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ABSTRACT: The human ACE2 enzyme serves as a critical first recognition
point of coronaviruses, including SARS-CoV-2. In particular, the extracellular
domain of ACE2 interacts directly with the S1 tailspike protein of the SARS-
CoV-2 virion through a broad protein−protein interface. Although this
interaction has been characterized by X-ray crystallography, these structures
do not reveal significant differences in the ACE2 structure upon S1 protein
binding. In this work, using several all-atom molecular dynamics simulations, we
show persistent differences in the ACE2 structure upon binding. These
differences are determined with the linear discriminant analysis (LDA) machine
learning method and validated using independent training and testing datasets,
including long trajectories generated by D. E. Shaw Research on the Anton 2 supercomputer. In addition, long trajectories for 78
potent ACE2-binding compounds, also generated by D. E. Shaw Research, were projected onto the LDA classification vector in
order to determine whether the ligand-bound ACE2 structures were compatible with S1 protein binding. This allows us to predict
which compounds are “apo-like” versus “complex-like” and to pinpoint long-range ligand-induced allosteric changes in the ACE2
structure.

■ INTRODUCTION
Human angiotensin-converting enzyme 2 (ACE2) is a metallo-
carboxypeptidase that cleaves isoforms I and II of the
angiotensin peptide. ACE2 is a key regulator of blood volume
and is expressed in tissues throughout the cardiovascular system,
in arterial smooth muscle cells, and in endothelial cells in small
and large arteries. Together with the proto-oncogene MAS,
ACE2 also functions to reduce acute injury and inhibit
fibrogenesis in the lungs.1 Structurally, ACE2 is a zinc
metallopeptidase, 805 residues in length. It has three domains:
extracellular (residues 18−740), transmembrane (residues
741−761), and cytoplasmic (residues 762−805) (Figure 1A).
Notably, ACE2 acts as the host receptor for viral entry of
coronaviruses, including severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2),2,3 which is responsible for the
coronavirus disease (COVID-19) pandemic. Two other
coronaviruses, namely, SARS-CoV4 and HCoV-NL63,5 also
use ACE2 as a primary means of viral entry. All three of these
coronaviruses use the S1 subunit of their extracellular spike
glycoproteins to bind to ACE2 as a host receptor. Therefore, a
better understanding of how to prevent ACE2−S1 interactions
could be a key component in ongoing drug development efforts
to combat coronavirus infection.6−10

The extracellular part of ACE2 is composed of a small neck
domain and a large clam shell-shaped globular domain (also
referred to as the “peptidase domain”) that is divided by a deep
channel, approximately 60 Å in length, into subdomains I and II
(Figure 1B). Subdomain I involves the active site of the enzyme
with a bound zinc ion as a cofactor (yellow sphere in Figure 1B).

The SARS-CoV-2 S1 protein attaches to the N-terminal helix
(H1) in subdomain I. Another functionally important loop
region (residues 131 to 142) is located on subdomain II, which is
involved in ACE2 dimerization with the neck domain (residues
616−726).11 ACE2 has seven N-linked glycosylation sites,
although none of these play a major role in S1 protein binding.
However, there is recent evidence that some glycosylated
residues can form direct hydrogen bonding interactions with
S114−16 and, in particular, that Asn90 plays a stabilizing role in
ACE2−S1 interactions,17 although this evidence is mixed.18

The details of the ACE2 interaction with the S1 proteins of
SARS-CoV-2 and of other ACE2-hosted coronaviruses are of
great interest for the discovery of receptor−virus interaction
inhibitors. Several MD simulation andmodeling studies recently
showed that SARS-CoV-2 binds to ACE2 stronger than other
coronaviruses and identified critical interacting residues19−25

and suggested key mutations in the conserved residues on the S1
spike protein that would lower binding affinity.26 Hadi-
Alijanvand and Rouhani27 determined mutations on ACE2
that affect affinity between ACE2 and the S1 protein using
several fast computational predictors, such as PISA28 and
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FoldX.29 They proposed mutations that enhance affinity and
found one mutation (V485L) that causes a lower affinity than
the wild-type ACE2. They also proposed that closed
conformations of ACE2 have higher affinity to S1 than open-
state conformations.
The extracellular domain of ACE2 is homologous to other

metallo-peptidases such as ACE,30 carboxypeptidase Pfu,31 and
neurolysin,32 which all share the characteristic “clam shell”
structure. Neurolysin dynamics were studied in detail in our
previous work33 using MD simulations and the linear
discriminant analysis (LDA) machine learning method. Our
findings compared contact networks of the apo neurolysin and
neurolysin bound to an allosteric inhibitor and pinpointed
several differences that were far from the inhibitor-binding site,
which suggests long-range allosteric behavior in metallo-
peptidases.
Motivated by the devastating impact of the COVID-19

