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A B S T R A C T

Background/Objective: Research on the ontogenetic development of brain networks using resting state has shown 
to be useful for understanding age-associated changes in brain connectivity. This work aimed to analyze the 
relationship between brain connectivity, age and intelligence.
Methods: A sample of 26 children and adolescents between 6 and 18 years of both sexes underwent a resting-state 
functional magnetic resonance imaging study. We estimated the values of fractional Amplitude low-frequency 
fluctuations (fALFF) and the values of Regional homogeneity (ReHo) in a voxelwise analysis to later correlate 
them with age and intelligence quotient (IQ).
Results: No significant correlations were found with IQ, but it was found that the fALFF values of the left pre
central cortex (premotor cortex and supplementary motor area), as well as the ReHo values of the medial frontal 
gyrus, and the precentral cortex of the left hemisphere, correlate with age. Conclusions: Hubs related to various 
“task positive” networks closely related to cognitive functioning would present a development more related to 
age and relatively independent of individual differences in intelligence. These findings suggest that the premotor 
cortex and supplementary motor cortex could be a cortical hub that develops earlier than previously reported 
and that it would be more related to age than to intelligence level.

Introduction

The human brain is organized thanks to a set of functional networks 
that interact with each other to articulate the different aspects of human 
behavior (Fair et al., 2009; Van Den Heuvel & Hulshoff Pol, 2010). These 
brain networks and their development can be studied using functional 
magnetic resonance imaging (fMRI) (Biswal et al., 1995; Cole et al., 
2010; Sporns et al., 2004). Some of these networks are known as “task 
positive” because their activity usually increases during performance on 
cognitive tasks (Fox et al., 2005). Among these, there is the 
fronto-parietal network (FPN), which has been implicated in the control 
of executive functions and intelligence (Engelhardt et al., 2019; Sher
man et al., 2014). This network is comprised of the dorsolateral pre
frontal cortex (DLPFC), the precentral cortex, and the posterior parietal 
cortex (Vincent et al., 2008; Takeuchi et al., 2018). Another important 

“task positive” network is the dorsal attention network (DAN), which is 
responsible for attentional functions and is formed by the dorsolateral 
prefrontal cortex (DLPFC), the frontal eye fields, the inferior precentral 
sulcus, the superior occipital gyrus, parts of the medial temporal cortex 
and the superior parietal lobe (Fox et al., 2005). The Salience Network is 
fundamentally formed by the frontal operculum, the insula and the 
anterior cingulate cortex, related to the maintenance of tonic alertness, 
it focuses on multiple stimuli that compete for attention, identifying the 
most relevant ones, and acts as a switch of transition or bridge between 
networks (Sadagiani & D’esposito, 2015, Uddín, 2017). Complementa
rily, the Default Mode Network (DMN) is a “task Negative” network that 
increases its activity during undirected thinking (mind wandering) or 
autobiographical thinking and tends to disconnect during task perfor
mance (Harrison et al., 2008). Task positive networks and the DMN are 
anticorrelated so that the increase in activity of the former correlates 
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with a decrease in the activity of the DMN and vice versa (Van Den 
Heuvel & Hulshoff Pol, 2010).

Using the fMRI brain signal, it is possible to study the ontogenetic 
development of brain networks: the relationships between age and the 
brain connectivity of these networks can be studied in various cognitive 
tasks (Crone et al., 2006; Engelhardt et al.., 2019 and Houdé et al., 2010) 
and can also be studied using resting state approach (Cao et al., 2016; 
Fair et al., 2009; DeSerisy et al., 2021). Various studies show that during 
ontogenetic development there is a certain decrease in functional 
segregation, that is, a decrease in the vibration force between nearby 
areas, and at the same time there is an increase in functional connec
tivity between distant brain areas, that is, an increase in functional 
integration (Fair et al., 2009; Fair, 2014; Cao et al., 2016). The brain 
hubs are present at birth, and its functional integration and segregation 
properties increase during infancy (Cao et al., 2016). Likewise, during 
childhood and adolescence, there is a strengthening of the cortical Hubs, 
that is, centres with a high density of connections with a wide distri
bution and containing highly connected areas (Cao et al., 2016).

