme CPAs (Figure 1).

The following sections offer a detailed discussion of the
patterns of CPAs considering four genetic factors: chromo-
somes, nucleotides, GC content and SNP location. Correla-
tions of CPAs among the three study populations are also
evaluated.

Relationships between CPA and chromosomes,
nucleotides, GC content and SNP location

The patterns of CPAs were quite similar across all autosomes.
Means, medians and standard deviations on different chromo-
somes were similar to those measured for the whole genome
(Figure 4A). The maximum and minimum averages of CPAs
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occurred on chromosomes 18 and 19, with values 1.08 and
1.05, respectively (Table 1). One-way ANOVA showed that
there was no chromosome effect on the CPA distribution
(P ¼ 0.945).

Preferential amplification/hybridization is mainly caused
by differences in PCR amplification efficiency and hybrid-
ization and/or signal detection for alternative alleles. The
degree of differential efficiency may be highly correlated
with genotypes of target SNPs and percentage of GC content
of probes using the hybridization-based microarray genotyp-
ing platform. Box-whisker plots for different genotypes
(Figure 4B) showed that the maximum and minimum aver-
ages of CPAs were 1.272 and 0.891 for genotypes CT and
AG, respectively (Table 1). One-way ANOVA revealed that
the means of CPAs significantly differed among different
genotypes (P < 0.0001). AOR showed significant correlations
between CPA and the GC content of probes (P < 0.0001).
ANCOVA was applied to further investigate the relationship
between CPA and genotypes after accounting for differences

in GC content. Under these conditions, there were still signifi-
cant differences in CPA among genotypes (P < 0.0001).

We further tested signal amplification/suppression in
each genotype with respect to the 4 nucleotides, yielding
the following results: C > A (P < 0.0001), G > A (P <
0.0001), A > T (P < 0.0001), C > G (P < 0.0001), C > T (P
< 0.0001) and G > T (P < 0.0001). These results suggest the
relative ordering of signal amplification as C > G > A > T,
where ‘>’ denotes ‘more efficiently amplified’. This finding
provides an empirical basis for modeling preferential
amplification/hybridization in different genotypes.

SNPs have different biological implications depending
on their location in 30-untranslated regions (30-UTRs), 50-
UTRs, coding regions, introns or downstream/upstream of
genes. However, one-way ANOVA showed no significant
difference in CPAs between SNPs located in these different
gene elements (P ¼ 0.4779). The patterns of CPAs
for SNPs in different locations were quite similar
(Figure 4C). The mean CPA measured for all of these

Figure 2. Scatter plots of the CPA estimates across the 22 human autosomes are given for a global view of the genome-wide CPA. The gap in each subfigure
reflects the centromeric gap. In each subfigure, three red reference lines are shown for CPA ¼ 2, 1 and 0.5 (from upper to lower).
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elements was �1.1, and standard errors ranged from 0.34
to 0.37 (Table 1).

Effect of ethnicity on CPA

Samples in this study contained three ethnic populations,
i.e. 42 African Americans, 42 Caucasians and 115 Asians
(20 samples from Affymetrix and 95 Taiwanese samples).
Pair-wise comparisons of CPAs among the three ethnic popu-
lations showed strong positive correlations (Figure 5); the
coefficients of the Pearson correlation of CPAs between
‘African American and Caucasian’, ‘African American and
Asian’ and ‘Caucasian and Asian’ were 0.948, 0.920 and
0.902, respectively (Pearson correlation coefficient of CPAs
between the 20 Asian samples from Affymetrix and 95
Taiwanese samples was 0.996). However, there were slight
discrepancies among ethnic populations and outliers. The
majority of CPA differences for the pair-wise comparisons
were between �1 and 1. A few striking differences between
different ethnic populations were observed. For example,
the maximum differences between ‘African American and

Caucasian’, ‘African American and Asian’ and ‘Caucasian
and Asian’ were 1.706, 2.119 and 2.092, respectively. The
CPA-distance between African Americans and Caucasians
was relatively smaller than the distance between either of
these groups and Asians.

Results of ethnic-differential-CPA SNPs (i.e. SNPs with
that an absolute value of a CPA difference between two
ethnic populations was greater than 1) were summarized.
The proportion of such SNPs across the human genome
was smaller than 1.3%. The majority of these SNPs showed
low minor allele frequencies (MAF) (Table 2). The propor-
tion of the ethnic-differential-CPA SNPs within the lowest
MAF bin (i.e. the MAF interval from 0 to 0.1) was ranged
from 45% to 59%, but that within the greatest MAF bin
(i.e. the MAF interval from 0.4 to 0.5) was <2%.

