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Abstract: Methylene blue (MB) is a dye used for histology with clinical importance and intercalates
into nucleic acids. After MB staining of formalin fixed paraffin embedded (FFPE) muscle invasive
bladder cancer (MIBC) and normal urothelium, specific regions could be microdissected. It is not
known if MB influences RNA used for gene expression studies. Therefore, we analyzed MIBC
using five different RNA isolation methods comparing patient matched FFPE and fresh frozen (FF)
tissues pre-stained with or without MB. We demonstrate a positive impact of MB on RNA integrity
with FF tissues using real time PCR with no interference of its chemical properties. FFPE tissues
showed no improvement of RNA integrity, which we propose is due to formalin induced nucleotide
crosslinks. Using direct multiplex RNA hybridization the best genes for normalization of MIBC and
control tissues were identified from 34 reference genes. In addition, 5SrRNA and 5.8SrRNA were
distinctive reference genes detecting <200 bp fragments important for mRNA analyses. Using these
normalized RNAs from MB stained MIBC and applying multiplex RNA hybridization and mRNA
sequencing, a minimal gene expression panel precisely identified luminal and basal MIBC tumor
subtypes, important for diagnosis, prognosis and chemotherapy response.

Keywords: muscle invasive bladder cancer; FFPE and fresh-frozen tissues; methylene blue; RNA
isolation; RNA normalization; 5SrRNA and 5.8SrRNA; multiplex RNA hybridization; luminal and
basal subtypes

1. Introduction

Although the molecular distinction between fractionated RNA and DNA was success-
ful in the beginning of the 1900’s [1] by detection of Uracil instead of Thymine, respectively,
bulk isolations of ribonucleic acids date back to the 1940s. These early fractionation studies
used acid and alcohol extractions to isolate plant viral RNA [2], or acid with NaCl and
ethanol for nucleic acid recovery from bovine pancreas [3]. However, at that time it was not
known if the isolated RNA was a single component or a mixture. The establishment of more
quantitative and qualitative methods for RNA isolation included new substances like 2 M
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guanidinium chloride [4], alkaline extraction without alcohol [5], phenol-water extractions [6]
and sodium chloride precipitations [7]. Especially, the finding that 4 M guanidinium chloride
inhibited pancreatic RNAses [8] resulted in high quality RNA isolation. Furthermore, using
chromatographic substances revolutionized the isolation of RNA and DNA becoming the
foundation for RNA/DNA binding column purifications. For example, the first columns
consisted of methylated serum albumin kieselguhr [9]. Even more superior, protamine-
coated kieselguhr [10] columns along with high salt elution demonstrated high quality
total RNA and DNA from rat livers, bacteriophages, bacteria and yeast but without RNA
or DNA specificities.

The methylene blue (MB) dye, a phenothiazine derivate, was synthesized in the middle
of the 19th century and produces a blue color when solubilized in water. Due to its small
molecular weight, fast diffusion properties and affinity for nucleic acids, MB was initially
used to detect tuberculosis in lung tissues [11] and it is still clinically used today for sentinel
node mapping, detection of methemoglobinemia, septic shock and neuroendocrine tumors
like insulinomas [12]. In addition, MB, which is United States Food and Drug Administration
(FDA) approved, exhibits antiseptic action and can protect tissues from anti-inflammatory
and anti-oxidant effects [12]. Importantly, MB also showed chemotherapeutical properties
as an antimalarial drug [12,13] and against cancers where MB is used for photodynamic
therapy [14–16]. The specific ability of MB to stain tissues instated MB as a pathological dye
and substituted May–Grünwald–Giemsa [17]. It was also shown that MB specifically binds
ssDNA and intercalates dsDNA [18]. MB binds tRNA [19] as well as cellular RNA, where it
was used for staining electrophoresed RNA in polyacrylamide gels [20]. Furthermore, MB
binds dsRNA and perturbates the dsRNA conformation [21]. However, it was noted that
pre-staining 4S and 5S RNAs with MB did not change the migration behavior compared to
unstained RNA [22].

For decades, tumor tissues archived via formalin fixed and paraffin embedded (FFPE),
fresh or flash-frozen (FF) methodologies represented the main pillars for clinical, therapeu-
tic, translational and basic research. Both ways of archiving tumor tissues have pros and
cons, but for RNA and DNA sequencing FF tissues are superior regarding RNA quality, al-
though a few laboratories did not find major quality differences compared to FFPE tissues [23].
Research is ongoing to improve existing methodologies for isolation of RNA especially from
FFPE tissues. We previously observed that when MB was incubated with FFPE tissue sec-
tions following deparaffinization and rehydration, tumor and normal urothelium regions
could easily be identified and microdissected. Therefore, we considered MB as a positive
aid for identification and microdissection of specific tissue regions. However, it is not
known if MB influences RNA throughout isolation used for gene expression studies.

In the present report, we systematically analyzed muscle invasive bladder cancer
(MIBC) tissues using five different RNA isolation methods comparing patient matched
FFPE and Tissue-Tek® FF tissues pre-stained with or without MB. These isolation methods
were based upon magnetic beads, columns or organic solvent extraction. MIBC is a grave
form of bladder cancer arising from urothelium, where patients have a five-year survival
of 40–60% [24]. Over the past decade, scientific efforts have led to the discovery of multiple
molecular MIBC subtypes, which on the one hand reflect the general biology of MIBC
and on the other hand strongly correlate with patient survival, response to chemotherapy
and immunotherapy [25]. Protein immunohistochemistry (IHC) is considered the gold
standard for identifying the two main MIBC luminal and basal subtypes [26]. Further
research has led to a common consensus for tumor subtyping, identifying six biologically
and clinically distinct subtypes, which can only be determined by RNA transcriptome
expression analysis [25]. Since clinical diagnosis uses FFPE material, only limited amounts
are available to isolate and perform RNA expression analyses such as real time PCR (qPCR)
or next generation sequencing (NGS) mRNA-seq. Thus, for assessment of MIBC subtypes it
is important to isolate high quality RNA and use the most suitable genes for normalization
of expression.
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Therefore, our main goal in this investigation was to determine if MB impacts RNA
during fractionation from MIBC tissues and influences RNA integrity based upon analyses
of ubiquitously expressed reference genes, such as 18SrRNA, with the use of 5SrRNA and
5.8SrRNA genes as a new approach for real time qPCR. Considering the recommendation
that rRNAs, which constitute 85–90 % of total cellular RNA are highly useful and accurate
internal controls and more reliable than other reference genes, a normalization of the
isolated RNA to total RNA using especially fluorescent RNA stains is advised [27].