When reviewing specific connectivity networks, some studies show 
that healthy children aged 7 to 12 years activate areas of the fronto
parietal network (FPN) in cognitive control tasks (Koyama et al., 2013; 
Margolis et al., 2020), suggesting that the main hubs of this network are 
in place in infancy and its basic structures do not change from infancy to 
adolescence. A recent work using MEG did not find differences in age 
groups in the maturation of alpha and theta oscillations in the FPN in 
children ages 9 to 14. (Solis et al., 2021). However, some controversy 
exists since other authors found that connections in this network were 
inversely associated with age in participants from 7 to 25 years old and 
this decrease in connectivity will be an indicator of the network devel
opment (DeSerisy et al., 2021).

It has been suggested that the DAN develops its functional connec
tivity relatively early in infancy. Some authors found DAN functional 
connectivity and connectivity between the DAN and the rest of the brain 
in children from 4 to 7 years old (Rohr et al., 2016). In addition, the 
performance in selective attention tasks has been associated with the 
connectivity between the intraparietal sulcus and the frontal eye fields 
of the DAN (Rohr et al., 2016). Other works show that functional con
nectivity within areas of the DAN in children aged 7 to 12 years is similar 
to that of adults (Farrant & Uddin, 2015). But other works suggests that 
the functional connectivity in this network still evolves after the infancy 
and the puberty. Some researcher proposed that the connectivity be
tween brain areas of the DAN is greater in children than in young adults, 
suggesting that the more efficient connectivity observed in young adults 
compared to children is related to a decrease in connectivity within the 
network (Jolles et al., 2011; Farrant & Uddin, 2015).

The DMN probably also develops importantly in early childhood 
since it has been proposed that its main areas and subsystems show 
notable development at age 5 (Xiao et al., 2016). Other works suggest 
that the core regions of the DMN, FPN, DAN, and the salience network 
are present in children aged from 11 to 13, and they do not differ be
tween children and adults (Jolles et al., 2011). However, this same work 
also points out that there are important age-related differences in the 
strength of connectivity within network areas, and in the size of func
tional networks; thus, the functional connectivity of these networks in 
children is greater than in adolescents and adults, and these decreases in 
connectivity with age will be related to the refinement in the network’s 
development (Jolles et al., 2011; DeSerisy et al., 2021).

The social brain network has been studied much less, but it is very 
relevant to development (McCormick et al., 2018). Various brain areas 
are related to social cognition (Frith & Frith, 2007). Recently, The work 
by McCormick et al. (2018) shows that there is a brain social network 
that includes frontostiatal regions, the amygdala, and the temporal pole, 
among other structures, and these brain areas show a high functional 
integration with structures not specialized in social aspects such are 
several HUBs of the DMN and the frontoparietal network. (McCormick 
et al., 2018). This network develops during childhood and does not show 

changes in its functional architecture from 8 to 16 years of age 
(McCormick et al., 2018).

Previously cited research shows that brain connectivity develops first 
through forming the network’s core regions and establishing the net
work’s connections and later through refining and tuning the network’s 
connectivity. However, there is also an important variability in the 
developmental trajectories of these networks and some controversies 
about the ages at which they are fully developed.