The high correlations of CPAs among different
ethnic populations suggest the transferability of CPA for
bias correction in most cases; however, the increased bias
and reduced test power due to the observed discrepancy
and a few CPA outliers suggest that an appropriate filter
should be applied prior to the analysis. Therefore, we

Figure 3. Histograms of CPA estimates across the 22 human autosomes show the distribution of CPA.
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calculated both ethnic-specific and combined-population
CPAs and suggest criteria for their use. A large sample size
provides high reliability. The use of CPA from combined
samples is suggested when CPA discrepancies among
ethnic populations are small. However, a population-specific
CPA should be considered to avoid misuse of CPA.
The suggested criterion of SNP transferability between

two populations is jlnðk̂k1Þ � lnðk̂k2Þj < ð1:96 · ŝs
p

2
1 þ ŝs2

2Þ,
where k̂k1 and k̂k2 are the estimated CPAs in two populations,

and ŝs1 and ŝs2 are the estimated standard errors of ln ðk̂k1Þ
and ln ðk̂k2Þ.

Model fitting for CPA

Statistical goodness-of-fit procedures were carried out to
model CPAs. Distributions of CPAs were skewed toward
the right (Figures 3 and 5). The conjecture that CPAs in a
log scale follow a Gaussian distribution in each subgroup
was formally tested using the Shapiro–Wilks normality test
(42). More than 90% of the goodness-of-fit tests passed the
normality check after Holm’s multiple-test correction (43),
which controls family-wise errors smaller than 1%, suggest-
ing that the following lognormal distributions provide a
good approximation to the CPA distributions:

f ðk̂kÞ ¼ ðk̂kŝs 2
p

pÞ�1 · exp f� ½ðk̂k � m̂mÞ/ŝs�2/2g‚0 < k̂k < 1‚

where the maximum likelihood estimators of mean and
variance of the estimated CPA k̂k are exp ½m̂m þ ðŝs2/2Þ� and
½ exp fŝs2g � 1�· exp f2m̂m þ ŝs2g, and m̂m and ŝs2 are the sample
mean and variance of ln ðk̂kÞ, respectively. This finding
establishes an empirical basis for modeling preferential
amplification/hybridization and provides support for theoreti-
cal development in pooled DNA analyses.

Figure 4. CPA distributions for important genetic factors. (A) CPA for
different chromosomes. (B) CPA for different genotypes. (C) CPA for
different SNP locations. Each subfigure presents box-whisker diagrams of
CPAs in different categories. The red line joins the medians of CPAs across
different categories. The extreme CPA values outside the 1.5 interquartile
range are indicated by blue dots.

Table 1. Descriptive statistics of CPA with regard to different factors

Number
of SNPs

Mean of
CPA

S.E. of
CPA

Maximum
of CPA

Minimum
of CPA

Chromosome
1 8955 1.077 0.364 3.177 0.238
2 10 094 1.081 0.371 3.738 0.357
3 7618 1.076 0.357 2.894 0.350
4 8370 1.074 0.371 2.925 0.316
5 8143 1.078 0.368 3.148 0.346
6 7843 1.079 0.374 3.143 0.318
7 6802 1.078 0.374 3.064 0.332
8 6778 1.083 0.365 3.589 0.321
9 4665 1.073 0.359 3.428 0.387

10 5534 1.078 0.365 2.951 0.313
11 5239 1.072 0.365 4.041 0.348
12 5127 1.085 0.378 2.896 0.359
13 5073 1.077 0.376 3.084 0.273
14 3913 1.077 0.366 3.208 0.301
15 2961 1.078 0.368 3.647 0.249
16 2322 1.077 0.358 2.577 0.367
17 1916 1.068 0.357 2.839 0.280
18 3487 1.083 0.370 2.832 0.284
19 669 1.049 0.339 2.310 0.344
20 2032 1.072 0.367 3.213 0.370
21 1856 1.076 0.365 3.196 0.388
22 731 1.072 0.370 2.493 0.351

Genotype
AC 10 002 0.916 0.292 2.902 0.283
AG 37 489 0.891 0.280 3.738 0.238
AT 6761 1.077 0.275 2.848 0.249
CG 10 572 1.079 0.333 3.065 0.316
CT 38 237 1.272 0.370 4.041 0.273
GT 7067 1.239 0.374 3.208 0.365

Location
30-UTR 683 1.098 0.362 2.725 0.379
50-UTR 60 1.067 0.340 1.948 0.516
Coding region 655 1.067 0.340 2.751 0.350
Intron 38 898 1.078 0.367 4.041 0.290
Downstream 32 591 1.075 0.367 3.213 0.249
Upstream 37 241 1.078 0.369 3.728 0.238
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The database of CPA

We constructed a CPA database containing 116 204 SNPs for
use in future pooled DNA studies. The database provides
three types of information: (i) SNP descriptions (chromosome
number, probe set and physical position, genotype and SNP
location); (ii) results from all samples (SNP call rate, allele
frequency, locus heterozygosity, unadjusted and adjusted
P-values for the test of Hardy–Weinberg Equilibrium); (iii)
results from heterozygous individuals (number of heterozy-
gous individuals used in the CPA calculation, three CPA esti-
mates, the corresponding standard errors and 95% confidence
intervals of CPA). The SNP information and annotation data
are publicly available from the Affymetrix website http://
www.affymetrix.com/support/technical/byproduct.affx?
product= 100k. Our database is now freely accessible online
at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/
database.htm; the interface is shown in Figure 6. Results
for genome-wide or chromosome-wide and combined-
population or population-specific analyses can be obtained

from the website. This database enables users to study and
adjust for preferential amplification/hybridization in pooled
DNA analyses.