According to multiple publications we chose 18SrRNA for our RNA integrity analyses
due to its high transcript abundance in total RNA, since it was reported to show increased
expression rates and reduced degradation compared to other reference genes [28]. It is very
important to establish reference genes, which do not show high variabilities between single
tumors and control tissues (according to the Minimum Information for Publication of
Quantitative Real-time PCR Experiments (MIQE) guidelines [29]); we therefore tested 34
widely used published reference genes with MIBC and control tissues and determined the
best genes for normalization in qPCRs and direct multiplex RNA hybridization. As “proof
of concept” using microdissection of MB stained FFPE tissues (n = 28) and one of the best
RNA isolation methods determined in this investigation, multiplex RNA hybridization and
mRNA sequencing confirmed luminal and basal MIBC tumor subtypes important for MIBC
diagnosis, patient prognosis and chemotherapy [25]. Our results highlight the importance
of MB for tissue microdissection enriching target RNA, but MB also has a positive effect on
RNA integrity throughout isolation especially using FF tissues.

2. Results

Proper handling and chemical processing of tumor tissues as a daily event at Pathology
Institutes is absolutely crucial for diagnosis. The retrieval of high quality nucleic acids,
such as RNA from archival tissues, is essential for studying the intrinsic gene expression of
tumors and can lead to the discovery of new biomarkers as well as profiling tumor subtypes
such as MIBC basal and luminal for patient prognosis [25,30]. Present methodologies for
analyzing gene expression used in laboratories world-wide are qPCR, RNA hybridization
and mRNA sequencing and ultimately bring knowledge into the public domain. To reach
high methodological standards for nucleic acid isolation, characterization and normal-
ization by establishing reference genes per tissue type should be continually optimized.
It is known that archival FFPE tissues yield more fragmented RNA due to storage time
and conditions but especially via chemical modifications by formalin, a solution which is
saturated formaldehyde in methanol and water [31]. Since FFPE isolated RNA in general
yields smaller fragments, we first sought to test whether MB, which specifically binds nu-
cleic acids, could influence the integrity of RNA using common isolation kits designed for
archival tissues. The same methodologies were performed with patient matched archival
FF tissue samples for comparison.

2.1. MB Tissue Treatment Identifies Histological Regions for RNA Microdissection

MIBC tissues were stained with MB and then specific targeted tumor regions, mi-
crodissected for RNA isolation. MB staining was similar to the state of the art hematoxylin
and eosin (H&E) regarding the histological appearance (Figure 1).
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Figure 1. Example of consecutive FFPE tissue sections showing state of the art hematoxylin and 
eosin (H&E) and similar methylene blue (MB) staining of normal urothelium and muscle invasive 
bladder cancer (MIBC). Top microscopy photos represent normal urothelium H&E staining (left) 
and MB (right). Bottom photos represent MIBC H&E (left) and MB tissue stains (right). Different 
histological tissue components: surface epithelia cells: umc = umbrella cells; bc = basal cells; Lamina 
propria; dTS = desmoplastic tumor stroma; IC = invasive carcinoma. Lower right bar = 100 µm. 

2.2. General Characteristics of Different RNA Isolation Methods for FFPE and FF Tissues 
Treated with or without MB 

For comparison, five different isolation kits were used to extract total RNA from 
FFPE and FF tissues stained with or without MB (Table 1). Each methodology is described 
in detail in the Materials and Methods. According to the manufacturer protocols, 5–10 µm 
tissue sections can be extracted for RNA using methodologies based upon magnetic beads 
(Methods A, B, D), column chromatography (Method C) or via an organic solvent (Method 
E). The cellulose coated paramagnetic beads in Method A are described as having a higher 
binding capacity and provide an isolation with a cleaner eluate than traditional DNA 
purification. For Method B, silica coated magnetic beads are used to bind nucleic acids. 
Germanium coated beads used in Method D guarantee an efficient binding of nucleic 
acids and a higher yield compared to other suppliers. During column chromatography 
with Method C, RNA together with chaotropic salts binds to the surface of glass fibers in 
a filter tube. After DNase I treatment and washing steps, the RNA is eluted by a low salt 
buffer. Lastly, isolation containing an organic solvent as in Method E facilitates the 
separation of RNA, DNA and proteins. Additionally, differences exist between the 
methods regarding handling of the samples. For example, for FFPE tissues proteinase K 
treatment was added prior to addition of a lysis buffer (Method A) or directly to the lysis 
buffer (Methods B–D) with a 40–60 min incubation (Methods A, B and D) or overnight 
(Method C). All FF tissues were incubated overnight with proteinase K regardless of the 
method. Furthermore, all samples were heat treated at 80 °C either before (Methods A and 
D) or after proteinase K treatment (Methods B and C). Methods A and E did not contain 
a DNAse I treatment, and thus it was added after the initial procedure. One final 
difference is the automated purification of RNA for Methods A and B. Within an 
instrumental run time of 40 min the RNA is isolated, eluted, and purified. This requires 
purchasing a specific instrument resulting in higher costs per reaction compared to the 
column based Method C, but might reduce human errors and enable large-scale projects. 
Methods A and B have a total hands-on time of 3 to 3.5 h, respectively, but only 2.5 h for 
Method C (Table 1). 

  

Figure 1. Example of consecutive FFPE tissue sections showing state of the art hematoxylin and eosin
(H&E) and similar methylene blue (MB) staining of normal urothelium and muscle invasive bladder
cancer (MIBC). Top microscopy photos represent normal urothelium H&E staining (left) and MB
(right). Bottom photos represent MIBC H&E (left) and MB tissue stains (right). Different histological
tissue components: surface epithelia cells: umc = umbrella cells; bc = basal cells; Lamina propria;
dTS = desmoplastic tumor stroma; IC = invasive carcinoma. Lower right bar = 100 µm.