epidemic, the dynamics of ACE2 homodimers has been recently
investigated in a number of studies using molecular dynamics
simulations. Mohammad et al.34 simulated wild-type homo-
dimer ACE2 and its N720Dmutant form to compare the affinity
of ACE2 to type-II transmembrane serine protease (TMPRSS2)
that cleaves ACE2 on its N-terminus, which is required for the
interaction of ACE2 with the S protein. Their binding affinity
predictions and MD simulations showed that the mutant form
has higher affinity; therefore, they propose that N720D mutant
ACE2might be more susceptible to S1 protein binding. Another
study by Barros et al.16 takes into account the membrane in their
1.0 μs simulation for the apo and complex ACE2 with the spike
protein. They compared the head tilt angles of apo and complex
ACE2 from the membrane and showed that, due to ACE2
flexibility, more than one ACE2 protein can be accommodated
by a single spike protein in the up conformation. Earlier in 2020,
a series of longMD simulations for the apo and S1-bound ACE2
were performed on the Anton 2 supercomputer35 and made

available to download.36 They also examined 5152 molecules in
an FDA-investigational drug library37 usingMD simulations and
docking and selected 78 out of these molecules that remained
bound to ACE2. These candidate compounds are located at
three distinct regions on ACE2 that are involved in either the
interaction with the spike11,14 or ACE2 homodimerization.11

Here, we analyze recently obtained crystal structures of both
the apo and SARS-CoV-2 S1 protein-bound structures of the
ACE2 peptidase domain, to identify differences between these
two forms, searching for the hallmarks of S1 protein binding in
the ACE2 structure. Differences in these structural ensembles
have the potential to inform the design of allosteric inhibitors of
ACE2−S1 interactions that slow or prevent viral entry.
Compounds that generate more “apo-like” ACE2 structures
could decrease the binding affinity of the S1 protein, as ACE2
must pay an additional free energy cost to reconfigure its
structure to be compatible with S1 protein binding. In the
extreme case, apo-generating compounds could act as allosteric
inhibitors that block S1 protein binding entirely. We then
perform several independent all-atom MD simulations using
CHARMM38−40 for the apo and spike S1 protein-bound forms
of the ACE2 peptidase domain and compare differences
observed in these simulations with those in the ACE2 crystal
structures. We further apply LDA to automatically detect
structural differences between apo and complex ACE2 and
generate several LDA classification vectors that can quantify
ACE2 conformations on a spectrum of “apo-like” versus
“complex-like”. These vectors are then applied to a massive
simulation dataset of 78 ACE2-binding ligands recently made
available by D. E. Shaw Research, allowing us to classify each of
these compounds as “apo-generating” or “complex-generating”
based on their structural impact on the ACE2 peptidase domain.
We hope that these findings will throw light on critical sites for
allosteric modulation of ACE2−S1 interactions and provide a

Figure 1. Overview of the ACE2 structure. (A) View of the ACE2 dimer structure interacting with the viral S1 protein (PDB: 6M1711). (B)
Extracellular peptidase domain of ACE2 and the S1 protein. Key residues discussed in the text are labeled and shown in licorice representation. The
catalytic Zn2+ ion is shown in yellow. (C) View of the molecular interactions between helices 1 and 2 of the peptidase domain with the S1 protein.
Specific interactions were determined using the PDBSum database,12,13 and interacting residues are labeled and shown in licorice representation.
Residues from the S1 protein are shown in bold.
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general study of the relationship between ligand binding and
conformational change in metallo-peptidases.

■ METHODS

Molecular Dynamics Simulations. We performed 30
independent MD simulations for apo and S1 protein-bound
ACE2 systems, constructed using the crystal structures
1R42.pdb41 and 6M17.pdb,11 respectively. Both structures
have missing residues; therefore, overlapping regions are
identified, and residues 21−612 are simulated in a cubic box
with 10 Å distance between the structure and the box
boundaries. For ACE2, GlcNAc glycans (2-acetyl-2-deoxy-β-D-
glucosamine) are attached to six Asn residues (residue numbers
are as follows: 53, 90, 103, 322, 432, and 546). A single GlcNAc
is attached to Asn 343 of the S1 protein. Both systems were
solvated using NaCl ions at a concentration of 0.15 M. The Zn2+

ion at the active site is also included in the simulations. Non-
bonded interactions were treated with PME and a van der Waals
switching function with a cutoff of 10 Å. Simulations were run
using the CHARMM36 forcefield38−40,42 and OpenMM version
7.5.0.43 We use theNPT ensemble, achieved with aMonte Carlo
barostat set at 1 atm with volume moves being attempted every
100 steps. The systems were equilibrated for 125 ps at 310 K
using a 1.0 fs timestep. Initial velocities were given to each of the
30 replicates and ran for 100 ns at 310 K using a 2.0 fs timestep.
In total, 1.5 μs of simulation data were collected and analyzed
using MDTraj version 1.9.1.44