Evaluation of allele frequency estimation in
pooled samples

We carried out pooled DNA allelotyping experiments to evalu-
ate the utility of our CPA database. Three types of allele fre-
quencies were calculated for comparison: (i) the estimated
allele frequency based on unadjusted intensity data; (ii) the esti-
mated allele frequency based on the bias-correction CPA
adjusted intensity data and (iii) the true allele frequency
based on individual genotyping result. With the CPA
adjustment, the bias of allele frequency estimation was obvi-
ously reduced (Figure 7 and Table 3). The error rate and stan-
dard error for the adjusted allele frequency estimates were
consistently lower than that for the unadjusted estimates. More-
over, the adjusted and true allele frequencies showed a
high correlation of 0.99, demonstrating the good performance

Figure 5. The CPA distribution within each population and CPA discrepancy between any two different ethnic populations. The subfigures in the diagonal
show the CPA histograms in African Americans, Caucasians and Asians in order. The subfigures in the upper diagonal part are the scatter plots of CPAs between
any two ethnic populations. The subfigures in the lower diagonal part show the discrepancy of CPAs between any two ethnic populations.

Table 2. The distributions of ethnic-differential-CPA SNPs between two ethnic groups

MAF P{jCPA(African)-CPA(Caucasian)j > 1} P{jCPA(African)-CPA(Asian)j > 1} P{jCPA(Asian)-CPA(Caucasian)j > 1}
Percentage 1 Percentage 2 Percentage 1 Percentage 2 Percentage 1 Percentage 2

0.0–0.1 0.04 53.57 0.12 58.82 0.08 45.61
0.1–0.2 0.02 21.43 0.08 30.88 0.09 42.11
0.2–0.3 0.03 21.43 0.02 5.88 0.03 10.53
0.3–0.4 0.01 3.57 0.02 4.41 0.00 0.00
0.4–0.5 0.00 0.00 0.00 0.00 0.01 1.75

The distributions of ethnic-differential-CPA SNPs for African-Caucasian, African-Asian and Asian-Caucasian are shown in order. In each panel, the percentage in
the first column (Percentage 1) was calculated by dividing the number of ethnic-differential-CPA SNPs by the total number of SNPs in the MAF bin. The percentage
in the second column (Percentage 2) was calculated by dividing the number of ethnic-differential-CPA SNPs in a MAF bin by the total number of ethnic-
differential-CPA SNPs.
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of CPA adjustment for pooled DNA in allele frequency
estimation.

CONCLUSION AND DISCUSSION

In summary, preferential amplification/hybridization plays
an important role in analyses that rely on fluorescence inten-
sity data. The adjustment for preferential amplification/
hybridization has been developed to estimate allele frequency
(34,35) and incorporated in test statistics for association
mapping (34,44) in pooled DNA analyses. The method has
been applied to microarray-based pooled DNA analysis

(29,30). Only a few papers provide systematic investigations
at preferential amplification/hybridization. One study (36)
has discussed preferential amplification based on 152 SNPs
genotyped using the platform SnaPshot (ABI, CA). Another
study (38) developed a database of adjustment index, R,
based on results from 100 Caucasians using the GeneChip
Human Mapping 10 K Array Set. Our study investigated
the whole-genome behavior of preferential amplification/
hybridization based on �200 individuals using the GeneChip
Human Mapping 100 K Array Set. Instead of utilizing the
index R (38), our study focused on the index CPA because
it has been developed in rich literature (34,35,44) and broadly
used in practical applications (7,37,45). Our results show
that CPAs are dependent on the GC content of probes and
nucleotide characteristics based on ANOVA and AOR. More-
over, the results were confirmed by four-way ANCOVA,
which simultaneously considers GC content, the effect of
nucleotides, chromosome and SNP location. The finding
that nucleotides G and C cause greater signal amplification
compared with A and T is consistent with the principle that
base pairing strength for GC (three hydrogen bonds) is higher
than that for AT (two hydrogen bonds). Moreover, we found

Figure 6. The interface of our web-based CPA database. The first item provides an option for outputting either population-specific or combined-population
CPAs. The second option provides an option for outputting either chromosome-wide or genome-wide CPAs. Results can either be shown online or saved as an
html file.

Figure 7. Scatter plots of the unadjusted and adjusted allele frequencies
versus the true allele frequency. Each point denotes the coordinate of
estimated allele frequency versus true allele frequency for a SNP. The yellow
dots denote the results of the unadjusted allele frequency and green dots
denote the results of the adjusted allele frequency.