Another factor closely linked to the development of brain connec
tivity is cognitive development. Task positive networks undergo signif
icant development during early childhood (Dennis et al., 2013), and the 
main networks associated with cognitive control are well established by 
around 10 years of age (Engelhardt et al., 2019). However, these net
works continue to develop in late childhood and adolescence, and their 
functional integration is associated with better performance in cognitive 
control tasks (Marek et al., 2015). Likewise, individual differences in 
intelligence of adolescents and adults are related to structural and 
functional variations in the DLPFC cortex, the ventrolateral prefrontal 
cortex (VLPFC) and the medial prefrontal cortex, including the supple
mentary premotor cortex among other structures (Jung & Haier, 2007; 
Basten et al., 2015); areas that correspond to “task positive” connectivity 
networks (Fox et al., 2005). It has been suggested that increased func
tional connectivity in FPN structures of the right hemisphere positively 
correlates with the manipulative IQ of children between 6 and 8 years of 
age (Langeslag et al., 2013). Some works suggest that from 10 to 13 
years of age, connectivity in the FPN increases and that its integration 
positively correlates with IQ (Sherman et al., 2014). Other works 
showed that a more anticorrelated FPN-DMN connectivity between the 
frontal pole and the precentral gyrus was associated with a better IQ in a 
large sample of children and youth aged 7 to 25 (DeSerisy et al., 2021).

All the above-mentioned works demonstrate the relationship be
tween age, cognitive functioning of attention, executive functions, social 
functioning, intelligence and the development of brain connectivity. 
However, brain connectivity in neurotypical development has been 
studied using seed-based functional analysis techniques, independent 
component analysis (ICA) or methods derived from complexity mea
sures and graph theory. There are other techniques for analyzing brain 
connectivity such as the analysis of the fractional amplitude of low- 
frequency fluctuations (fALFF) and the regional homogeneity (ReHO) 
in voxelwise analysis, which can be used in combination to study al
terations in connectivity in different conditions of pathological devel
opment (see An et al., 2013 for an example).

A combination of ALFF, ReHo, and ICA has recently been used to 
study the effects of combat sports on cerebellar connectivity in adoles
cents (Li et al., 2022). The work of Yang et al. (2015) used both tech
niques to study the brain connectivity of children and adolescents about 
to working memory. However, the combination of fALFF and ReHo has 
been used very little to study the functional connectivity of ontogenetic 
development. Both techniques are data-driven functional segregation 
analysis methods that provide information of a somewhat different na
ture and are often combined in the same work (Lv et al., 2018). fALFF is 
a technique derived from the measurements of Amplitude of low fre
quency that measure the fluctuations (ALFF), that measures the strength 
of the regional intensity of spontaneous fluctuations in the BOLD signal 
but has often been criticized because it could be sensitive to physio
logical noise (Lv et al., 2018). Therefore, Zou et al. (2008) developed the 
fractional amplitude of low-frequency fluctuations analysis (fALFF), 
which enhances the sensitivity and specificity of spontaneous brain ac
tivity detection. On the other hand, ReHo estimates the temporal ho
mogeneity of the signal between a given voxel and neighbouring voxels 
(Zang et al., 2004). ReHo measures the similarity between the time se
ries of a specific voxel with that of its neighbouring voxels, reflecting 
local functional connectivity (Zang et al., 2004). Both approaches are 
complementary, while fALFF is focused on measuring local spontaneous 
fluctuations in activity related to their distant connections (Zhou et al., 
2008), and ReHo estimates local neural activity (Zang et al., 2004). 

M.D. Figueroa-Jiménez et al.                                                                                                                                                                                                                 International Journal of Clinical and Health Psychology 24 (2024) 100517 

2 



Furthermore, both techniques have very good test-retest reliability (Zuo 
et al., 2013; Küblböck et al., 2014). Thus, combining ReHo and fALFF to 
assess spontaneous brain activity among the neurotypical developing 
population could provide more information about brain function than 
using only one of these methods (Lv et al., 2018).