2.2. General Characteristics of Different RNA Isolation Methods for FFPE and FF Tissues Treated
with or without MB

For comparison, five different isolation kits were used to extract total RNA from FFPE
and FF tissues stained with or without MB (Table 1). Each methodology is described in
detail in the Materials and Methods. According to the manufacturer protocols, 5–10 µm
tissue sections can be extracted for RNA using methodologies based upon magnetic beads
(Methods A, B, D), column chromatography (Method C) or via an organic solvent (Method
E). The cellulose coated paramagnetic beads in Method A are described as having a higher
binding capacity and provide an isolation with a cleaner eluate than traditional DNA
purification. For Method B, silica coated magnetic beads are used to bind nucleic acids.
Germanium coated beads used in Method D guarantee an efficient binding of nucleic
acids and a higher yield compared to other suppliers. During column chromatography
with Method C, RNA together with chaotropic salts binds to the surface of glass fibers
in a filter tube. After DNase I treatment and washing steps, the RNA is eluted by a low
salt buffer. Lastly, isolation containing an organic solvent as in Method E facilitates the
separation of RNA, DNA and proteins. Additionally, differences exist between the methods
regarding handling of the samples. For example, for FFPE tissues proteinase K treatment
was added prior to addition of a lysis buffer (Method A) or directly to the lysis buffer
(Methods B–D) with a 40–60 min incubation (Methods A, B and D) or overnight (Method
C). All FF tissues were incubated overnight with proteinase K regardless of the method.
Furthermore, all samples were heat treated at 80 ◦C either before (Methods A and D) or
after proteinase K treatment (Methods B and C). Methods A and E did not contain a DNAse
I treatment, and thus it was added after the initial procedure. One final difference is the
automated purification of RNA for Methods A and B. Within an instrumental run time
of 40 min the RNA is isolated, eluted, and purified. This requires purchasing a specific
instrument resulting in higher costs per reaction compared to the column based Method C,
but might reduce human errors and enable large-scale projects. Methods A and B have a
total hands-on time of 3 to 3.5 h, respectively, but only 2.5 h for Method C (Table 1).
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Table 1. RNA isolation methods summary.

A B C D E

Company Promega Promega Roche Stratifyer (Trizol,
Ambion)

Order # AS1400 AS1440 6650775001 XTRAKT FFPE 15596-026

Column
chromatography no no yes

glass fiber fleece no no *1

Magnetic beads yes
cellulose coated

yes
silica coated no yes

germanium coated
no *1

tissues FFPE FF FFPE FF FFPE FF FFPE FF FF

Cost [€] *2 340
340 + extra

compo-
nents

340 304 580 160

# of reactions 48 48 50 96 125 *3

Cost per reaction [€] 7.08 7.92 7.08 6.08 6.04 1.28

Total time *4 3 h 3.5 h 2.5 h (+1x O.N.) 3.5 h 3 h (+2x
O.N.)

special equipment Maxwell 16LEV
or RSC48

Maxwell 16LEV
or RSC48 – magnetic separation

rack –

RIN + MB *5 2.3 3.1 2.3 2.4 2.3 2.5 2.2 2.3 2.4

RIN −MB *5 2.3 3.1 2.3 2.4 2.3 2.5 2.2 2.3 2.4

DV200 + MB [%] *6 ~60 ~70 ~45 ~55 ~60 ~60 ~50 ~50 ~35

DV200 −MB [%] *6 ~50 ~70 ~50 ~70 ~60 ~45 ~65 ~60 ~35

*1 = phenol based organic solvent; *2 = net for Germany; *3 = calculated; *4 = total hands-on time; *5 = Mean RIN;
*6 = Mean DV200. No statistical significance between the different isolation methods for FFPE and FF was found
performing an ANOVA analyses for the RIN and DV200.

2.3. MB Tissue Treatment Shows Advantages during RNA Isolation of MIBC Tissues Compared to
Other Dyes with Different Methodologies

An initial comparison of extracted RNA from two MIBC FFPE tissues using Method A
in the presence of MB revealed statistically significant improved 18SrRNA values compared
to no MB treatment using qPCR (Figure 2A). The MB molecular structure is an organic chlo-
ride salt with 3,7-bis(dimethylamino)phenothiazin-5-ium as the counterion (C16H18ClN3S).
With this in mind, we asked the question, if other dyes with similar molecular structures or
nucleic acid binding properties like MB could also significantly affect 18SrRNA changes
using the same tissues. For example, Tolouidine blue (TB), an organic chloride salt with
3-amino-7-(dimethylamino)-2-methylphenothiazin-5-ium as the counterion (C15H16ClN3S),
also led to improved 18SrRNA values using qPCR. However, Crystal violet (CV), a hex-
amethylpararosaniline chloride (C25H30ClN3) led to variable 18SrRNA results (Figure 2A).
This supports the suggestion that the common chemical structures of both MB and TB are
important for improving RNA isolation Method A.

Upon finding MBs’ positive effect improving 18SrRNA values of two FFPE MIBC
tissues using qPCR, we tested four additional archival MIBCs with other RNA isolation
methods (Methods A–D for FFPE; Methods A–E for FF; n = 6 total tumors). Results
confirmed our initial findings with additional FFPE tissues and Method A (Figure 2B). In
contrast, using three other RNA isolation techniques (Methods B–D) with the same six
FFPE tissues did not significantly influence RNA integrity in terms of 18SrRNA using qPCR,
supporting no clear benefit of MB. On the other hand, when extracting RNA using the
same isolation methods (Methods A–D) with patient matched FF MIBC tissues, a profound
statistically significant improvement of 18SrRNA was found for three of four methods
(Methods A, B and C), with MB treatment compared to no MB (Figure 2C). Interestingly,
the RNA isolation of FF MIBC using Method D resulted in improved 18SrRNA without
MB. Lastly, Method E (Trizol) showed no significant differences of 18SrRNA between FF
tissues treated with or without MB. Trizol contains phenol and guanidinium thiocyanate
and is recommended for extracting FF tissues, although the process is time consuming
and phenol contamination is possible. Importantly, we observed that MB during RNA
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isolation fractionated into the organic phase, and thus was released from nucleic acids in
the aqueous phase, supporting no sustained RNA MB interaction. Although 18SrRNA is a
well-known reference gene, importantly, we normalized to the total RNA based on several
quantification methods including a fluorescent RNA stain detecting down to 5 ng/mL
RNA [32], and additionally normalized 18SrRNA to another reference gene (5.8SrRNA)
to calculate ∆Cts. Analysing ∆Cts of the RNAs isolated from the different methods with
MB showed that the highly significant changes (A _+MB and C_+MB) did not change in
significance (Figure 2E). However, the lower significant changes using 18SrRNA Ct (A_+MB
FFPE, B_+MB FF and D_−MB FF) were no longer significant (Figure 2B–E).
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Figure 2. MIBC qPCR 18SrRNA values of RNA isolated from FFPE and FF tissues using different
isolation methods. (A) Graph shows 18SrRNA Ct values (Y-axis) from RNA isolated from two
FFPE MIBC tissues (#128, #226) using Method A (Table 1). MIBC tissues were microdissected from
Methylene blue (MB); Toluidine blue (TB) or Crystal violet (CV) stained samples prior to RNA
extraction. Graph shows tissue 128 without (−) MB compared to 128 with (+) MB (green dots)
** p = 0.0022 and 128 +TB: ** p = 0.0022; and tissue 226 −MB compared to 226 +MB (green dots):
** p = 0.0022 and 226 +TB: * p = 0.0411 and 226 +CV: ** p = 0.0022, n = 6 technical replicates. (B) Each
box graph shows 18SrRNA Ct values (Y-axis) from RNA isolated from six different FFPE MIBC tissues
with (+) or without (−) MB prior staining using four different isolation methods (A–D) (Table 1);
n = 6 technical replicates; * p = 0.0481 Method A (graph in green). All other results either with (+)
or without (−) MB were not statistically significant. (C) Each box graph shows 18SrRNA Ct values
(Y-axis) from RNA isolated from the six different FF patient matched MIBC tissues to FFPE tissues
(see B) above with (+) or without (−) MB prior staining using five different isolation methods A–E
(Table 1); A−MB to A +MB (green graph), ** p = 0.0043, B−MB to B +MB (green graph), * p = 0.039, C
−MB to C +MB (green graph), ** p = 0.0022, D−MB to D +MB (red graph), * p = 0.026; all comparisons
to A +MB with B +MB, C +MB, D +MB and E +MB were ** p = 0.0022; all were performed with n = 6
technical replicates. (D) Box graphs for isolated RNA from MIBC FFPE tissues after normalization
of 18SrRNA with 5.8SrRNA (∆Ct). (E) Box graphs for isolated RNA from MIBC FF tissues after
normalization of 18SrRNA with 5.8SrRNA (∆Ct). ** p = 0.0065 (A +MB) and ** p = 0.0022 (C +MB).
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In summary, our results show that, in the presence of MB, RNA isolation from FFPE
tissues using Method A and from FF tissues using Methods A–C, statistically significantly
improved RNA integrity using qPCR for 18SrRNA Ct, and especially for Methods A and C
from FF tissues even after normalization.