Table 3. Mean error rates and standard errors of the unadjusted allele

frequency and adjusted frequency estimates

True allele
frequency

Unadjusted estimate
of allele frequency

Adjusted estimate
of allele frequency

Mean error
rate

Standard
error

Mean error
rate

Standard
error

0.0–0.1 0.051 0.042 0.049 0.041
0.1–0.2 0.060 0.047 0.046 0.035
0.2–0.3 0.067 0.051 0.041 0.032
0.3–0.4 0.073 0.054 0.035 0.029
0.4–0.5 0.076 0.055 0.032 0.027
0.5–0.6 0.076 0.054 0.032 0.026
0.6–0.7 0.073 0.053 0.036 0.030
0.7–0.8 0.067 0.049 0.042 0.033
0.8–0.9 0.058 0.045 0.047 0.036
0.9–1.0 0.046 0.041 0.046 0.040
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that lognormal distributions properly fit CPAs and, therefore,
future statistical modeling of CPA based on the distribution
can be supported empirically.

We also investigated the impact of ethnicity on the estima-
tion of preferential amplification/hybridization. This issue has
never been investigated, although ethnic heterogeneity has
been recognized as a critically important factor in population
genetics and gene mapping studies (46,47). The CPA data
transferability or data combination was only suggested upon
a proper pre-selection. We constructed CPA databases based
on a high-density SNP panel for specific population and com-
bined population. To our knowledge, our study is the first
to systematically discuss the whole-genome behavior of pre-
ferential amplification/hybridization with consideration of
ethnicity for the CPA adjustment.

Association mapping is one of the important applications
of pooled DNA analyses. Pooled DNA association tests
compare differences in allele frequencies between case and
control groups. A fundamental assumption of this kind of
statistical test is that the two alleles relevant to a SNP are
independent, i.e. that they satisfy the Hardy–Weinberg
Equilibrium. Results of the association tests may be mis-
leading if the SNPs in question violate this assumption.
Therefore, in addition to marker information and CPA adjust-
ment, the CPA database also provides the measurement of
marker informativeness and verifies the Hardy–Weinberg
Equilibrium. P-values for an exact test for the Hardy–
Weinberg Equilibrium (48), with or without consideration
of multiple comparisons, are provided to remind users of
potential violation of this principle.

Completion of DNA-pooling association mapping relies
on a well-established analytical system that includes
analysis strategy and user-friendly software. Previous work
established a multistage strategy consisting of adjustment of
preferential amplification/hybridization, allele frequency esti-
mation, single-point association test, multipoint association
test and confirmatory association test (24). The software
PDA (41) was designed to analyze data from allele-specific
genotyping and array-based genotyping platforms under a mul-
tistage framework. Integration of these free resources, namely
the CPA database, analytical strategy and PDA, provides a
powerful strategy with which to estimate allele frequency
and perform disease gene mapping in pooled DNA studies.

The costs and benefits associated with genetic typing are
major concerns when assessing the feasibility of large-scale
genetic studies. New-generation methods for pooled DNA
analysis combine conventional DNA pooling techniques
with modern microarray-based genotyping methods to
meet cost-benefit requirements and achieve high-throughput
and exceptional validity-reliability for large-scale genome
screens. Current pooled DNA methods hardly provide deta-
iled information for respective individuals, but such methods
are quite useful when studies focus on statistical/biological
inferences via allele frequency. Such methods are likely to
be applied broadly in future genetic studies.

We are extending this project in the several ways. (i)
We are increasing the sample size of heterozygous individu-
als. CPA can be estimated precisely using a modest number
of heterozygous individuals (34,35); nevertheless, more
heterozygous samples further increase the precision of CPA
estimation. Results of this study were established on the

basis of �200 individuals, and more samples are being col-
lected to enhance the study reliability. (ii) We are increasing
the density of SNP markers. We are extending the investiga-
tion of the GeneChip Human Mapping 100 K Array Set to the
Human Mapping 500 K Array Set. This new mapping panel
has a median intermarker physical distance of 2.5 kb and
average heterozygosity of 0.25; thus, it will provide more
than twice the genetic power and SNP content relative to
the 100 K Set, thereby facilitating fine-specificity positional
cloning studies of complex disorders via pooled DNA
analyses (online document at http://www.affymetrix.com/
products/arrays/specific/500k.affx). (iii) We are extending
the study populations. Although, CPAs of the majority of
SNPs may be portable for different ethnic populations, the
application of population-specific data to other ethnic groups
runs the risk of increasing the estimation bias and reducing
the testing power for some SNPs. Thus, we are collecting
more samples from different groups to further expand the
applicability of our database. (iv) We are enlarging the pool
size. In addition to a pool size of 87, we have already carried
out pooled DNA allelotyping experiments with pool sizes
of 10, 30 and 50. The comparisons showed no significant
differences of results among the considered pool sizes, indi-
cating that a pool size up to 87 was still within the applicable
range of this type of experiment. Therefore, we are enthu-
siastically conducting experiments with more samples to
investigate the limitation of pool size in microarray-based
pooled DNA experiments.

