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Abstract
The kinase RIP1 acts in multiple signaling pathways to regulate inflammatory responses and it can trigger both apoptosis and
necroptosis. Its kinase activity has been implicated in a range of inflammatory, neurodegenerative, and oncogenic diseases.
Here, we explore the effect of inhibiting RIP1 genetically, using knock-in mice that express catalytically inactive RIP1
D138N, or pharmacologically, using the murine-potent inhibitor GNE684. Inhibition of RIP1 reduced collagen antibody-
induced arthritis, and prevented skin inflammation caused by mutation of Sharpin, or colitis caused by deletion of Nemo
from intestinal epithelial cells. Conversely, inhibition of RIP1 had no effect on tumor growth or survival in pancreatic tumor
models driven by mutant Kras, nor did it reduce lung metastases in a B16 melanoma model. Collectively, our data emphasize
a role for the kinase activity of RIP1 in certain inflammatory disease models, but question its relevance to tumor progression
and metastases.

Introduction

Aberrant cell death contributes to immune disorders, tissue
damage, cancer, and neurodegeneration [1–3]. Apoptosis is
a regulated form of cell death orchestrated by a family of
cysteine proteases called caspases [4], whereas necroptosis
is a caspase-independent death program mediated by the
kinase RIP3 and the pseudokinase MLKL (mixed-lineage
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kinase domain-like) [3, 5]. The kinase RIP1, acting down-
stream of TNFR1 (tumor necrosis factor receptor 1), can
trigger apoptosis through binding to FADD, the activating
adaptor for caspase-8, or necroptosis through binding to
RIP3. It also contributes to the activation of NF-κB and
MAPK signaling by TNFR1 [5–11].

Although the kinase activity of RIP1 is dispensable for
NF-κB and MAPK signaling by TNFR1, it is essential for
interactions between RIP1 and RIP3 that activate RIP3 to
phosphorylate MLKL. Oligomerization and translocation of
MLKL to cell membranes results in cell lysis [5, 12, 13]. In
some situations, such as genetic ablation of NEMO (NF-κB
essential modulator) [14–16], activation of RIP1 instead
triggers apoptosis [17, 18]. Genetic studies in mice implicate
this cell death in inflammation. For example, the Cpdm
mutation, which inactivates the Sharpin subunit of LUBAC
(linear ubiquitin chain assembly complex) [6], causes multi-
organ inflammation that is dependent on both TNF and the
kinase activity of RIP1 [19–21]. Other studies have impli-
cated the kinase activity of RIP1 in ischemia-reperfusion
injury and neurodegeneration/neuroinflammation [2, 22–24].

Recently, the kinase activity of RIP1 was shown to limit
anti-tumor immunity in pancreatic cancer models [25, 26].
Inhibition of RIP1 suppressed tumor growth by eliciting a
highly immunogenic myeloid and T-cell infiltrate [25], due
to the reprogramming of tumor-associated macrophages
(TAMs) to an M1-like phenotype [26]. Independent studies
have claimed that inhibition of RIP1 prevents tumor cell
metastasis [27, 28].

Given the potential therapeutic benefit of inhibiting
RIP1, selective RIP1 inhibitors have been reported [29–32],
but most cannot be used in mouse models because they
target human RIP1 more effectively than mouse RIP1
and/or they have suboptimal pharmacokinetic properties
[29–31, 33]. We have developed GNE684 as a potent
inhibitor of murine RIP1 that is suitable for multi-day
dosing. It provided comparable protection to genetic inac-
tivation of RIP1 against colitis triggered by Nemo defi-
ciency, collagen antibody-induced arthritis, and Cpdm-
associated skin inflammation. Importantly, inhibition of
RIP1, either genetically or chemically, had no effect on the
growth of pancreatic tumors or on melanoma metastasis.
Therefore, targeting the kinase activity of RIP1 appears to
have more potential as an intervention strategy in inflam-
matory diseases than in cancer.