In order to rule out any artifactual effects due to MB, which has an emission at 610 and
664 nm [33], we performed several control experiments. Due to the fact that MB interacts
with nucleic acids, we asked whether MB could interfere with optical density readings
affecting qPCR. Analyzing optical density measurements of isolated RNA from MIBC
tissues from the different isolation methods, in the presence or absence of MB, showed an
RNA absorbance at 260 nm, but not at 610 nm and 664 nm. Secondly, if MB was bound to
RNA but below the level of detection, we tested the possibility, if MB could interfere with
the qPCR results using SYBR-Green, which binds DNA with an absorbance of ~497 nm
and emission of ~520 nm. We added MB in dilutions from 1:10 to 1:2000 to purified RNA
and then performed cDNA-synthesis. In addition, MB was added to synthesized cDNA
and then employed qPCR for 18SrRNA. Results showed for all experiments, except for
the highest concentration of a 1:10 MB dilution with cDNA, no detectable differences in
amplification signals in the presence or absence of MB (Figure S1). These results suggest
that MB based upon its emission properties does not interfere with qPCR causing artifacts.

2.4. Evaluating the Integrity of Isolated RNA from FFPE and FF Tumor Tissues

In order to determine RNA integrity, we analyzed the RNA integrity number (RIN),
which evaluates 18SrRNA (1869 bp; e.g., NR_003286) and 28SrRNA (5070 bp; e.g., NR_003287)
regions compared to the total area under the curve, including the height of the 28SrRNA
peak [34]. Analyzing RNA from two patient matched FFPE and FF MIBC tissues (#126,
#128) using all five isolation methods, with or without MB, RINs ranged between 2.2 and
3.5, without any significant improvement using MB (Table 1, Figure S2A–E). Due to the
findings that archival tissues mostly result in inadequate RINs, we tested the same RNAs
as above using a novel RNA integrity analysis called DV200 [35]. The DV200 determines
the percentage of RNA fragments over 200 nucleotides as developed by Agilent (http:
//urx.red/OB4Y) (accessed on 8 October 2021) [35]. However, no significant differences
were found comparing FFPE and FF using the different isolation methods in the presence
or absence of MB (Table 1, Figure S2A–E).

In order to further address the integrity of the different isolated RNAs, we imple-
mented a new reference approach to detect RNA in the amplification range of approximately
~100 bp for qPCRs. Routinely, qPCR primers for reference and target genes are designed
to amplify regions between 90 and 150 bp. Uniquely, our designed primers detected
the constitutively expressed 5SrRNA (121 bp; e.g., X51545.1) and 5.8SrRNA (156 bp; e.g.,
NR_146120.1). Like 18SrRNA, 5.8SrRNA is transcribed by RNA-Polymerase I, whereas
5SrRNA is transcribed by RNA-Polymerase III [36]. In contrast to all other reference and
target genes, the advantage of assessing 5S and 5.8SrRNAs using our primer design shows
that amplification for each gene can only occur, if these rRNAs are full length fragments.
Therefore, amplification of both rRNAs could reflect a quality qPCR reference for smaller
RNAs below 200bp. QPCR results showed that the addition of MB significantly improved
5S and 5.8SrRNA expression similar to 18SrRNA (Figure 3A,B). In addition to implementing
both rRNAs as reference genes, we also examined the ratios of 5SrRNA to 5.8SrRNA gene
expression of FFPE and FF MIBC tissues for all RNA isolation methods and from five nor-
mal placenta tissues (Figure 3C). Interestingly, the FFPE 5SrRNA to 5.8SrRNA ratios (1.01
to 1.28) were generally higher compared to FF tissues (0.94 to 1.23) and human placenta
(1.07). Especially for FF tissue isolation with Method C, MB improved the overall ratios
(+MB: 0.98–1.13; −MB: 0.63–0.95).

http://urx.red/OB4Y
http://urx.red/OB4Y
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Figure 3. MIBC qPCR 5SrRNA and 5.8SrRNA values from RNA isolated from FFPE and FF tissues
using different isolation methods. (A) Each box graph shows 5SrRNA Ct values (Y-axis) from RNA
isolated from six different FFPE MIBC tissues and patient matched FF MIBC tissues with (+) or
without (−) MB prior staining using four different isolation methods (A–D) (Table 1); ** p = 0.0022,
n = 6 technical replicates. (B) Each box graph shows 5.8SrRNA Ct values (Y-axis) from RNA isolated
from six different FFPE MIBC tissues and patient matched FF MIBC tissues with (+) or without (−)
MB prior staining using four different isolation methods for FFPE (A–D) and five isolation methods
for FF (Table 1); ** p = 0.0043; * p = 0.026, n = 6 technical replicates. (C) Graph shows ratios (Y-axis) of
5SrRNA/5.8SrRNA Ct values from RNA isolated from six different FFPE MIBC tissues and patient
matched FF MIBC tissues with (+) or without (−) MB prior staining using four different isolation
methods for FFPE (A–D) and five isolation methods for FF tissues (Table 1). Far right represents
control human placenta (n = 5) (flash frozen tissue in liquid nitrogen and isolated with Method E)
used for comparison.