ACKNOWLEDGEMENTS

The authors appreciate the support from the Institute of
Biomedical Sciences, Taiwan National Genotyping Center
and National Clinical Core. The authors thank Mr Vincent W.
Tseng for constructing the website for the CPA database.
The authors also thank the two anonymous reviewers’
constructive suggestions, which have largely improved the
presentation of this paper. Funding to pay the Open Access-
publication charges for this article was provided by Institute
of Biomedical Sciences Academia Sinica Taiwan.

Conflict of interest statement. None declared.

REFERENCES

1. The International Human Genome Mapping Consortium (2001)
A physical map of the human genome. Nature, 409, 934–941.

2. The International HapMap Consortium (2003) The International
HapMap project. Nature, 426, 789–796.

3. The ENCODE Project Consortium (2004) The ENCODE
(encyclopedia of DNA elements) project. Science, 306, 636–640.

4. Pusch,W., Wurmbach,J.-H., Tiele,H. and Kostrzewa,M. (2002)
MALDI-TOF mass spectrometry-based SNP genotyping.
Pharmacogenomics, 3, 537–548.

5. Kennedy,G.C., Matsuzaki,H., Dong,S., Liu,W.M., Huang,J., Liu,G.,
Su,X., Cao,M., Chen,W., Zhang,J. et al. (2003) Large-scale genotyping
of complex DNA. Nat. Biotechnol., 21, 1233–1237.

6. Barcellos,L.F., Klitz,W., Field,L.L., Tobias,R., Bowcock,A.M.,
Wilson,R., Nelson,M.P., Nagatomi,J. and Thomson,G. (1997)
Association mapping of disease loci, by use of a pooled DNA genomic
screen. Am. J. Hum. Genet., 61, 734–747.

7. Mohlke,K.L., Erdos,M.R., Scott,L.J., Fingerlin,T.E., Jackson,A.U.,
Silander,K., Hollstein,P., Boehnke,M. and Collins,F.S. (2002)
High-throughput screening for evidence of association by using mass

PAGE 9 OF 11 Nucleic Acids Research, 2006, Vol. 34, No. 15 e106

http://www.affymetrix.com/


spectrometry genotyping on DNA pools. Proc. Natl Acad. Sci. USA,
99, 16928–16933.

8. Bansal,A., van den Boom,D., Kammerer,S., Honisch,C., Adam,G.,
Cantor,C.R., Kleyn,P. and Braun,A. (2002) Association testing in
DNA pooling: an effective initial screen. Proc. Natl Acad. Sci. USA,
99, 16871–16874.

9. Jawadi,A., Bader,J.S., Purcell,S., Cherny,S.S. and Sham,P. (2002)
Family-based association tests for quantitative traits using pooled
DNA. Eur. J. Hum. Genet., 20, 125–132.

10. Hinds,D.A., Seymour,A.B., Durham,K., Banerjee,P., Ballinger,D.G.,
Milos,P.M., Cox,D.R., Thompson,J.F. and Frazer,K.A. (2004)
Application of pooled genotyping to scan candidate regions for
association with HDL cholesterol levels. Hum. Genomics, 1, 421–434.

11. Zou,G. and Zhao,H. (2005) Family-based association tests for different
family structures using pooled DNA. Ann. Hum. Genet., 69, 429–442.

12. Wolford,J.K., Blunt,D., Ballecer,C. and Prochazka,M. (2000)
High-throughput SNP detection by using DNA pooling and denaturing
high performance liquid chromatography (DHPLC). Hum. Genet.,
107, 483–487.

13. Buetow,K.H., Edmonson,M., MacDonald,R., Clifford,R., Yip,P.,
Kelley,J., Little,D.P., Strausberg,R., Koester,H., Cantor,C.R. et al.
(2001) High-throughput development and characterization of a
genomewide collection of gene-based single nucleotide polymorphism
markers by chip-based matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry. Proc. Natl Acad. Sci. USA, 98,
581–584.

14. Nelson,M.R., Marnellos,G., Kammerer,S., Hoyal,C.R., Shi,M.M.,
Cantor,C.R. and Braun,A. (2004) Large-scale validation of single
nucleotide polymorphisms in gene regions. Genome Res., 14,
1664–1668.

15. Yang,H.C., Lin,C.H., Hung,S.I. and Fann,C.S.J. (2006) Polymorphism
validation using DNA pools prior to conducting large-scale genetic
studies. Ann. Hum. Genet., 70, 350–359.

16. Dubreuil,P., Rebourg,C., Merlino,M. and Charcosset,A. (1999)
Evaluation of a DNA pooled-sampling strategy for estimating the
RFLP diversity of maize populations. Plant Mol. Biol. Rep., 17,
123–138.

17. Hillel,J., Groenen,M.A.M., Tixier-Boichard,M., Korol,A.B., David,L.,
Kirzhner,V.M., Burke,T., Barre-Dirie,A., Crooijmans,R.P.M.A.,
Elo,K. et al. (2003) Biodiveristy of 52 chicken populations assessed by
microsatellite typing of DNA pools. Genet. Sel. Evol., 35, 533–557.