Methods

Reagents and antibodies

Human recombinant TNF, Nec-1a, BV6, GNE684, and
GSK547 were all synthesized at Genentech. The primary

antibodies used were directed against: RIP1 (610459),
pJNK (562480) (BD Biosciences); IκBα (9242), HSP90
(4874), A20 (5630), caspase-8 (9746), human pRIP1 S166
(65746), and RIP3 (13526) (Cell Signaling Technology);
mouse pMLKL S345 (ab196436) and human c-IAP2
(ab32059) (Abcam); MLKL (MABC604) (Millipore);
mouse c-IAP2 and RIP3 (Genentech).

Synthesis of GNE684

The complete synthesis of GNE684 is reported in the
supplement.

Cell lines

Human colon carcinoma HT-29, T-cell Jurkat, mouse
monocyte J774A.1, macrophage RAW 264.7, fibroblast
L929 and rat myoblast H9c2 cell lines were from ATCC;
EA1-transformed MEFs from Genentech; human esopha-
geal OE19 cell lines from ECACC; human stomach SNU-
620 cell line from KCLB. Primary human colon, stomach,
cynomolgus monkey colon, stomach, porcine colon, sto-
mach, mouse colon, esophagus and small intestine epithelial
cells were purchased from Cell Biologics (IL, USA).

Viability assays

Cell viability was assessed using Cell TiterGlo (Promega)
following the manufacturer’s specifications.

Western blot analysis and immunoprecipitation

Western blot analyses and immunoprecipitations were per-
formed with the following buffer: 1% Triton X-100, 25 mM
Tris-HCl buffer (pH 7.5), 150 mM NaCl, 1 mM EDTA, Halt
Protease and Phosphatase Inhibitor Cocktail (Thermo Sci-
entific). Cells were lysed on ice for 30 min and centrifuged
at 14,000 rpm for 10 min at 4 °C. Immunoprecipitations
were performed over night at 4 °C with anti-Caspase-8
antibody (5F7, Enzo Scientific) and protein A/G beads.
Immunoprecipitated protein complexes were washed sev-
eral times in lysis buffer, resolved on SDS-PAGE and
immunoblotted with the indicated antibodies.

Mice for animal studies

Ripk3-/- [34], Ripk1KD/KD [12], A20fl/fl [22], ATG16L1fl/fl

[35], Cpdm [36], Nemofl/fl [37], Villin.cre [38], and Villin.
CreERT2 [39] mice were described previously. All animals
were dosed and monitored according to guidelines from the
Institutional Animal Care and Use Committee (IACUC) on
study protocols approved by the Laboratory Animal
Resource Committee at Genentech. Whenever possible,
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littermates were used, and all animals were randomized
during group allocation. Pathologists assessed the samples
in a blinded fashion. All data were analyzed by appropriate

statistical tools (listed with the description of different
methods/models) and all experiments included control
groups. All individuals participating in animal care and use
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were required to undergo training by the institution’s
veterinary staff.

TNF-induced SIRS

Littermates of both sexes were dosed with murine TNF
(300 μg/kg)(R&D Systems) and zVAD-FMK (10 mg/kg)
(APExBIO) intravenously (IV) via the tail vein. GNE684
(indicated amounts formulated in 10% DMSO/MCT) was
administered PO. Body temperature was determined after 2
and 4 h by measuring the temperature of the skin in the
abdominal area using Braun ThermoScan PRO 4000
Infrared Ear Thermometer. Mice with a body temperature
below 23.6 °C or that were moribund were euthanized.
Statistical analyses were done using Jump (Oneway analysis
with Dunnett’s Method).