2.5. GUSB, TBP and UBC Are the Most Suited Reference Genes for MIBC and Normal
Bladder Urothelium

In contrast to qPCR, direct multiplex RNA hybridization is an amplification free, highly
multiplexed and throughput technique with significant sensitivity and robustness [37].
In order to determine the most suitable reference genes for MIBC and normal urothelium,
34 commonly used reference genes from the literature were tested using direct multiplex
RNA hybridization and FFPE tissues (Table S2). We chose Method B for RNA isolation,
which showed excellent 18SrRNA, 5SrRNA and 5.8SrRNA values in the presence of MB
prior treatment (Figure 2B). In addition to the 6 FFPE MIBC tissues we expanded our cohort
to a total of 28 MIBC and 5 normal urothelium isolated RNAs also using Method B and MB
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for microdissection. All raw counts were first normalized to the positive plate control to
minimize technical errors between runs. Subsequently, all expression counts of the MIBC
and normal urothelium were analyzed for each reference gene by calculating the coefficient
of variation (COV) or relative variability, which represents the standard deviation of a group
of values divided by their mean. The COV was determined in percent with the lowest COV
supporting the best constant reference gene expression (Figure 4A,B). Analysis revealed
three reference genes: Glucuronidase beta (GUSB; HGNC:4696) (COV 61.44%), Ubiquitin
C (UBC; HGNC:12468) (COV 61.38%) and TATA-box binding protein (TBP; HGNC:11588)
(COV 70.99%). GUSB is involved in the degradation of glycosaminoglycans [38]. The TATA
box-binding protein (TBP) is the DNA-binding subunit of RNA polymerase II transcription
factor D, essential for expression of most protein-encoding genes [39]. As a member of
the ubiquitin family, Ubiquitin C (UBC) is a polyubiquitin precursor, and conjugation of
ubiquitin is associated with many cell functions, especially with protein degradation [40].
Finally, these genes were also positively confirmed using qPCR, as indicated by slope
values of standard curves for 18SrRNA −3.221 (R2: 0.997), for TBP −3.55 (R2: 0.990) and
for UBC −3.69 (R2: 0.979) (Figure S2F–H). Interestingly, comparing the standard curves,
slopes and R2 of RNA isolated from two different MIBC FF tissues further indicates that the
isolation technique results in similar RNA concentrations and degradations and confirms
highly similar amplification efficiencies and linearity.

2.6. MIBC Subtyping of Luminal and Basal Tumors Comparing Protein IHC, Direct Multiplex
RNA Hybridization and mRNA Sequencing

MIBC can be subtyped into clinically significant luminal and basal subtypes correlating
with patient prognosis and response to chemotherapy [25]. This 2020 published consensus RNA
transcriptome subtyping of 1750 MIBC defined six biologically different tumor subtypes:
three luminal subtypes (luminal papillary/LumP, luminal genomically unstable/LumU
and luminal/Lum); one stroma-rich subtype, with marked stroma signatures, where most
tumors classify with luminal; one basal/squamous subtype and one subtype with neuroen-
docrine differentiation (NE-like). To validate our above results in terms of clinical relevance,
we implemented the same RNA processes as above (Method B for RNA isolation with MB
prior tissue treatment) and compared the performance of direct multiplex RNA hybridiza-
tion subtyping (normalized as above) with two objective reference standards: protein IHC
subtyping and mRNA consensus subtyping to test for congruence. Using unsupervised hi-
erarchical clustering of six subtyping genes assessed by multiplex RNA hybridization (basal
differentiation: KRT5, KRT14, CD44; luminal differentiation: KRT20, GATA3, and FOXA1),
28 tumor samples were each classified as either basal or luminal subtypes (Figure 4C).
The concordance rate with protein IHC and simplified mRNA reference subtyping was
100% (Figure 4D). Furthermore, all additional luminal subsets of the consensus subtyping
were classified as luminal using the direct multiplex RNA hybridization subtyping panel
(Figure 4D).
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Figure 4. Identification of stable reference genes for MIBC and control tissues. (A) Using direct multiplex
RNA-hybridization of MIBC (n = 28) and control bladder (n = 5), the coefficient of variation (COV) in
% was calculated. Line shows mean COV of all reference genes and green points represent the most
stable expressed reference genes. (B) Graph (Y-axis) demonstrates the COV % of six different reference
genes using qPCR: 5SrRNA (sharp circle), 5.8SrRNA (square), 18SrRNA (triangle) and confirmation
of the three most stable reference genes, TBP (triangle), GUSB (diamond) UBC (blurred circle) for
combined MIBC and control bladders. Although 18SrRNA showed a relative high COV of 21.7%,
it represented the gene with the highest detection rate (lowest Cts). (C) Unsupervised hierarchical
cluster analysis of 28 MIBC based on six subtyping genes (basal differentiation: KRT5, KRT14, CD44;
luminal differentiation: KRT20, GATA3, FOXA1) assessed by multiplex RNA-hybridization and
normalized according to the three optimal housekeeping genes GUSB, TBP and UBC. Fourteen
samples were classified each as basal or luminal. (D) Comparison of multiplex RNA-hybridization
subtyping, protein IHC subtyping (derived by IHC assessment of KRT5/CK5, KRT14/CK14, CD44,
KRT20/CK20, GATA3 and FOXA1) and transcriptome consensus subtyping. Consensus subtyping
is displayed in two categories: (1) “simplified” divided into a luminal and a basal category and
(2) “detailed” divided into a basal and four luminal categories (luminal, luminal papillary/LumP,
luminal unstable/LumU and stroma-rich). Importantly, concordance rates between multiplex RNA-
hybridization subtyping and other approaches amounted to 100%; furthermore, all luminal subsets
were correctly classified as luminal by multiplex RNA-hybridization subtyping.

3. Discussion

Routine pathological tissue processing to establish biobanks of archival tissues gener-
ally involves FFPE, Tissue-Tek® or liquid nitrogen. All tissue processing methods share
one critical step, the time period after surgery prior to fixation. This waiting time varies
between patient surgeries and understandably cannot be standardized. Following tissue
oxygen ablation, rapid RNA fragmentation begins and progresses over time as more anoxic
as well as hypoxic conditions due to a reduction of pH prevail [41]. Methods involving im-
mediate freezing stabilize RNA and DNA structure; however, it is well known that formalin
preserves RNA and DNA structures by introducing nucleotide crosslinking, especially with
proteins, but also results in strand breakage into fragments with an average of 100–200 bp
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length [41–44]. Furthermore, formalin fixed tissues can lead to additional RNA fragmen-
tation following paraffin embedding upon exposure to light. On the other hand, paraffin
can lead to high molecular weight RNA aggregates, resulting in low yield and poor quality
RNA [45]. Thus, a limiting factor in retrieving RNA from FFPE tissues is complete paraffin
removal, rehydration and protein breakdown to help free nucleotide crosslinks [41,46].
Even more problematic is the additional RNA damage during fractionation that can occur
with the use of various isolation methods. Therefore, the task of isolating RNA from a
preserved tissue state is not only challenging as regards choice of the correct method, but
also further research is needed to improve RNA integrity.