18. Werner,M., Sych,M., Herbon,N., Illig,T., König,I.R. and Wjst,M.
(2002) Large-scale determination of SNP allele frequencies in DNA
pools using MALDI-TOF mass spectrometry. Hum. Mutat., 20, 57–64.

19. Le Hellard,S., Ballereau,S.J., Visscher,P.M., Torrance,H.S., Pinson,J.,
Morris,S.W., Thomson,M.L., Semple,C.A., Muir,W.J.,
Blackwood,D.H. et al. (2002) SNP genotyping on pooled DNAs:
comparison of genotyping technologies and a semi automated method
for data storage and analysis. Nucleic Acids Res., 30, e74.

20. Barratt,B.J., Payne,F., Rance,H.E., Nutland,S., Todd,J.A. and
Clayton,D.G. (2003) Identification of the sources of error in allele
freqeuncy estimations from pooled DNA indicates an optimal
experimental design. Ann. Hum. Genet., 66, 393–405.

21. Shaw,S.H., Carrasquillo,M.M., Kashuk,C., Puffenberger,E.G. and
Chakravarti,A. (1998) Allele frequency distributions in pooled DNA
samples: applications to mapping complex disease genes. Genome Res.,
8, 111–123.

22. Arnheim,N., Strange,C. and Erlich,H. (1985) Use of pooled DNA
samples to detect linkage disequilibrium of polymorphic restriction
fragments and human disease: studies of HLA class II loci.
Proc. Natl Acad. Sci. USA, 85, 6970–6974.

23. Sham,P., Bader,J.S., Craig,I., O’Donovan,M. and Owen,M. (2002)
DNA pooling: a tool for large-scale association studies. Nature Rev.
Genet., 3, 862–871.

24. Yang,H.C. and Fann,C.S.J. (2007) Association mapping using pooled
DNA. In Collins,A. (ed.), Linkage Disequilibrium and Association
Mapping. The Humana Press, Inc., USA. In Press.

25. Liu,W.M., Di,X., Yang,G., Matsuzaki,H., Huang,J., Mei,R.,
Ryder,T.B., Webster,T.A., Dong,S., Liu,G. et al. (2003) Algorithms for
large-scale genotyping microarrays. Bioinformatics, 19, 2397–2403.

26. Matsuzaki,H., Dong,S., Loi,H., Di,X., Liu,G., Hubbell,E., Law,J.,
Berntsen,T., Chadha,T., Chadha,M. et al. (2004) Genotyping over
100 000 SNPs on a pair of oligonucleotide arrays. Nature Meth.,
1, 109–111.

27. Uhl,G.R., Lin,Q.R., Walther,D., Hess,J. and Naiman,D. (2001)
Polysubstance abuse-vulnerability genes: genome scans for association,
using 1004 subjects and 1494 single-nucleotide polymorphisms.
Am. J. Hum. Genet., 69, 1290–1300.

28. Lindroos,K., Sigurdsson,S., Johansson,K., Ronnblom,L. and
Syvanen,A.-C. (2002) Multiplex SNP genotyping in pooled DNA
samples by a four-color microarray system. Nucleic Acids Res.,
30, e70.

29. Butcher,L.M., Meaburn,E., Liu,L., Fernandes,C., Hill,L.,
Al-Chalabi,A., Plomin,R., Schalkwyk,L. and Craig,I.W. (2004)
Genotyping pooled DNA on microarrays: a systematic genome screen
of thousands of SNPs in large samples to detect QTLs for complex
traits. Behav. Genet., 34, 549–555.

30. Meaburn,E., Butcher,L.M., Liu,L., Fernandes,C., Hansen,V.,
Al-Chalabi,A., Plomin,R., Craig,I. and Schalkwyk,L.C. (2005)
Genotyping DNA pools on microarrays: tackling the QTL problem of
large samples and large numbers of SNPs. BMC Genomics, 6, 52.

31. Meaburn,E., Butcher,L.M., Schalkwyk,L.C. and Plomin,R. (2006)
Genotyping pooled DNA using 100K SNP microarrays: a step towards
genomewide association scans. Nucleic Acids Res., 34, e28.

32. Macgregor,S., Visscher,P.M. and Montgomery,G. (2006) Analysis of
pooled DNA samples on high density arrays without prior knowledge
of differential hybridization rates. Nucleic Acids Res., 34, e55.

33. Norton,N., Williams,N.M., O’Donovan,M.C. and Owen,M.J. (2004)
DNA pooling as a tool for large-scale association studies in complex
traits. Ann. Med., 36, 146–152.

34. Yang,H.C., Pan,C.C., Lu,R.C.Y. and Fann,C.S.J. (2005) New
adjustment factors and sample size calculation in a DNA-pooling
experiment with preferential amplification. Genetics, 169, 399–410.