But this combination must be justified. Koyama et al. (2020) they 
agree that both ReHo and fALFF can successfully detect regions that are 
associated with individual differences in cognitive skills. In their study, 
they used ReHo and fALFF values to simultaneously examine reading 
and arithmetic achievement, and IQ measures in young adults, with the 
aim to identify neural correlates of their common factors. Moreover, 
both, fALFF and ReHo provide useful information about brain devel
opment, such as the strength and specificity of functional connections 
between brain regions and the development of neural networks (Song 
et al., 2023). These authors explain this issue as follows: if the interest is 
to analyze whether the relationship between an independent variable 
(such as age) and a dependent variable (such as IQ) is mediated by a 
third variable (such as brain function), then, fALFF and ReHo are useful 
to identify specific regions that could mediate this relationship.

For this reason, our objective is to carry out an exploratory voxelwise 
and data-driven study of the relationships between brain connectivity, 
age and intelligence in a sample of children and adolescents from 6 to 18 
years old, using fALFF and ReHo analysis. Our general hypothesis is that 
we will find important correlations between age and intelligence, with 
various hubs of “task positive” brain networks and the DMN.

Material and methods

Participants

School children and adolescents were invited to participate, 
recruitment was carried out through contact with different basic level 
educational institutions in the Valles region of the state of Jalisco 
(México). Sampling was opportunistic following: (a) right-handed chil
dren and adolescents between 6 and 18 years old with a letter of consent 
signed by their legal guardian and assent from the minor, (b) with 
schooling appropriate to their age, (c) without suspicion of cognitive or 
mental health impairment, (d) average IQ with a maximum of one 
standard deviation below the average (minimum 85). The exclusion 
criteria were as follows: (a) withdrawal from the study, (b) excessive 
movement during fMRI data acquisition that prevents data analysis.

The initial evaluation involved a total of 61 children of which 1 could 
not continue for having a history of neurological conditions, 5 for having 
materials not compatible with fMRI (brackets and metallic crowns, 3 for 
having a lower IQ score, 15 for suspected psychiatric diagnosis (8 with 
probable attention deficit hyperactivity disorder, 5 with anxiety and 2 
with depression) and 11 did not want to continue with the study once 
they had done the simulation training according to the inclusion and 
exclusion criteria, formed a final sample of 26 children and adolescents 
between 6 and 18 years of age (M = 10.4 and SD = 4 0.5), 50 % were 
women (n = 13). In Table 1, some of the descriptive statistics of the 
sample are shown.

Instruments

In all cases, the following evaluation and measurement elements 
were administered: 

• Brief clinical history to parents about their child, to identify the 
healthy and optimal state to participate in the study.

• Depending on the age of the minor, respectively, the Wechsler in
telligence subscales, designed with cubes and vocabulary, were 
administered as a short way to obtain the estimated IQ (Cronbach’s α 
= 0.90; Sattler & Ryan, 2009, Chen et al., 2021):

○ WISC-IV Wechsler Intelligence Scale for children and/or adoles
cents from 6 years 0 months to 16 years 11 months.
○ WAIS-IV Wechsler Intelligence Scale for Adults applied to adoles
cents and adults from 16 to 89 years old.

• Interview for Psychiatric Syndromes in Children and Adolescents 
ChIPS (Cronbach’s α = 0.90; Fristad et al., 2001) answered by the 
minor to rule out participants with suspected psychiatric syndromes.

Procedure

Parents of children and young people from 6 to 18 years of age were 
requested to participate through a visit to schools, through an infor
mation session coordinated with the person in charge of the institution, 
to publicizing what the study consisted of, the inclusion criteria to 
participate and the benefits they would obtain (healthy management of 
social networks workshop, structural brain images delivered to parents 
by email and results of the participant’s neuropsychological evaluation).

Subsequently, those who agreed to participate by signing the 
informed consent were provided with the privacy notice and the par
ticipants were explained what the study would consist of and were asked 
for their consent by means of their signature or fingerprint, depending 
on their age. Subsequently, in a first session, neuropsychological tests 
were administered by previously trained psychologists began. The total 
time spent was approximately two hours in the first session. In a second 
moment, training was carried out that sought to simulate the resonance 
situation with the minors, to ensure that they understood the in
structions and the procedure that would be carried out to reduce anxi
ety, uncertainty and/or fears. This activity lasted approximately 30 min 
in the neuropsychology laboratory of the Los Valles University Center of 
the University of Guadalajara.