Chemical dyes for the histology of pathological tissues are critical for diagnosis, but
can also be an aid for microdissection and enrichment of specific tissue regions for isolation
of RNA and DNA needed for molecular studies. To date no systematic studies comparing
FFPE with FF human tissues treated with or without MB and addressing its influence
on RNA integrity had been performed. Thus, we investigated whether MB staining
of FFPE and FF tissues has an influence on RNA integrity, using four or five isolation
methods, respectively. Our study brings forth new knowledge that MB tissue staining
prior to RNA fractionation results in improved RNA integrity especially with FF tissues
as determined by qPCR. Importantly, we found that MB tissue staining is easily done
within 20 s and its emission does not influence RNA optical density measurements or qPCR
using SYBR-Green. As both MB and toluidine blue share similar molecular structures and
significantly improved 18SrRNA values using qPCR, MB led to an overall improvement of
RNA integrity primarily with FF tissues, which was also reflected by qPCR of 5SrRNA and
5.8SrRNA (Figures 2 and 3). Except for isolation Method A, all other methodologies led to
no significant 18SrRNA, 5SrRNA or 5.8SrRNA differences when FFPE tissues were treated
with or without MB.

Examining similarities and differences of RNA extracted from FF and FFPE patient
matched MIBC tissues treated with or without MB helps to explain the molecular basis
of how MB may positively influence RNA integrity. Although FF and FFPE fractionated
RNA fragments were generally smaller in size, no significant RIN or DV200 differences
were found. Using our new approach of using 5SrRNA and 5.8SrRNA as reference genes
detecting less than 200 bp, both genes showed improvement using qPCR from FF tissues
treated with MB, but not with FFPE tissues. This not only confirms our 18SrRNA results
for both FF and FFPE tissues, but also supports increased preservation of RNA fragments
throughout isolation from FF tissues treated with MB. We propose that the overall improve-
ment of RNA integrity, when implementing MB with FF tissues, most likely stems from the
lack of formalin and paraffin fixation and crosslinking found for FFPE tissues [41,46–48].
With the same time period prior to fixation, RNA from patient matched FFPE and FF
tissues without MB treatment, shows a negative effect of formalin reducing RNA integrity
(FFPE Ct mean = 17.71; FF Ct mean = 12.88 for 18SrRNA; n = 6 tumors; isolation Meth-
ods A–D). In addition, use of MB also showed a statistically significant benefit to RNA
integrity when comparing individual isolation methods for FF tissues (e.g., Method C: no
MB, Ct mean = 13.99 and with MB Ct mean = 10.04 for 18SrRNA) (Figures 2 and 3).

Since RNA fragmentation is ongoing in tissues prior to fixation and upon formalin
treatment when nucleic acids cross link, specifically RNA, this leads to hydrolysis [41,47,48].
Therefore, we support the idea that formalin fixed RNA fragments are preserved in struc-
ture, but during isolation the RNA is more resistant to MB in stabilizing its structure and
thus the RNA becomes more fragile leading to poorer integrity. This could be due to
remaining cross linked residues and residual paraffin explaining why no differences in
18SrRNA, 5SrRNA and 5.8SrRNA qPCR were observed for most isolation methods using
FFPE tissues with or without MB. On the other hand, we propose that MB RNA interca-
lation in FF tissues stabilizes and preserves RNA structure from further fragmentation
during isolation resulting in a benefit for RNA integrity. In addition to using 5SrRNA
and 5.8SrRNA as marker genes for the integrity of smaller RNA fragments below 200 bp,
expression of 5SrRNA (via RNA polymerase III) and 5.8SrRNA (via RNA polymerase I) can
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also represent an advanced quality check of the cellular state. For example, Tetrahymena
cells showed 1:1 molar ratios of 5SrRNA: 5.8SrRNA during log growth phase. In contrast,
starved Tetrahymena cells synthesized approximately 15% more 5SrRNA over 5.8SrRNA,
supporting 5SrRNAs as a biomarker for changes in physiological cellular conditions [49].
Examining 5SrRNA:5.8SrRNA gene expression ratios for all RNA isolation methods, FF
MIBC tissues demonstrated ratios closer to 1.0, which could reflect more stable conditions
with less cellular stress following loss of blood supply prior to fixation for these six bladder
tumors (Figure 3C). Alternatively, 5SrRNA:5.8SrRNA gene expression ratios were higher
than 1.0 for matched tumor FFPE tissues with identical pre-fixation waiting times, sug-
gesting a higher stability of 5SrRNA during formalin induced RNA fragmentation. Note
that, for example, 5SrRNA is used as a preferential reference RNA for micro RNA (miRNA)
identification in body fluids [50].

Another important advantage of MB is the similar staining of tissues compared to H&E
(Figure 1). The relative short staining protocol of MB versus H&E not only has a benefit of
less time, but probably also a positive effect for RNA quality. Although we did not compare
RNA integrity of MB versus H&E stained tissues, it was shown previously that RNA
isolated from H&E stained tissues harbors the risk of RNA damages, especially without
RNAse inhibitors [51]. The risk of RNA degradation was also found to be dependent on
the time of the H&E procedure, because a reduction from 26 min to 5 min for the H&E
staining improved the RNA quality [52]. Thus, MB is similar to H&E staining for histology
and the advantage of MB per se for RNA quality could indicate MB as a superior stain for
laser capture microdissection or spatial sequencing.

Several publications described the identification of reference genes for bladder can-
cer [53–55]. For example, using 9 candidate genes and 14 tumor and control tissues,
Ohl et al. found SDH and TBP as most stable genes using qPCR (Table S3) [53]. Concerning
TBP as a suitable reference gene, this was also established in this present investigation
using direct multiplex RNA hybridization. Interestingly, we also identified GUSB and TBP
as suitable references for the MIBC and control bladder. Considering the additional steps
of cDNA synthesis and amplifications, several factors can mask the best reference genes as
also mentioned earlier, such as primers and normalization [28]; thus one recommendation
could be to analyze reference genes of tissues with direct multiplex RNA hybridizations
and confirm using qPCR.