35. Hoogendoorn,B., Norton,N., Kirov,G., Williams,N., Hamshere,M.L.,
Spurlock,G., Austin,J., Stephens,M.K., Buckland,P.R., Owen,M.J. et al.
(2000) Cheap, accurate and rapid allele frequency estimation of single
nucleotide polymorphisms by primer extension and DHPLC in DNA
pools. Hum. Genet., 107, 488–493.

36. Moskvina,V., Norton,N., Williams,N., Holmans,P., Owen,M. and
O’Donovan,M. (2005) Streamlined analysis of pooled genotype data in
SNP-based association studies. Genet. Epidemiol., 28, 273–282.

37. Xu,H., Knight,J., Brookes,K., Mill,J., Sham,P., Craig,I., Taylor,E. and
Asherson,P. (2005) DNA pooling analysis of 21 norepinephrine
transporter gene SNPs with attention deficit hyperactivity disorder.
Am. J. Med. Genet. B, 134, 115–118.

38. Simpson,C.L., Knight,J., Butcher,L.M., Hansen,V.K., Meaburn,E.,
Schalkwyk,L.C., Craig,I.W., Powell,J.F., Sham,P.C. and Al-Chalabi,A.
(2005) A central resource for accurate allele frequency estimation from
pooled DNA genotyped on DNA microarrays. Nucleic Acids Res.,
33, e25.

39. Pan,W.H., Fann,C.S.J., Wu,J.Y., Hung,Y.T., Ho,M.S., Tai,T.H.,
Chen,Y.J., Liao,C.J., Yang,M.L., Cheng,A.T.A. et al. (2006) Han
Chinese cell and genome bank in Taiwan: purpose, design and ethical
considerations. Hum. Hered., 61, 27–30.

40. Huang,J., Wei,W., Zhang,J., Liu,G., Bignell,G.R., Stratton,M.R.,
Futreal,P.A., Wooster,R., Jones,K.W. and Shapero,M.H. (2004)
Whole genome DNA copy number changes identified by high density
oligonucleotide arrays. Hum. Genomics, 1, 287–299.

41. Yang,H.C., Pan,C.C., Lin,C.Y. and Fann,C.S.J. (2006) PDA: pooled
DNA analyzer. BMC Bioinformatics, 7, 233.

42. Shapiro,S.S. and Wilks,M.B. (1965) An analysis of variance test for
normaility (complete samples). Biometrika, 52, 591–611.

43. Holm,S. (1979) A simple sequentially rejective multiple test procedure.
Scand. J. Stat., 6, 65–70.

44. Visscher,P.M. and Le Hellard,S. (2003) Simple method to analyze
SNP-based association studies using DNA pools. Genet. Epidemiol.,
24, 291–296.

45. Johnson,M.P. and Griffiths,L.R. (2005) A genetic analysis of
serotonergic biosynthetic and metabolic enzymes in migraine using a
DNA pooling approach. J. Hum. Genet., 50, 607–610.

46. Akey,J.M., Eberle,M.A., Rieder,M.J., Carlson,C.S., Shriver,M.D.,
Nickerson,D.A. and Kruglyak,L. (2004) Population history and natural
selection shape patterns of genetic variation in 132 genes. PLos Biol.,
2, 1591–1599.

47. Hinds,D.A., Stuve,L.L., Nilsen,G.B., Halperin,E., Eskin,E.,
Ballinger,D.G., Frazer,K.A. and Cox,D.R. (2005) Whole-genome
patterns of common DNA variation in three human populations.
Science, 307, 1072–1079.

e106 Nucleic Acids Research, 2006, Vol. 34, No. 15 PAGE 10 OF 11



48. Guo,S.W. and Thompson,E.A. (1992) Performing the exact test for
Hardy–Weinberg proportion for multiple alleles. Biometrics,
48, 361–372.

APPENDIX

Appendix 1. The estimation of CPA

For each individual SNP, the intensity data contain 40 fluore-
scent signals, [f(a, b, c, d), a 2 A, b 2 B, c 2 C, d 2 D], where
A ¼ {SS, AS}, B ¼ {PM,MM}, C ¼ {Allele1, Allele2} and
D ¼ {Quartet1, . . . , Quartet5}. Let nh denote the number of
heterozygous individuals. We introduce the CPA estimating
procedure, which was formulated using the feature extraction
procedure (25,30) and the bias-correction procedure (34).