In addition to our CHARMM MD simulations, we used
simulations for the apo and S1-bound systems that were
provided by D. E. Shaw Research (DESRES).36 All DESRES
simulations were run on the Anton 235 supercomputer.
Simulations of 10 μs for the apo and ACE2 were initialized
from the same crystal structures used in our simulations. The
Amber ff99SB-ILDN forcefield45 for proteins and the
generalized Amber forcefield46 for glycosylated Asn residues
were used in DESRES simulations. NAG groups (2-acetamido-
2-deoxy-β-D-glucopyranose) were attached to the same Asn
residues of ACE2 and S1 as mentioned above. NaCl ions were
added to neutralize the systems with a final concentration of 0.15
M. The data collection interval was set to 1.2 ns. The simulations
were performed at 310 K in the NPT ensemble.
DESRES examined 5152 molecules in an FDA-investigational

drug library37 and selected 78 out of these molecules that
remained bound to ACE2 in 2 μs-long MD simulations. These
ACE2-binding compounds are located at distinct regions on
ACE2: a pocket underneath a helical bundle (residue 20−100)
near the top of the ACE2 deep channel, a pocket involving a β-
hairpin structure (residue 346−360) near the S1-interacting
site,11,14 and a pocket behind a loop near the ACE2-
homodimerization site11 (residue 131−142). Ligand-bound
simulations were initiated from a different crystal structure with
PDB ID: 6VW1.14 The same simulation parameters were used as
in the previous apo and complex DESRES simulations.
Linear Discriminant Analysis. LDA is a machine learning

method that is used for dimensionality reduction in multiclass
systems. In this method, LDA builds a set of projector variables
that minimize the intra-class information while maximizing the
separation between classes. After LDA training, one can use
these projector variables to predict classes for new, unlabeled
data. In MD simulations, LDA can be used to detect differences
between datasets and predict the class index of a new
conformation. Classes can correspond to any labels attached

to the inputs; here, we use two classes for ACE2 conformations:
“apo” and “complex”.
To apply LDA to an MD simulation dataset, we first need to

project each conformation onto a set of features (qm) that
minimally represent all of the pertinent dynamics of the system.
Here, we use x, y, z coordinates of different groups such as C-
alpha atoms and residue side chains. The feature set qm is
projected onto a low-dimensional set of projector variables ym
using a projection matrix W. For the m-th simulation and t-th
sample, ym can be written as

=y W qm t
T

m t, , (1)

The mean of the entire dataset (y̅) and the mean for each class
y( )m are calculated. Then, the average variance values within the
classes and between the classes are computed using eqs 2 and 3,
respectively
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where ||·||2 is the Euclidean distance.
The generalized eigenvalue problem for the matrix Φbetween/

Φwithin was solved using singular value decomposition, as
implemented in the LDA class in the scikit-learn package.47

After this, the first LDA mode gives the best separation between
the apo and complex classes in this project. Translational and
rotational degrees of freedom were removed from the LDA
mode vector. The elements of this vector yield specific residues
that describe the differences between the classes and are used to
draw arrows for vector visualization.

■ RESULTS AND DISCUSSION
Comparison of Apo and S1-Bound ACE2 Crystal

Structures. As a starting point, we first examine differences
that can be gleaned from the apo and S1-bound ACE2 crystal
structures alone. This reveals little information, as the structures
show only slight differences: alignment of the apo (PDB:
1R4241) and S1-bound, referred to hereon as “complex”
(PDB:6M1711), ACE2 crystal structures results in a Cα root-
mean-square deviation (RMSD) of 0.78 Å. To determine the
regions of ACE2 that differ most significantly between the
structures, we calculate the Cα rmsd for each residue. The
highest differences (above a cutoff of 0.20 Å) are found in the N-
terminus (Ile21), the central loop (residues 331−347) in
subdomain I, and Leu424, Pro426, Asp427, and Phe428 on the
bottom loop of the subdomain I. Residue-level rmsd was also
calculated between the structures after thermal equilibration,
and very similar results were obtained.
The S1 protein binding interface involves the N-terminus

helices (H1 and H2: residues 21−100) of ACE2. Although this
region is directly perturbed by the S1 protein, we do not observe
significant differences (aside from Ile21) in the protein
backbone. Using all-atom rmsd, we identify differences in the
side chain conformation for residues Ile21, Glu23, Lys31,
Met82, and Gln89 that exceed a cutoff of 0.45 Å. Residues in this
region that are interacting with S1 are shown in Figure 1C,
including Lys31 and Met82. rmsd profiles between the apo and
complex ACE2 structures can be seen in Figure S1.
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We go further to compare the backbone dihedral angles (ϕ, ψ,
and ω) between the two crystal structures (Figure S2, left). The
shaded region identifies residues with significantly different
values (>π/2) of one or more of these dihedral angles, which are
summarized in Table 1. ϕ angle comparison between the apo
and complex crystal structures revealed six residues as outliers,
and Asp213 is the most different one (top outlier), which is on
the loop (residues 205−219) at the backside of ACE2. From ψ
angle comparison between ACE2 crystal structures, seven
residues are revealed as outliers, and Gln325 near the S1-binding
site is the top outlier. The most striking difference was observed
from the Glu145/Pro146 ω angle, which resulted from the
different isomerization states of the proline residue.
Overall, these two methods of structural comparison had little

overlap, and it is not clear whether these differences between the
crystal structures will persist between the apo and complex forms
of ACE2 in a biologically relevant environment. We next
conducted a series of all-atom molecular dynamics simulations
of both the apo and S1-bound systems in order to identify
significant structural differences in ACE2 that occur upon S1
protein binding.
MDSimulations Reveal Differences in Critical Dihedral