MIBC is subtyped into clinically relevant luminal and basal subtypes important for
patient prognosis, chemotherapy and immunotherapy response [25]. This is of particular
importance, since MIBC subtype assessment is likely to become a routine clinical standard
in the near future, if current ongoing clinical trials validate the importance of subtypes
prospectively in randomized settings [25]. Currently, several protein or RNA methodologies
exist to assess luminal basal molecular subtypes, e.g., protein subtyping using IHC [56] or
mRNA consensus subtyping [25]. Our study demonstrates that when using MB to enrich
tumor regions for RNA isolation, along with gene expression normalization using high
quality reference genes, high concordance rates between IHC and different gene expression
tumor subtyping approaches is achieved. Previously, we implemented a larger panel of
genes for subtyping both luminal and basal MIBC subtypes using RNA hybridization [30].
In this report, using a minimum of 3 genes to identify each tumor subtype with both RNA
methodologies demonstrated a high specificity. Therefore, it is reasonable that microdissection
of targeted tissue regions stained with MB leads to an enriched tumor RNA population
with a greater specificity of single copy genes. Due to the clinical significance of MIBC
subtyping for patient prognosis and therapy response, our findings clearly underline the
importance of proper handling of FFPE tissues. These include standardized RNA isolation
methods resulting in high integrity as well as use of correct reference genes in order to
achieve precise subtyping results using IHC subtyping and/or direct mRNA hybridization
or NGS mRNA-seq. This is relevant as usually only FFPE tissue samples are available in
routine patient care scenarios.



Int. J. Mol. Sci. 2022, 23, 10267 13 of 18

4. Materials and Methods
4.1. Ethics Approval and Consent to Participate

The present study was approved by the Ethic Commission of the Friedrich-Alexander-
University of Erlangen-Nürnberg (252_20 B; 302_19 Bc; 353_15 B). All the procedures were
performed in accordance with the ethical standards established in the 1964 Declaration
of Helsinki and later amendments. All patients gave written consent for the use of their
tumor or normal tissue material.

4.2. Formalin-Fixed, Fresh-Frozen and Flash-Frozen Tissue Samples

Formalin-fixed, paraffin-embedded (FFPE) and Tissue-Tek® embedded fresh-frozen
(FF) archived tissues (2008–2019) included in this study were: (1) FFPE MIBC (n = 6) and
matched FF MIBC samples (n = 6); FFPE MIBC samples (n = 23); (2) FFPE normal control
urothelium (n = 5) from non-cancer patients. In addition, five control placental tissues (3rd
trimester) were flash-frozen into liquid nitrogen.

4.3. Tissue Processing and Methylene Blue (MB) Staining of Tissues for Histology,
Micro-Dissection and RNA Isolation

Tissue de-paraffinization and re-hydration: All tissues were processed according to our
standard methodology: FFPE 10 µm tissue cuts were first treated at 70 ◦C for 1 h in a
dry oven to facilitate paraffin melting. Tissue cuts were then incubated for 10 min at
RT in a sequential order with the following solutions for further de-paraffinization and
rehydration: (1) 3 × Roti-Histol (Carl Roth, #6640.4); (2) 100% Ethanol (Carl Roth, #5054.3);
(3) 96% Ethanol; (4) 70% Ethanol and (5) dH2O with 0.1% DEPC. Matched FF 10 µm tumor
tissues were incubated 2 times for 5 min with 70% Ethanol and dH2O to remove Tissue-Tek®.

MB tissue staining: Following tissue de-paraffinization and re-hydration, tissue cuts
were incubated with or without MB (1% solution, Carl Roth #AE64.1) for: (1) FFPE and FF
10 µm tissue sections on glass slides to demonstrate specific histological staining and tumor
quantity (Figure 1); or (2) RNA isolation from microdissected MB stained tissue regions.
For staining, tissues were incubated for 20 s in MB 1:3 diluted in DEPC treated tap-H2O (the
time was empirically determined in order not to saturate the tissue) and washed 2 times
each 10 s with sterile dH2O (total time ~1 min). Then samples were centrifuged (16,000× g
for 5 min at RT) to remove the dH2O, and the first solution of the corresponding RNA
method was added.

Hematoxylin/Eosin (H&E) tissue staining: A modified shortened protocol for H&E
histological staining of tissue cuts was used: 1 mL hematoxylin (Sigma Aldrich, Taufkirchen,
Germany #GHS332) was added to the slide and incubated for 3 min at RT. The slides were
washed 2 times with dH2O (each 1 min) and 1 mL of bluing buffer (Dako #CS702) for 1 min
was added. After 1 time washing with dH2O (1 min), 1 mL eosin was added for 1 min at
RT, again washed with dH2O (total time ~10 min). Lastly, all H&E and MB stained tissue
slides for histological analyses were cover slipped with glass slides and a mounting buffer
(Eukitt, Orsa-tec, #6.00.01.0001.06.01.01).

4.4. RNA Isolation from FFPE and Tissue-Tek® FF Matched Tumor Tissue Samples Using
Different Methodologies

Six MIBC FFPE and matched FF tumor tissues (n = 6), each 10 µm thick, were stained
either with or without MB as above and then immediately processed using different RNA
isolation methods to determine RNA integrity. Regarding all methodologies below, the Pro-
teinase K digestion step was extended to overnight for all FF tissues, if applicable. The four
RNA isolation methods are shown in Table 1 and explained below with some modifications.

The following total RNA isolation methodologies were used for comparison: (1) Maxwell
RSC DNA Blood kit (Promega, #AS1400) (Method A). For RNA tissue extraction a pur-
chased incubation buffer (Promega, #D920B) was added replacing the DNA extraction
buffer. Briefly, samples were heated to 80 ◦C for 10 min, then Proteinase K and Protec-
tor RNase Inhibitor (Roche, #3335399001) were added, followed by incubation at 56 ◦C
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for 1 h while shaking. Afterwards, an RNA lysis buffer (Promega, #Z3051) was added
and the samples were pipetted into the cartridges (supplied by the manufacturer) and
processed by a Maxwell RSC machine. Since this isolation method does not involve a
DNase I step, 20 U RNAse-free DNase I (Roche, #04716728001) was added for 1 h at
37 ◦C. (2) Maxwell RSC RNA FFPE kit (Promega, #AS1440) (Method B). Samples were
processed according to manufacturer’s instructions, starting at the Proteinase K incubation
along with the addition of an RNA Protector RNase Inhibitor. (3) High Pure FFPE RNA
Isolation Kit (Roche, #06650775001) (Method C). Samples were processed according to
manufacturer’s instructions, starting at the Proteinase K incubation along with the addition
of an RNA Protector RNase Inhibitor. (4) XTRAKT FFPE kit (STRATIFYER Molecular
Pathology GmbH, Cologne, Germany) (Method D). Samples were processed according
to manufacturer’s protocol. (5) Trizol (Thermo, #15596-026) (Method E). Only FF MIBC
tissues and FF normal placental tissues (first treated for 5 s using a Micro-Dismembrator
(853162, B. Braun) were isolated for RNA according to manufacturer’s instructions with
some modifications. Briefly, Isopropanol was added to the aqueous phase (1:1, v/v) in
the presence of 20 µg Glycogen (Sigma-Aldrich, #10901393001) at −20 ◦C overnight, the
samples were centrifuged (16,000× g, 1 h, 4 ◦C) and the supernatant removed. RNA was
washed with 80% ethanol, air dried, solubilized in DEPC treated dH2O, DNAse I treated as
above, precipitated with 0.6 M sodium acetate in the presence of ethanol and incubated
overnight at −20 ◦C. Samples were centrifuged, washed with 80% ethanol, air dried and
solubilized with DEPC treated dH2O.