The entire protocol described was approved by the Ethics Committee 
of the CUCBA Neurosciences Institute (04/28/2023) with registration 
number: ET022023–365 and also by the Scientific Research Ethics 
Committee of CUValles (05/24/2023), both from the University of 
Guadalajara.

Magnetic resonance imaging acquisition and preprocessing

Brain images were acquired on an SIEMENS MAGNETOM 3.0T 
Scanner system located in Guadalajara Jalisco. All participants under
went an fMRI recording sequence in the following order: T1, T2, FLAIR, 
and T2* at rest, taking a total of 16 min to complete these sequences. A 
T1-weighted turbo field echo (TFE) structural image was obtained for 
each subject with a three-dimensional protocol (repetition time (TR) =
2300 ms, echo time (TE) = 2980 ms, 240 slices and field of view (FOV) =
240 × 240 × 170). Image acquisition was in the sagittal plane. Subse
quently, the T2 sequence called Fluid Attenuated Inversion Recovery 
(FLAIR) and finally the resting state sequence were obtained. For these 
functional images, a T2*-weighted (BOLD) image was obtained (TR =
2000 ms, TE = 30 ms, FOV = 230 × 230 × 160, and voxel size = 3 × 3 ×
3 mm, with 29 slices). Image acquisition was in the transverse plane.

For the resting-state sequence, all participants were asked, during 
signal recording, to remain quiet without moving and in a supine, awake 

Table 1 
Basics descriptive statistics of age and IQ of the sample.

Quantitative 
variables

Min. Max. x (SD) Md Skewness (Std. 
Error)

Age 6.00 18.00 10.46 
(4.48)

8.00 0.86 (0.45)

IQ 85.00 132.00 104.92 
(10.90)

104.50 0.57 (0.46)

Note: IQ: intelligence quotient, Min: minimum, Max: maximum, x: Mean, SD: 
Standard deviation, Md: median, Std. Error: Standard error.
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position with their eyes open. Communication was maintained at all 
times through a headset and microphone system that had been placed on 
them when entering the scanner. From the beginning, they were told 
that if they felt uncomfortable they could notify them at any time and 
the study would be stopped. The total time of this sequence was 6 min.

Image preprocessing was performed using the Data Processing As
sistant for Resting-State fMRI57 (DPARSF; http://rfmri.org/DPARSF). It 
is based on MATLAB, SPM12 (http://www.fl. ion.ucl.ac.uk/spm) and 
DPABI58. The first 10 functional images were removed to allow 
magnetization equilibration and to allow participants to adapt to the 
scanner. Then, a correction was made for the remaining functional im
ages for slice acquisition timing difference and head motion. Nuisance 
signals were regressed out, including white matter signals, cerebrospinal 
fluid signals, linear trends and signals associated with the 24 Friston 
head-motion parameters. The derived functional images were coregis
tered with the corresponding structural images, which were segmented 
and normalized to Montreal Neurological Institute (MNI) space using 
diffeomorphic anatomical registration through exponentiated lie 
algebra (DARTEL). The functional images were normalized to MNI space 
with warped parameters and resampled to 3 mm cubic voxels. Regarding 
the ReHo analysis, the normalized functional images were then band
pass filtered (0.01–0.1 Hz). Given that participants ‘mean movement 
was 0.02766 on Jenkinson’s FD, no person was eliminated for 
movement.