Angles in ACE2.We simulated a set of 15 trajectories for each
of the apo−ACE2 and ACE2−S1 systems, each one 100 ns in
length. Throughout the simulations for the complex, the ACE2−
S1 interface remained intact. We repeat the ϕ, ψ, andω analysis,
this time by computing probability distributions for each angle.
Figure S2 (right side) compares the most probable angles of
these distributions between the apo and S1-bound forms of
ACE2. Outliers are again identified using differences >π/2 and
summarized in Table 1. The MD outliers showed significant
overlap with those computed directly from the crystal structures,
although some unique information was obtained. For ϕ, three of
six of the crystal structure differences persisted during the MD
trajectories. For ψ, four of seven of the crystal structure
differences persisted, although in addition, the MD trajectories
identified three new residues (Gly211, Ile291, and Val339),
where differences were not found in the crystal structures. The
comparison ofω angles again showed that Glu145/Pro146 is the
only clear significant difference. As expected, we did not observe
any proline isomerization changes in either the apo or complex
trajectories.
Unfortunately, when angle probability distributions have

multiple peaks, the abovementioned measurement can be
sensitive to small changes that affect which angle is the global
maximum. To address this, we also determine outlier residues
using the “earth mover’s distance” between the probability
distributions of each backbone angle, which essentially measures
how much total probability needs to be moved in order to
transform one probability distribution into the other. This was
achieved using the pyemd package,48,49 while taking the periodic
nature of the angles into account. Again, we observe a moderate
overlap with the crystal structure outliers, although there were

changes in the angles that were considered the most significantly
different.
Note that differences in Pro146 conformations were carried

over from isomerization differences in the crystal structures used
for the apo (1R42, cis) and complex (6M17, trans) simulations.
To investigate this further, we examine the Pro146 conforma-
tion in all ACE2 structures that have been published to date
(Table S1). A total of 10 of the 37 structures showed Pro146 in
the trans conformation, 25 were cis, and the remaining two were
intermediate between cis and trans conformations. Interestingly,
both cis and trans Pro146 conformations have been shown to be
compatible with S1 protein binding. The trans conformation
was particularly observed for full-length ACE2 structures that
are in the dimer state11 and for an engineered trimeric form of
ACE2.50 As Pro146 is adjacent to the dimerization loop, it is
possible that isomerization is an important role in function. We
also note that this residue is conserved with high probability
(94%) among ACE2 sequences across organisms (see ACE2
sequence alignment in the Supporting Information).
In summary, some of the differences in crystal structure

backbone angles between the apo and complex crystal structures
are also observed in probability distributions obtained from the
simulations. Differences in the central loop of subdomain I
(Gly337, Asn338, and Val339) show up persistently in the
backbone analysis and the residue-level rmsd analysis. Most
clearly, theω angle analysis clearly points to a single residue that
is observed both in the crystal structures and simulations. While
this type of structural analysis can be useful to point us to specific
residues and regions of the protein, it does not provide a way to
synthesize this information. For instance, if we were presented
with another ACE2 structure and asked to predict whether it is
compatible with the apo or S1-bound form, we could look
individually at central loop conformations or specific backbone
angles, but there is no clear way to combine this information into
a single number that can be used for scoring. Next, we employ
the LDA method to do exactly this.

LDA Automatically Detects ACE2 Structural Differ-
ences.We applied LDA to the apo and complex trajectories (15
runs for each) to identify structural differences between the two
forms of ACE2. LDA yields a classification vectoranalogous to
collective variables in principal component analysisthat
results in the largest differences between the classes, while
maintaining small differences within the classes.51,52 This has
been recently used to analyze molecular simulations,33,53

including to determine collective variables for enhanced
sampling simulations.54,55 As there are only two classes during
training here (“apo” and “complex”), the analysis yields only one
LDA vector. Projection of a structure onto this vector yields a
single scalar, which in this case assesses whether the structure is
“apo-like” or “complex-like”. We split the apo and complex data
into three subsets of five runs each in order to evaluate both
training and testing accuracy, as summarized in Table S2. To
rigorously test the generalizability of the LDA vectors, we train

Table 1. Key Residues (Outliers) Determined from Dihedral Angle Analysis between the Apo and Complex Structures of ACE2a

crystal structure outliers MD outliers (most probable) MD outliers (EMD)