4.5. Purification and Quality Control of RNA from FFPE and FF Tissue Samples

After RNA isolation was performed using the different methods described above, all
RNAs except for Trizol isolated, were further purified using an equal volume of chloroform
(Fisher-Sci., #366919), centrifuged (16,000× g, 10 min, 4 ◦C), a back-extraction with TE
buffer (10 mM Tris pH 7.6, 1 mM EDTA pH 8.0) to ensure no loss of RNA during extraction
and then the aqueous phases containing RNA were precipitated with 100% ethanol in
the presence of Glycogen and 0.6 M sodium acetate and incubated at −20 ◦C overnight.
RNA samples were centrifuged (16,000× g, 1 h, 4 ◦C) and the supernatant removed. RNAs
were washed with 80% ethanol, air dried and solubilized in DEPC treated dH2O and then
quantified using the QuantiFluor® RNA System (Promega, #E3310) and Nanodrop 2000
(Thermo Scientific). RNA quality, like the RNA Integrity Number (RIN) and the DV200
was assessed using the Bioanalyzer 2100 with the corresponding 2100 Expert Software
from Agilent.

4.6. cDNA Synthesis and qPCR

For cDNA a total of 1 µg RNA per sample was reverse transcribed to obtain a con-
centration of 20 ng/µL cDNA using Applied Biosystems High Capacity cDNA Reverse
Transcription Kit (ABI, #4368813). For qPCR, 40 ng cDNA, SYBR Select Master Mix (ABI,
#4472919), 200 nM of each primer were analyzed using the StepOnePlus Real-Time PCR
Systems (Applied BiosystemsTM). All primer nucleotide sequences for qPCR are shown in
Table S1.

4.7. The nCounter™ System: Multiplex RNA Hybridization

Thirty-four reference genes and six MIBC subtyping target genes with NCBI Accession
numbers (Table S2) were analyzed as nCounter™ probes. The nCounter™ assay was
performed according to the manufacturer’s recommendations within a range from 100 to
500 ng of total RNA. Raw data were then pre-processed using the nSolver 4.0 software
and normalized to six synthetic internal positive controls (POS A, POS F) to measure the
hybridization efficiency.
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4.8. Whole Transcriptome mRNA Sequencing

mRNA sequencing was performed using the Lexogen QuantSeqTM 3′ mRNA-Seq Kit
FWD (Lexogen GmbH) which allows for the generation of Illumina-compatible libraries
from poly-adenylated RNA. 250 ng of purified total RNA were used in input for library
preparation which was carried out according to manufacturer’s instructions. The QuantSeq
protocol creates libraries close to the 3′ end of the transcripts generating only one fragment
per transcript. Sequencing of the QuantSeq libraries was performed on the Illumina
NovaSeq 6000 platform (single end; 1 × 75 bp) yielding at least 20 M clusters per sample.
Pre-processing of demultiplexed raw data (FASTQ files) was performed via the nf-core
RNA-seq pipeline v.3.3 [57]. In particular, reads were adapter- and quality-trimmed using
Trim Galore v.0.6.6 (Babraham, Bioinformatics) and mapped to the Ensembl human genome
assembly GRCh38 (release 104) [58] using STAR v.2.6.1d [59]. Read counting at transcript
level was performed using Salmon v.1.4.0 [60] relying on the Ensembl gene annotation file
release 104. Gene-level counts were generated from Salmon’s transcript-level quantification
files relying on the R-package tximport v.1.16 [61] within R v.4.0.3 [62].

4.9. MIBC Subtyping

Twenty eight MIBC samples were classified into luminal and basal subtypes based
on three different approaches: (1) Protein immunohistochemistry (IHC) determination of
luminal and basal subtypes adapted from a previous report [63]. (2) RNA subtyping using
multiplex RNA hybridization (Nanostring) gene expression data (Table S2). Data were
normalized to the best reference genes determined in this study, log2 transformed and
then subtypes were identified by unsupervised hierarchical clustering (average linkage
algorithm with Euclidean distance as metric scale); (3) RNA reference subtyping using
mRNA sequencing data. Gene counts were log2 transformed and then MIBC consensus
subtypes calling was performed in R v. 4.1.0 using the single sample classifier R-package
BLCAsubtyping v.2.1 (https://github.com/cit-bioinfo/BLCAsubtyping) [25].

4.10. Statistical Analyses

All statistical analyses such as two-tailed Mann—-Whitney U test, coefficient of varia-
tion (COV), ANOVA and Pearson correlation coefficients (R2) as well as all graphs, were
performed using GraphPad Prism 9. A p-value < 0.05 was considered statistically significant.
Unsupervised hierarchical clustering was performed with JMP SAS 13.2.

5. Conclusions

In conclusion, we outline several messages when isolating RNA from archival tissues.
MB can easily be used for staining tissues of interest for microdissection and RNA isolation
resulting in no artifacts due to its chemical properties. We recommend employing MB
when extracting RNA from FF tissues especially using Methods B and C, which leads to
improved RNA integrity and reference gene expression, like 18SrRNA and 5SrRNA and
5.8SrRNA. When isolating RNA from more commonly available FFPE archival tissues,
implementing MB becomes a choice depending on the amount of targeted tissue within
a sample for RNA isolation and analyses. This becomes important since most methods
extracting RNA from FFPE tissues did not show any differences in RNA integrity with or
without MB. However, when using microdissection, MB helps to identify specific tissue
regions leading to enrichment of an RNA population. As a recommendation, staining with
MB and implementing Methods B or C results in excellent 18SrRNA using qPCR, which also
demonstrated 100% congruence of MIBC tumor subtyping gene expression using direct
multiplex RNA hybridization compared with IHC and mRNA sequencing. Our above
recommendations could also be important for spatial sequencing and laser dissection.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms231810267/s1.
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