In the feature extraction stage, let

f*ða‚PM‚c‚dÞ¼ maxff ða‚PM‚c‚dÞ� 1

2

X
t2C

f ða‚MM‚ t‚dÞ‚0g

denote the adjusted PM signal of strand a for allele c in the
dth quartet. The signals were calibrated by subtracting the
background noise measured by intensities of mismatched
cells. Based on the definition of relative allele signal (RAS)
(25), the RAS of allele c was a ratio of the fluorescence signal
of the allele for perfectly matched cells as follows:

RASða‚PM‚c‚dÞ¼ f*ða‚PM‚c‚dÞP
t2C f*ða‚PM‚ t‚dÞ :

Medians of RAS over five quartets for the sense and antisense
strands were calculated separately, and the mean of the two
medians yielded the individual RAS (IRAS) of the first allele
for the ith individual as follows:

IRAS1ðiÞ ¼ 1

2
median
d¼1‚ ...‚ 5

fRASðSS‚PM‚1‚dÞg þ 1

2
median
d¼1‚ ...‚ 5

fRASðAS‚PM‚1‚dÞg‚ i ¼ 1‚ . . .‚nh and

IRAS2ðiÞ ¼ 1 � IRAS1ðiÞ:

The sample means of IRAS for allele 1 and allele 2 over all
heterozygous individuals were

IRAS1 ¼ n�1
h ·

Xnh

i¼1

IRAS1ðiÞ

and IRAS2 ¼ n�1
h ·

Pnh

i¼1 IRAS2ðiÞ:
In the stage where CPA was estimated, Hoogendoorn’s

CPA (35) was calculated as follows:

k̂kH ¼ n�1
h ·

Xnh

i¼1

½IRAS1ðiÞ/IRAS2ðiÞ�:

The other two CPAs, unbiased CPA and geometric CPAs
(34), can be estimated as follows:

k̂kU¼ k̂kHþ
nh

nh�1

IRAS1

IRAS2

� k̂kH

� �
andk̂kG¼

Ynh

i¼1

IRAS1ðiÞ
IRAS2ðiÞ

" #1/nh

:

A reference allele (i.e. allele 2) must be specified while
CPA is estimated. Throughout this study, all heterozygous

genotypes were rearranged as the following six genotypes:
AC, AG, AT, CG, CT and GT. The second allele in each of
the previous six genotypes was regarded as the reference
allele.

Appendix 2. The standard error and empirical
distribution of the estimated CPA

We calculated the standard error of the estimated CPA based
on a bootstrapping procedure. Denote f½IRAS1ðiÞ‚IRAS2ðiÞ�‚
i ¼ 1‚ . . . ‚nhg as the pairs of IRAS values of a SNP for
nh heterozygous individuals. Assume that fIRAS1ðiÞ‚ i ¼
1‚ . . . ‚nhg follows a beta distribution with a probability
density function

f ðyÞ ¼ ½Gðaþ bÞ/GðaÞGðbÞ� · ya�1ð1�yÞb�1
‚0 < y < 1:

Based on the data for the 40 fluorescent signals, we calculated
the IRAS of the heterozygous individuals, f½IRAS1ðiÞ‚
IRAS2ðiÞ�‚ i ¼ 1‚ . . . ‚nhg, as illustrated in Appendix 1. Let
the sample mean and standard deviation of fIRAS1ðiÞ‚
i ¼ 1‚ . . . ‚nhg be IRAS1 and SIRAS. Then, the moment esti-
mates of parameters a and b can be calculated as follows:

âa ¼ f½IRAS1
2ð1 � IRAS1Þ�/SIRAS1

g � IRAS1 1

and

b̂b ¼ f½IRAS1ð1 � IRAS1Þ�/SIRAS1
g � ðâa þ 1Þ: 2

Bootstrap samples were drawn from the empirical distribu-
tion Betaðâa‚ b̂bÞ. For the bth bootstrap sample, fIRASðbÞ

c ðiÞ‚
i ¼ 1‚ . . . ‚nh‚c 2 Cg, CPA was re-estimated to obtain k̂kðbÞ.
The procedure was repeated L times to obtain fk̂kðbÞ‚
b ¼ 1‚ . . . ‚Lg. Finally, we took the sample standard devia-
tion of fk̂kðbÞ‚b ¼ 1‚ . . . ‚Lg to calculate the standard error
of the CPA estimator, i.e. Sk̂k ¼ ½

PL
b¼1 ðk̂kðbÞ�~kkÞ2

/ðL�1Þ�1/2
,

where ~kk ¼
PL

b¼1 k̂kðbÞ/L.

Appendix 3. The estimation of allele frequency in
a DNA pool

We calculated three types of allele frequencies for com-
parison, including the true, unadjusted and adjusted allele
frequencies. The true allele frequency was yielded by calcu-
lating the proportion of the number of a specific allele and
the total number of alleles based on individual genotyping
result. The unadjusted allele frequencies were estimated by
calculating the relative IRAS based on pooled allelotyping
result as follows:

p̂pUnadjusted
1 ¼ IRASPool

1 /ðIRASPool
1 þ IRASPool

2 Þ and

p̂pUnadjusted
2 ¼ 1 � p̂pUnadjusted

1 ‚

where fIRASPool
c ‚c 2 Cgdenoted the IRAS value of allele c in

a DNA pool. The adjusted allele frequencies were estimated
by incorporating the estimated CPA in the estimation of the
unadjusted allele frequency as follows:

p̂pAdjusted
1 ¼ IRASPool

1 /ðIRASPool
1 þ k̂k · IRASPool

2 Þ
and p̂pAdjusted

2 ¼ 1 � p̂pAdjusted
1 :
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