ϕ Ser106, Asp213*, Gln325, Gly326, Gly337, Val339, and
His345

Gly211*, Gly326, Gly337, Val339, Asn394 Glu145, Gly147, Gly326*, Val339, and Asn394

ψ Ile21, Ser105, Glu145, Thr324, Gln325*, Pro336,
Gly337, and Val339

Glu145, Gly211, Ile291*, Gln325, Pro336,
Gly337, Val339

Ile21, Glu145*, Ile291, Gln325, Pro336, Gly337,
and Val339

ω Glu145/Pro146* Glu145/Pro146* Glu145/Pro146*
aAsterisks indicate outlier residues with the largest differences. Molecular dynamics (MD) outliers are determined using both the most probable
angle and the “earth mover’s distance” (EMD) between the probability distributions.
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on one-third of the data and test on the remaining two-thirds.
Accuracy values for each state (“apo” or “complex”) are
calculated as the fraction of samples that are successfully
predicted in that state, using the LDA projection value and a
cutoff distinguishing the two states.
We first build a predictor using all of the ACE2 Cα atoms

(residues 21−612), denoted as “CA-592”, as we use 592 Cα
atoms in the feature set. Training using each of the three subsets
yields a good separation between the apo and complex datasets
and a prediction accuracy value of 1.00 in the training set. The
testing accuracy values of this training are only slightly lower
compared to the training accuracy values (0.95−1.00). As
expected, training using all runs (1−15) again gives a prediction
accuracy of 1.00, although no data remain for testing. Probability
distributions of LDA projections resulting from different feature
sets are provided in Figure S3. Predictors with perfect accuracy
yield probability distributions that are completely separated. As
these distributions start to overlap, particularly with testing data,
the accuracy falls below 1.00. Displacements in the LDA mode
of CA-592 performed using all runs are shown using a vector
representation in Figure 2, where key residues are denoted.

Atomic intensity values for this LDA mode are calculated using
the components of the LDA vector (see the Methods) and
shown in Figure S4. Here, CA-592 automatically predicted that
the most significant difference between the apo and complex
ACE2 can be explained with two residues, Glu145 and Pro146,
which is consistent with the dihedral angle analysis discussed
above.
As mentioned earlier, D. E. Shaw Research (DESRES)

performed 10 μs-long MD simulations for the apo and complex
ACE236 on the Anton 2 supercomputer.35 We added these

trajectories to our set of 15 apo and complex trajectories and
applied LDA to the combined set; this LDA vector is denoted as
CA-592-DR. The training and testing accuracy values on our
trajectories are slightly lower than those of CA-592, indicating
that the conformational differences between the two sets of
trajectories impaired the generalizability among the trajectories
generated here. However, adding DESRES and our data
together yielded a similar LDA mode as that of CA-592 (Figure
S4B,D). Again, Glu145 and Pro146 appeared as by far the largest
components of the CA-592-DRmode. It is worth noting that the
DESRES trajectories began in the same isomerization states for
Pro146 as those used in our work. Comparison of atomic
intensities for CA-592-DR and CA-592 is provided in Figure
S4C.
The dominance of Glu145 and Pro146 in the LDA modes of

CA-592 and CA-592-DR is clear and consistent, but
unfortunately, the projections will be dominated by the
positions of these two residues, and other residues that
contribute to apo/complex conformational differences will be
obscured. We thus removed these two residues from the feature
vectors and repeated the LDA for our 15 apo and complex
trajectories; this predictor is denoted as CA-590. The training
and testing accuracy values for each subset and the whole dataset
in CA-590 are similar to those of CA-592 (Table S2). In this
case, the LDA mode of CA-590 has a more collective behavior
that involves the displacements of the bottom half of
subdomains I and II and the bottom part of the N-terminus
helices 1 and 2. Some of the significant key residues are on the
dimerization loop (Pro138 and Gln139); on the loop that
connects the beta sheets in subdomain I (Pro336, Gln340, and
Lys341); and on the loop that is near bottom arms of the S1−
protein (Gly326), as shown in Figure 2B. Atomic intensity
values for CA-590 and comparisonwith those of CA-592 are also
provided in Figure S4E,F, respectively. Compared to all the
differences obtained from the backbone angle and residue-level
rmsd analysis, the LDA analysis revealed nine new residues.
In addition, we introduce another predictor that focuses on

the ACE2−S1 binding interface by only taking into account
residues in the first two helices of the N-terminus (residues 21−
100) in the LDA calculations. For the binding interface, we
performed LDA in two different ways: (i) using only CA atoms
(named as “CA-INT”) and (ii) using CA atoms and the centers
of geometry of the side chain heavy atoms (named as “CA/SC-
INT”, where SC represents “side chains”). Both training and
testing accuracy values for CA-INT are lower than those of CA-
590 and CA-592 (Table S2). Figure 2C shows displacement
vectors for CA-INT where 11 key residues are labeled. Seven of
them are S1-interacting residues (data taken from PDBsum12,13)
and are underlined in the figure. On the other hand, CA/SC-
INT revealed 10 key residues, where three of these are not found
by CA-INT (Lys26, Asn53, and Val93), as shown in Figure 2D.
Thr27 and Tyr41 are the only key residues where both CA and
SC atoms are revealed as significant, and they are also involved in
direct S1 interactions. Key residue Lys31 that is observed in both
CA-INT and CA/SC-INT is the residue in common with the
findings from the residue-level rmsd comparison between ACE2
crystal structures.