NEMO deletion induced colitis and ileitis

Nemofl/fl Villin.creERT2 mice (NEMO IEC-KO) [17] were
treated with tamoxifen (80 mg/kg, IP) on days 1–3 to
induce NEMO deletion. When treated with indicated
amounts of GNE684 (BID (twice daily), PO (per os), in

10% DMSO/MCT), mice were dosed on days 2–6. Serum,
plasma, ileum, and colon were collected for PK and
cytokine analyses and histology. Large and small intest-
inal sections were visually separated into three regions
and each region was scored independently according to
the following matrixes. Scores of each segment were then
summed for final large and small intestinal histology
scores. Large intestine: (0) Within normal limits, (1) Few
focal inflammatory foci with or without individual
pyknotic cells in crypts, (2) Multifocal, discrete crypt
degeneration with associated inflammation, (3) Moderate,
multifocal crypt loss and inflammation with or without
ulceration, (4) Multifocal, locally extensive inflammation
with crypt loss and ulceration, (5) Extensive, confluent
inflammation with crypt loss and inflammation. Small
intestine: (0) No pyknotic cells observed, (1) Rare
pyknotic cells in crypts, (2) Mild, multifocal pyknotic
cells in crypts with minimal disruption of crypt archi-
tecture, (3) Moderate, multifocal pyknotic cells in crypts
with disruption of crypt architecture, Paneth cell loss, and
variable neutrophilic inflammation, (4) Moderate, multi-
focal crypt cell pyknosis and extensive suppurative
inflammation.

Collagen antibody-induced arthritis (CAIA) model

Female mice aged 8 weeks received 2 mg of a cocktail of
monoclonal anti-collagen antibodies (Chondrex, Inc.) by IV
in sterile PBS on day 0, followed by 50 μg LPS IP in PBS
on day 3. Mice were monitored for 10 days as previously
described [40]. For the treatment experiment mice were
dosed on days 4–9 with vehicle (10% DMSO/MCT), anti-
ragweed-IgG2a (150 μg), mouse TNFR2-IgG2a (150 μg), or
GNE684 (50 mg/kg, BID, PO, in 10% DMSO/MCT).

Sharpin mutation (Cpdm) induced skin inflammation

Cpdm mice (Jackson Laboratories) were left untreated or
treated with GNE684 (50 mg/kg, BID, PO) for 4.5 days.
Dorsal and ventral cervical tissues were collected for his-
tology. Histologic lesions in Cpdm mice were scored
according to the following criteria for inflammation, epi-
dermal hyperplasia, and ulceration/serocellular crusts. The
three individual scores were summed for a final score.
Inflammation: (1) Slight, multifocal increase in dermal
cellularity, (2) Mild to moderate, multifocal increase in
dermal cellularity+ /- fibrosis, (3) Diffuse, mild to moder-
ate increase in dermal cellularity and fibrosis, (4) Moderate,
diffuse increase in dermal cellularity and fibrosis. Epidermal
hyperplasia: (1) Multifocal, 2–3 cell layer epidermal
thickening, (2) Approximately 1–3 foci of > 3 cell layer
expansion of the epidermis, (3) > 2 foci of locally extensive
areas of epidermal expansion beyond 3 layers, (4) Extensive

Fig. 1 GNE684 is a potent cross-species inhibitor of RIP1. a Chemical
structure of GNE684. b Structure of GNE684 in complex with RIP1
kinase domain. GNE684 is shown as a stick model in yellow, and
RIP1 is shown in green. Relevant pocket residues are labeled in
addition to the locations of the kinase hinge, αC helix, and DLG motif.
c Kinase selectivity of GNE684 determined in SelectScreen panel.
d Inhibition of human (h), mouse (m), and rat (r) RIP1 kinase domain
catalytic activity by GNE684 was determined using an assay of RIP1-
catalyzed ATP hydrolysis. Data points plotted are the means and
standard deviations of four titrations. The mean Ki