Voxel-based morphometry

The T1w-structural images were automatically processed with 
DPABI (Yan et al., 2016). The images were reoriented and individually 
checked for quality control. Afterwards, reoriented T1 images were 
segmented into grey matter (GM), white matter (WM) and cerebrospinal 
fluid (CSF; Ashburner & Friston, 2005). Finally, the DPABI module uses 
the Diffeomorphic Anatomical Registration Through Exponentiated Lie 
algebra (DARTEL) tool (Ashburner, 2007) to compute transformations 
from individual native space to MNI space. Finally, grey matter seg
mentations were resliced and smoothed to match the parameters with 
the functional images. Additionally, total grey matter volumes and 
parcellation volumes were calculated using SPM121 and SPM12-based 
scripts (Maldjian et al., 2003, 2004).

Estimation of ALFF and ReHo values

DPABI was used to estimate the fALFF and ReHo values (Yan et al., 
2016). Specifically, in the case of ALFF, spatial smoothing was per
formed with a Kernell Gaussian of 4 mm full width at half (FWHM). To 
calculate the power spectrum, the time series of each voxel was trans
formed into the frequency domain using a fast Fourier transform (FFT). 
This power spectrum, which has a frequency range of 0–0.25 Hz, was 
rounded squared at each frequency and then averaged across 0.01–0.08 
Hz at each voxel, which was taken as ALFF. To obtain fALFF, the ALFF 
values were divided by the entire frequency range observed in the signal 
(0–0.25 Hz) (Zou et al., 2008).

Regarding ReHo estimation, Kendall’s concordance coefficient 
(KCC) was calculated from the time series of all voxels and their 
neighbors (Zang et al., 2015). All ReHo maps were smoothed with a four 
mm FWHM Gaussian kernel. Finally, individual fALFF and ReHo maps 
were standardized into z-score maps by subtracting the mean and 
dividing by the standard deviation.

Data analysis

For the statistical analysis in fALFF and ReHo, DPABI was used and 
the estimation of the Pearson correlation with age and with the esti
mated IQ was calculated. As mentioned above, when talking about 
developmental stages, total grey matter volume was included as a co
variate in all analyses. Significant differences in the study were reported 

using the Gaussian Random Field (GRF) multiple comparisons criterion 
(Eklund et al., 2016) with a cluster p-value of 0.001 and a cluster 
threshold of p = 0.05. An additional threshold with a minimum extent of 
30 voxels for ReHo and 10 voxels for fALFF was set to exclude very small 
clusters, although they passed the strict permutation test with GRF 
correction. Finally, to improve the visualization of the correlation values 
and to increase the comprehension of the correlation direction, the 
significant values of fALFF and ReHo were extracted and were repre
sented through a scatter plot together with the age of all individuals. It is 
important to highlight that, as in the significant correlations (Tables 2 
and 3), the results include the covariable of total grey matter volume, 
here no covariable was included for the scatter plot representation.

Results

fALFF results

Table 2 shows the significant cluster between the fALFF values and 
age localized in MNI coordinates and the corresponding brain region 
defined by the Automatic Anatomical Labeling Atlas (AAL; Tzour
io-Mazoyer et al., 2002). Fig. 1 shows the graphical representation of the 
correlation results visualized with DPARSF (Yan & Zang, 2010). Fig. 2
shows the graphical representation of the correlation using a scatter 
plot.

Regarding the correlation analyses using the whole brain fALFF maps 
and the estimated intelligence scores, no significant correlations were 
found.

ReHo results

Table 3 shows the significant cluster between the ReHo values and 
age localized in MNI coordinates and the corresponding brain region 
defined by the AAL. Fig. 2 shows the graphical representation of the 
correlation results visualized with DPARSF (Yan & Zang, 2010). Fig. 4
shows the graphical representation of the correlation using a scatter plot 
(Fig. 3).

Regarding the correlation analyses using the whole brain ReHo maps 
and the estimated intelligence scores, no significant correlations were 
found.