Application of LDA Classification Vectors to Ligand-
Bound ACE2 Systems. Several recent computational studies
proposed that some potent molecules either directly bind to the
interface,56−68 to a distant site from the interface,69 or to the
active site of ACE270,71 with the goal of allosterically affecting
the interactions between ACE2 and S1 and help prevent the viral

Figure 2. Mode vectors from LDA. Each panel shows LDA vectors
visualized as arrows on the ACE2 structure. Figure labels refer to
specific LDA vectors obtained with different molecular features, as
described in the text. For CA-592, CA-590, and CA-INT, the pink
arrows show the contribution of each Cα atom to the LDA vector. For
CA/SC-INT, the pink arrows show the Cα contributions, and the green
arrows show contributions from the side chains. The bottom two
structures show only the interface region of ACE2 composed of helices
1 and 2. Labels in panels (C) and (D) highlight residues with significant
contributions to the LDA vector. Residues that directly interact with the
S1 protein are underlined.
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entry of SARS-CoV-2. As mentioned earlier, DESRES also
shared several MD simulations that were performed for ACE2 in
complex with 78 compounds predicted to bind tightly to
ACE2.36 The binding sites for these compounds are shown in
Figure 3A and grouped as follows: near S1-interacting site11,14

(green), inside the deep channel of ACE2 (purple), on the
backside of the top part of ACE2 (orange), near the ACE2-
homodimerization site11 (blue), and near the loop that connects

the beta sheets in subdomain I (cyan). The identities of these
compounds are also given in Table S3.
In this section, we aim to predict if any of these compounds

might prevent S1 binding using only the atomic positions of
ACE2 structures generated in the ligand-bound ACE2 DESRES
simulations. Here, we use the LDA predictors generated in the
previous section, which separate well the apo and complex
ACE2 structures, to classify 78 ACE2-binding compounds36 and

Figure 3.Analysis of ligand-induced conformational change in ACE2. (A) Binding sites of 78 ACE2-binding ligands simulated by D. E. Shaw Research
are shown. Ligands are colored according to their binding site, as described in the text. (B) The correlation matrix of different LDA predictors is shown
using a coloredmatrix. Themean LDA projection value was determined for each of the 78 ligand-bound trajectories. Each square shows the correlation
between the sets of mean values determined by a given pair of LDA predictors (red = high positive correlation, white = no correlation, and blue = high
negative correlation). (C) A scatter plot is shown comparing the mean LDA projection values for the CA-590 and CA/SC-INT predictors for each of
the 78 ligand-bound trajectories. Each point is colored according to its binding site in panel (A). (D) 2D free energy plots are projected onto CA-590
and CA/SC-INT for different trajectories. From left to right these are (i) 15 apo trajectories (100 ns each); (ii) DESRES 2 μs trajectory for AG-1
(CHEMBL71263), the top apo-generating ligand; (iii) DESRES 2 μs trajectory for AG-2 (CHEMBL2218894), the second-most apo-generating
ligand; (iv) 15 complex trajectories (100 ns each); (v) DESRES 2 μs trajectory for CG-1 (CHEMBL2105737), the top complex-generating ligand; and
(vi) DESRES 2 μs trajectory for CG-2 (CHEMBL3218576), the second-most complex-generating ligand.

Table 2. Most Apo-Generating and Most Complex-Generating Compoundsa

aCompounds were ranked according to the number of apo-predicted frames using the CA-590 and CA/SC-INT LDA predictors. ⟨CA-590⟩ and
⟨CA/SC-INT⟩ show the average value of the LDA predictor across all frames in the trajectory, which are also plotted in Figure 3C. 2D chemical
structures are generated using CDK Depict.72

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00325
J. Chem. Theory Comput. 2021, 17, 5896−5906

5901

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00325/suppl_file/ct1c00325_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00325?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00325?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00325?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00325?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00325?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00325?fig=tbl2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00325?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


investigate the extent to which these compounds are apo-
generating or complex-generating, for example, whether they
produce more apo- or complex-like ACE2 conformations,
respectively. We first calculate the correlation between the LDA
predictors using the mean projection score values of each of the
78 ligand molecules. Figure 3B shows the correlation matrix for
five LDA predictors (CA-592, CA-590, CA-592-DR, CA-INT,
and CA/SC-INT). Here, positive correlations are denoted in
red, whereas blue is for negative. Interestingly, we observe two
sets of correlated predictors: (i) CA-592, CA-590, and CA-592-
DR and (ii) CA-INT and CA/SC-INT. Little correlation is
observed between the predictors in each set. It is particularly
significant that predictions from pairs such as CA-592:CA-590
and CA-INT:CA/SC-INT show a strong correlation, as these
vectors are significantly different when viewed on the ACE2
structure.
We now focus on both the CA-590 and CA/SC-INT