app values are shown.
e Inhibition by GNE684 of necroptotic cell death in human HT-29, rat
H9c2, and mouse L929 cells treated 18–24 h with TNF (20 ng/ml for
HT-29 and H9c2 or 1 ng/ml for L929 cells), BV6 (2 μM for HT-29 and
H9c2 cells), and zVAD (20 μM). GNE684 was tested in four (HT-29),
eight (H9c2), and six (L929) titrations and the data plotted are the
means and standard deviations of all titrations. The mean EC50 and
EC90 values are given. f Whole-human blood was stimulated with
LPS (1 μg/ml) and zVAD (20 μM) (LZ), or TNF (200 ng/ml), BV6 (2
μM), and zVAD (20 μM) (TBZ) for 16 h in the absence or presence of
GNE684. Levels of released IL-1α and IL-1β were measured by
ELISA. The mean IC50 and IC90 values (nM) are listed above the
x-axis. g Mice were treated with TNF (300 μg/kg) and zVAD (10 mg/
kg) in the absence or presence of indicated amounts of GNE684
(G684) (mg/kg). Top graph depicts body temperature measurements at
2 and 4 h after dosing. Bottom graphs depict percent inhibition by
indicated doses of GNE684. Animals in the vehicle group were
sacrificed before the end of the study (#). h Wild-type (B6), and Villin.
cre (ATG16L1 WT) or ATG16L1fl/fl Villin.cre (ATG16L1 cKO) mice
were treated with TNF (300 μg/kg) and, where indicated, with
GNE684 (50 mg/kg). i Wild-type (B6), and A20+/+ Villin.cre (A20
WT) or A20fl/fl Villin.cre (A20 cKO) mice were treated with TNF as in
h and, where indicated, with GNE684 (50 mg/kg). In h and i graphs on
the left side depict body temperature measurements at 2 and 4 h after
dosing, and graphs on the right side depict percent inhibition by
GNE684 at 4 h. For g–i three asterisks indicate p ≤ 0.001 and four p ≤
0.0001 relative to the same strain vehicle controls
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epidermal expansion > 3 layers. Ulceration/ serocellular
crusts: (1) 1–2 serocellular crusts and/or increased indivi-
dual pyknotic cells in the epidermis, (2) Single ulcer < 2
follicles in size or > 2 serocellular crusts, (3) Single ulcer
> 2 follicles in size or 2–5 ulcers < 2 follicles in size, (4)
Multiple ulcers > 2 follicles in size.

Genetically engineered mouse models of pancreatic
cancer

We obtained mice from the following institutions:
KrasLSL–G12D and Trp53LSL.R270H are from Tyler Jacks
(Massachusetts Institute of Technology), p16/p19fl/fl from
Anton Berns (NKI, The Netherlands) and Pdx1-Cre from
Andy Lowy (University of Ohio). All animals were main-
tained on a C57BL/6 background. Equal numbers of male
and female animals were used for experimental cohorts,
dosing commenced following confirmation of tumor burden
via ultrasound imaging and animals were equally distributed
to treatment arms based on their baseline tumor volumes.
All chosen dosing regimens were well tolerated in the
Genetically engineered mouse models (GEMMs). Non-
invasive imaging and assessment of overall survival
were performed as previously described [41]. Animals were
monitored daily while on treatment and weights were
measured at least weekly. Date of death was based either
on mortality or pre-determined morbidity criteria for
euthanasia. If deemed moribund, animals were euthanized
within 1–4 h. Treatment of mice was continuous until all
animals were terminated. Necrostatin (Nec-1a) and
GNE684 were dosed at 50 mg/kg, PO, BID (90% methyl-
cellulose, 10% DMSO) until the end of study. Gemcitabine
(Gemzar) was dosed IP at 50 mg/kg every 3 days until end
of study, as previously reported [42]. Serial ultrasound
measurements were used to calculated the difference in log-

scale daily fold change between treatment groups, verified
by Dunnett’s test (PMID:25376606).