Discussion

In this work we carried out an exploratory cross-sectional study of 
the relationships between brain connectivity, age and intelligence in a 
sample of children and adolescents from 6 to 18 years old, using fALFF 
and ReHo analysis. Our data suggest that areas of the left precentral 
cortex belonging to the premotor cortex and the supplementary motor 
area increase their connectivity in a manner closely correlated with age 
during ontogenetic development. Likewise, we also found that areas of 
the left premotor and supplementary motor cortex, and the left middle 
frontal gyrus corresponding to the frontal eye field, increase their 
regional homogeneity in a very closely related way with age during 
development from 6 to 18 years. In our study, we did not find correla
tions between the fALFF and ReHo maps with the intelligence of the 
children and adolescents in our sample.

The precentral cortex, including the premotor cortex and 

Table 2 
Significant correlations between fALFF maps and age.

Area Number of 
voxels

r (peak) Peak MNI 
coordinates 
(mm)

AAL peak region

Frontal 
lobe

540 .88 − 36 6 48 Precentral_Left

MNI: Montreal Neurological Institute; AAL: Automatic Anatomical Labeling.
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supplementary motor cortex, is part of the frontoparietal network that is 
related to executive functioning, spatial rotation and attentional tasks, 
as well as intelligence (Ptak et al., 2017; Takeuchi et al., 2017). al., 
2018; Takeuchi et al., 2021). The more dorsal portion of this network 
which includes the precentral cortex is also involved in motor-type tasks 
and also in the cognitive substrate for motor actions (Ptak et al., 2017). 
Both the fALLF and ReHo connectivity maps of the precentral cortex of 
our sample that correlated positively with age also included areas of the 

left supplementary motor cortex. The supplementary motor area (SMA) 
is profusely connected with motor areas, sensory areas of the parietal 
lobe, the cerebellum, and areas more related to various cognitive func
tions such as the prefrontal cortex, the insula and the temporal cortex 
(Narayana et al., 2012). In this way, it would not only be a motor area, 
but a HUB related to various motor, perceptual, and cognitive networks 
(Narayana et al., 2012), also having a prominent role in working 
memory (Roth et al., 2014). Some works suggest that as children and 
adolescents grow, there is a strengthening of the cortical HUBs (Cao 
et al., 2016). The premotor cortex and the SMA would be a HUB related 
to an important diversity of brain functions that would probably develop 
at different time points. This would support our results, as it would 
explain at least in part why both fALFF maps and the ReHo map of the 
left precentral cortex showed such a high positive correlation with age in 
our study. However, we must remember that the work of Cao et al. 
(2016) suggests that this effect occurs in late childhood and adolescence, 
while our data suggest that at least for the HUBS of the precentral cortex 
this strengthening would occurs during a larger period of development 
time. Other works did not find a correlation between age and connec
tivity within the FPN, including the precentral cortex, in a sample of 
participants aged 7 to 25 years (DeSerisy et al., 2021).

Table 3 
Significant correlations between ReHo maps and age.

Area Number 
of voxels

r 
(peak)

Peak MNI 
coordinates 
(mm)

AAL peak region

Left 
superior 
frontal 
gyrus

43 0.87 − 9 30 45 Frontal_Sup_Medial_L

Left middle 
frontal 
gyrus

39 0.89 − 36 9 42 Precentral_L

MNI: Montreal Neurological Institute; AAL: Automatic Anatomical Labeling.

Fig. 1. Sagittal, axial and coronal planes representation of significant correlations between fALFF whole-brain maps and age of the participants. The colour bar 
indicates the value of the correlation, with 0.8 (yellow) representing direct correlations and –0.6 (light blue) indirect correlations.