predictors, as these yield orthogonal information about the
ligand-induced ACE2 conformations, neither of which is
dominated by the Pro146 conformation state. Figure 3C
compares the mean projection values obtained from CA-590
and CA/SC-INT predictors for 78 compounds. Figure 3C
shows whether the inhibitors are more apo-generating or
complex-generating along the CA-590 and CA/SC-INT axes,
where each ligand point is colored based on its binding site. Dual
apo-generating compounds that lie in the bottom left corner of
this plot are of great interest and should be further investigated
to examine their ability to prevent S1 binding. In general, this
scatter plot shows that there is no distinct clustering of
compounds that are found in the same binding site. However,
notably, the compounds near the S1-binding interface (green,
except one) are clustered in the complex−complex quadrant
(top right), whereas eight of the homodimerization site
compounds (blue) that bind near the dimerization loop are in
the apo−apo quadrant. We ranked the compounds according to
the combined number of frames predicted as “apo” and examine

the top two apo-generating compounds (Table 2). To identify
the most complex-generating compounds, we also take into
account the proximity of the mean LDA scores to that of the
complex ACE2 simulations. Thus, we picked compounds with a
high combined number of frames predicted as “complex” that
are near the right upper edge of the complex−complex quadrant
in Figure 3C. The top two apo-generating compounds are from
the homodimerization site (blue) set, whereas the top two
complex-generating compounds are from the deep channel
(purple) set, as marked in Figure 3C. In Figure 3D, CA-590
projection values are plotted against CA/SC-INT values as free
energy maps for the apo- and complex-generating compounds.
Free energy maps of apo and complex ACE2 are also provided
for comparison. The apo-generating compounds have relatively
similar free energy distributions compared to those of the apo,
whereas the complex-generating compounds have larger
distributions even than those of the complex, which is
particularly significant, as the S1 protein was not present during
any of the inhibitor-bound simulations.

Comparison of Contact Networks for Apo- and
Complex-Generating Ligands. Contact networks are one
of the ways to explore the formation and/or loss of amino acid
contacts within different conformational ensembles.73−75 Here,
we calculate the distance between the closest heavy atoms of
each pair of residues for all frames of a given trajectory using the
MDTraj44 package. Note that for a residue i, the contact pairs (i,
i + 1) and (i, i + 2) are excluded in the calculation. For all other
pairs of residues, we calculate cij = 1/1 + exp(a(dij − d0)), where
dij is the closest distance between residues i and j, d0 is a cutoff
equal to 5.0 Å, and a is a parameter controlling the steepness of
the cutoff, set here to 17 Å−1. To estimate uncertainties in cij, we
divide the trajectory into four subsets and determine the average
of cij for all residue pairs in each subset. We then identify
significant differences between the apo- and complex-generating
ligands by comparing differences between the averages with the
standard deviations across the subsets. Figure 4 shows the most

Figure 4. Contact networks for the most apo- (AG-1) and complex-generating (CG-1) compounds. (A) Colored cylinders show contacts that are
uniquely present in the simulations with ACE2 bound to apo-generating (blue: contacts in AG-1) and complex-generating (red: contacts in CG-1)
compounds. (B) Characteristic snapshots of the most apo- and complex-generating ligands focusing on the S1-binding site (left), the central helices
(center), and distal helices (right). The corresponding regions are outlined using matching colored boxes in panel (A).
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significant differences in the contact networks of the trajectories
for the most apo- and complex-generating ligands. These are
visualized on the ACE2 structure, where blue indicates a contact
that is uniquely observed in the apo-generating ligand trajectory
and red indicates that in the complex-generating ligand
trajectory.
We observe that many contacts are significantly different

between the apo- and complex-generating ligand trajectories,
which are distributed throughout the ACE2 structure. In both
cases, these contact changes exist far from binding sites of each
compound. The most significant contact differences are the
interactions in the S1 binding interface (black box in Figure 4),
near the dimerization loop (yellow box), and between the
central helices of ACE2 (blue box). At the S1-binding interface,
the salt bridge between Asp38 and Lys353 is present in the apo-
generating ligand trajectory (c38−353 = 172 ± 16.15) but not
when the complex-generating compound is bound (c38−353 =
20.75 ± 8.69), where the uncertainties are calculated using
bootstrapping, as discussed above (see Table 3). Tyr41, another

S1-interacting residue, loses its contacts with Asp355 and
Arg357 in the complex-generating ligand trajectory, again in
agreement with apo and complex trajectories. Note that all five
of these residues interact with the S1 protein. Near the
dimerization loop, residue Gln175, which plays a role in ACE2
dimerization,11 makes a contact with Ile126 when the complex-
generating compound is bound. Notably, we do not see any
contact change in the active site of ACE2 in both cases.
Together, these results clearly suggest that ACE2 is susceptible
to large-scale ligand-induced conformational changes and that
compounds bound to a variety of sites far from the S1-binding
interface have the potential to modulate the binding free energy
of the S1 protein.