Results

GNE684 is a potent cross-species inhibitor of RIP1

To investigate the potential therapeutic benefit of inhibiting
RIP1, we developed GNE684 or (S)-N-((S)-7-methoxy-1-
methyl-2-oxo-2,3,4,5-tetrahydro-1H-pyrido[3,4-b]azepin-3-
yl)-5-phenyl-6,7-dihydro-5H-pyrrolo[1,2-b][1,2,4]triazole-2-
carboxamide with cross-species potency against RIP1,
exquisite kinase selectivity, and favorable pharmacological
properties (Fig. 1a–h, S1, Tables S1 and S2, SI file 1). A co-
crystal structure showed that GNE684 binds to the same
hydrophobic pocket within the kinase domain of RIP1 that is
bound by necrostatins [32] (Fig. 1b, S1, and Table S1).
GNE684 binds to an inactive conformation of RIP1, similar to
type II kinase inhibitors, with the Asp156 and Leu157 of the
DLG motif (commonly DFG in other kinases) in the “out”
conformation and the αC helix swung away from the ATP-
binding cleft, and lacking the canonical ion pair between the
catalytic lysine (Lys45) and αC glutamate (Glu63) (Fig. 1b).
GNE684 inhibited human RIP1 potently in vitro, and mouse
and rat RIP1 with slightly less potency (Fig. 1d). Accordingly,
it inhibited TNF-induced necroptosis in human HT-29, mouse
L929, or rat H9c2 cells (Fig. 1e). The cellular potency of
GNE684 was confirmed in a human whole blood assay using
TBZ (TNF, IAP antagonist BV6, and pan-caspase inhibitor
zVAD) or LZ (LPS plus zVAD) to trigger necroptosis and the
release of IL-1α and IL-1β (Fig. 1f).

We evaluated the potency of GNE684 in vivo using a
model of SIRS (systemic inflammatory response syndrome)
that is based on the administration of TNF plus zVAD.
Hypothermia in wild-type (WT) mice was almost completely
prevented by dosing with 5, 15, or 50mg/kg of GNE684,
while dosing with 1mg/kg reduced the temperature loss by
38% (Fig. 1g and S1i). We also examined mice lacking
Atg16l1 or A20 in intestinal epithelial cells (IECs) because
these genes encode important negative regulators of TNF-
induced cell death, and their mutation is associated with
colitis in humans [43, 44]. As expected, ATG16L1 IEC cKO
mice and A20 IEC cKO mice exhibited more severe hypo-
thermia after TNF treatment than control mice (Fig. 1h, i).
Importantly, hypothermia in both strains was blocked by
GNE684 (Fig. 1h, i). Collectively, these data identify GNE684
as an effective inhibitor of RIP1 both in vitro and in vivo.

GNE684 inhibits RIP1 kinase driven cell death

GNE684 inhibited TNF-driven cell death effectively in
several human and mouse cell lines (Fig. 2a and S2a, b).

Fig. 2 GNE684 inhibits RIP1 kinase driven cell death. a Indicated cell
lines were treated for 20 h with TNF (20 ng/ml), BV6 (2 μM), and
zVAD (20 μM) with increasing amounts of GNE684. Cell viability
was assessed by CellTiter-Glo assay. b, c HT-29 (b) and J774A.1
(c) cells were treated with BV6 (2 μM), TNF (20 ng/ml), and zVAD
(20 μM) with 0 or 20 μM GNE684 for indicated periods of time. Cell
lysates were immunoprecipitated with anti-caspase-8 antibodies
b. Cellular lysates and caspase-8-associated complexes were examined
by western blotting with the indicated antibodies. Data are repre-
sentative of three experiments. d Indicated cell lines were treated by
TNF (20 ng/ml) with or without GNE684 (20 μM top panels, 20 or
200 μM lower) for indicated periods of time. Cellular lysates were
examined by western blotting with the indicated antibodies. Data are
representative of three experiments. e Indicated primary cells were
treated with BV6 (4 μM) and TNF (20 ng/ml) (mouse esophageal and
small intestine cells), plus zVAD (20 μM) (all other cells) with
increasing amounts of GNE684 or Nec-1a. GNE684 and Nec-1a
EC50s and EC90s were calculated using Prism 8 software using data
of at least two independent experiments. Error bars indicate standard
deviation
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Accordingly, GNE684 disrupted TBZ-induced RIP1
autophosphorylation, interactions between RIP1 and RIP3,
RIP3 autophosphorylation, and phosphorylation of MLKL
by RIP3 (Fig. 2b, c and S2c). Consistent with observations
in cells expressing kinase-dead RIP1 mutant D138N
[12, 45], GNE684 did not affect RIP1 protein abundance or
TNF-induced activation of NF-κB or MAPK (JNK)