Fig. 2. Scatter plot of age and fALFF significant cluster: the Precentral Left. 
Note: Here, the covariable grey matter volume is not taken into account.
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The left frontal eye field (left FEF) showed increased ReHo with a 
very high and positive correlation with age. This brain area forms part of 
the DAN, which is classically attributed to the control of top-down visual 
attention, thus having an important role in controlling where attention 
is directed. Although it primarily receives visual information, the FEF 
also receives spatial information since it contains a topographic repre
sentation of the contralateral space and would be involved not only in 
the control of attention but also in oculomotor control and visuospatial 
working memory (Bedini & Baldauf, 2021). Some authors suggest that 
the frontal eye fields would also be part of the cingulum-opercular 
network in addition to the DAN (Ji et al., 2019). Thus, the left ocular 
field would be an important cortical HUB related to at least two “task 
positive” connectivity networks. Again, the increase in connectivity at 
the local level of this area in a highly correlated manner with age could 
be due to a progressive strengthening of the cortical HUBS (Cao et al., 
2016); although we must also consider that in other works the devel
opment of the DAN and the cingulum-opercular network as a whole was 
not shown to be so linear with age (Jolles et al., 2011; Cao et al., 2016).

In our study, we did not find significant correlations between vox
elwise connectivity measured by fALFF and ReHo and intelligence in our 
sample. Several studies suggest that the connectivity of task positive 
networks such as the FPN may be sensitive to individual differences in 
intelligence (Song et al., 2008; Takeuchi et al., 2018, 2021); and these 
differences could already be detected during ontogenetic development. 
Thus, some works suggest that the level of non-verbal intelligence 

positively correlates with right parietal-frontal connectivity, and with 
right parietal-cingulate connectivity in children aged 6 to 8 years 
(Langeslag et al., 2013). Other works suggest that the activity of the 
right fronto-parietal network is related to the level of intelligence in late 
childhood, while the activity of the left frontoparietal network is related 
to the level of intelligence in adolescents (Li & Tian, 2014). The work of 
DSerisy et al. (2021) Conducted in a large sample with an age range of 7 
to 25 years, did not find correlations between intelligence and connec
tivity within the frontoparietal network, but it did find that young 
people with a greater anti-correlation between FPN and DMN had a 
higher intelligence quotient than those who had less mature connec
tivity between both networks. However, despite all these data, we did 
not find any relationship between brain connectivity measured by fALFF 
and ReHo and intelligence. Taken together, our results suggest that the 
development of the cortical HUBs corresponding to the left precentral 
cortex and the left frontal eye field that are closely related to cognitive 
functioning would present an age-related development and at least 
relatively independent of the difference between individuals in 
intelligence.

Our work has clear limitations. One of them is that we did not find 
connectivity correlated with age of other brain areas such as the superior 
parietal lobe, the precuneus, the cingulate or the temporal cortex among 
other brain areas, which are also considered very important HUBS of 
global connectivity (Van den Heuvel & Sporns, 2013).

The most important limitation of our work is its cross-sectional 

Fig. 3. Sagittal, axial and coronal planes representation of significant correlations between ReHo whole-brain maps and age of the participants. The colour bar 
indicates the value of the correlation, with 0.8 (yellow) representing direct correlations and –0.6 (light blue) indirect correlations.

Fig. 4. Scatter plot of age and both significant ReHo clusters: in Fig. 2A, the frontal superior medial left, and in Fig. 2B the precentral left. Note: Here, the covariable 
grey matter volume is not taken into account.
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design since longitudinal approaches are always better used study the 
different aspects of ontogenetic development. This issue is what justifies 
our use of the term first study since we are aware of the need to generate 
the entire age range for a greater specification of the effects found in this 
paper. But, however, our work also has some notable qualities. The 
sample selection was very strict so we made sure that all participants 
were healthy through a very clinically rigorous evaluation. This is re
flected in the large difference between the number of pre-selected par
ticipants in the initial sample and the people we ultimately resonated 
with.

Conclusions

Finally, as a main conclusion, we must highlight the very important 
correlations that we have found between the density of the connections 
of the left precentral cortex, the left frontal ocular field and the age of the 
participants. Another important conclusion is to promote the use of a 
voxelwise analysis of fALFF and ReHo, which have been used very little 
in the study of normal development. More longitudinal studies with 
larger sample sizes are needed to gain insight into the relationships 
between brain connectivity measured by fALFF and ReHo, ontogenetic 
development, and intelligence.
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