■ CONCLUSIONS
Here, we used a large set of molecular dynamics simulations of
both apo and S1-bound ACE2 to identify significant structural
differences that are caused by the binding of the S1 subunit of
the SARS-CoV-2 tailspike. We then trained a classifier using
LDA to quantitatively assess whether a given ACE2 con-
formation is “apo-like” or “complex-like” and applied this to a
large dataset of 78 ligand-bound ACE2 trajectories made
publicly available by D. E. Shaw Research.36 This study was
enabled by the unprecedented outpouring of scientific
collaboration brought about by the COVID-19 pandemic, in
both the structures used for initializing the simulations,11,41

insights into glycosylation of both ACE2 and the S1
subunit,14−17 and long trajectories of ACE2 used here. However,
we expect that the general approach of identifying structural
differences and using classifiers to prioritize compounds can be
useful beyond the ACE2−S1 protein interaction. A benefit of
this approach is that it explicitly prioritizes compounds that
stabilize a given structural ensemble at the expense of another,

which can potentially offer a means of disrupting ACE2−S1
complex formation without perturbing the ACE2 function.
The simulations here comprised only those of the peptidase

domain, which as shown in Figure 1 is part of a larger protein
with intracellular and transmembrane components. ACE2 can
also form dimers and complexes with the supporting proteins,
TMPRSS2. Our focus on a single peptidase domain, either alone
or in complex with the viral tailspike S1 domain, was motivated
by the minimal contacts made across the dimer interface, and it
enabled us to efficiently run longer timescale trajectories.
However, it is possible that ACE2 peptidase conformations
could differ in the context of the full system. Interestingly, both
of the most apo-generating ligands examined here (vadimezan
and fluvastatin) bind near the peptidase domain dimerization
loop. The potential for these compounds to alter the ACE2
function by disrupting dimerization should be investigated in
future studies.
Here, we examined both data generated on a GPU cluster and

data generated on the Anton 2 supercomputer by D. E. Shaw
Research.35 Anton is unique in that it can efficiently generate and
run very long trajectories, and those here were either 10.0 μs for
the apo and complex trajectories or 2.0 μs for the ligand-bound
simulations. In contrast, our simulations for apo and complex
ACE2 systems were performed on parallel GPUs: 15
simulations, each 100 ns long. Longer simulations allow for
new information to be revealed, as they are able to surmount
large energetic barriers and explore regions of space that are
farther from the initial structure. In contrast, larger ensembles of
trajectories can more conclusively show whether observed
differences are statistically significant; although longer trajecto-
ries can be divided into segments (or blocks) for bootstrap error
analysis, this can be complicated by long correlation times and
non-ergotic behavior. For this reason, we consider the LDA
vectors verified by independent training and testing sets to be
the most reliable predictor of ACE2 structural differences.
The testing accuracy of LDA classifiers can vary significantly

depending on the features used. We find, intuitively, that it is
much easier to achieve high classification accuracy on a training
set than on independent testing data, although some predictors
could achieve near-perfect accuracy in testing as well. The
prediction accuracy goes down when training data and testing
data were from different environments. Interestingly, we find
that there are different ways to make successful predictions that
reveal complementary information (e.g., CA-590 and CA/SC-
INT). While the all-C-α approach is general and can pick up on
long-range allosteric effects, the interface obviously focuses on
structural information that is likely to be important for S1
binding. Here, we use both and were able to find ACE2-binding
ligands that were apo-generating with respect to both LDA
predictors simultaneously.
Finally, note that here, the LDA projections assess only the

similarity of a given ligand-bound ACE2 conformational
ensemble with that of the apo- and complex-ACE2 ensembles.
An implicit assumption in this analysis is that higher
dissimilarities between the ligand-bound and complex ensem-
bles would result in a less-favorable binding free energy of the S1
protein. This could be directly examined in future work by
calculating the free energies of binding between S1 and ACE2
restricted to different conformations. Along the same lines, to
have a substantial effect, an allosteric inhibitor should have a
strong binding affinity to the target. While these compounds
have been shown to remain stable over long molecular dynamics

Table 3. Expectation Values of Contact Formation between
Residue Pairs

interacting residues apo-gen complex-gen

Asp38 Lys353 0.749 ± 0.0087 0.082 ± 0.0049
Tyr41 Asp355 0.710 ± 0.0094 0.111 ± 0.0032
Tyr41 Arg357 0.602 ± 0.0091 0.019 ± 0.0021
Gln175 Ile126 0.141 ± 0.0052 0.861 ± 0.0019
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simulations, binding free energies are still needed to predict
whether these compounds will have allosteric effects in vivo.
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