signaling, even at elevated concentrations (20 and 200 μM)
(Fig. 2d and S2d). GNE684 also blocked TBZ-induced
necroptosis in primary human, monkey, and pig colon and
stomach, and mouse colon cells, and TB-induced apoptosis
in mouse esophagus and small intestine cells (Fig. 2e).
Thus, GNE684 is an efficient inhibitor of RIP1 kinase
mediated necroptotic and apoptotic cell death in many
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species with no effect on TNF-induced NF-κB or MAPK
signaling.

Inhibition of RIP1 does not affect the growth of
pancreatic tumors

The kinase activity of RIP1 was reported to limit anti-tumor
immunity in models of pancreatic ductal adenocarcinoma
(PDAC) [25, 26]. We examined the role of RIP1 in two
different genetically engineered mouse models of PDAC
[41]. Inhibition of RIP1 using Nec-1a in a Kras mutant
PDAC model (KPP; LSL-KrasG12D/+; p16/p19fl/fl; Pdx1-cre)

after tumors were established had no impact on overall
survival or tumor growth (Fig. 3a, b and S3a). Moreover, in
contrast to reported data [25], treatment with Nec-1a had
little effect on levels of the chemokine Cxcl1 (Fig. 3c and
S3b). GNE684 also had no impact on overall survival or
tumor growth in the KPP or KPR (LSL-KrasG12D/+;
p16/p19fl/wt; Trp53R270H/wt; Pdx1-cre) PDAC models
(Fig. 3d, e and S3c–f). Interestingly, genetic inactivation of
RIP1 caused a small, but significant increase in overall
survival in the KPP model, suggesting a tentative role for
the kinase activity of RIP1 in tumor initiation rather than
progression (Fig. 3f).
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We also explored the claim that inhibition of RIP1
reprograms myeloid cells [26]. In contrast to the reported
data, we found no evidence that inactivation of RIP1 in
macrophages altered gene expression programs or phos-
phorylation of STAT1 (Fig. S4). Collectively, these data
indicate that inhibition of RIP1 in established tumors has no
effect on tumor growth or survival in PDAC models.

Neither inactivation of RIP1 nor loss of RIP3 impairs
metastasis of B16 melanoma cells

Activation of RIP1 has been implicated in the metastasis of
tumor cells [27]. We used B16 melanoma cells expressing
luciferase in order to better quantitate cell seeding in the
same tail vein injection model (Fig. 4a). Recipient animals
lacking RIP3 or expressing kinase-dead RIP1 D138N
exhibited comparable cell seeding in the lungs to wild-type
siblings (Fig. 4b–d). Therefore, neither RIP3 nor the kinase
activity of RIP1 is necessary for melanoma cells to seed the
lungs.

Inactivation of RIP1 prevents colitis and ileitis
induced by NEMO deficiency in IECs

NEMO deficiency in IECs is reported to cause cell death
and inflammation in the ileum and colon in a RIP1 kinase-
dependent fashion [17]. We confirmed that acute Nemo
deletion in IECs (NEMO cKO) caused colitis, and
this coincided with increased cleavage of caspase-3 in the
colon, a marker of apoptosis, as well as elevated serum
cytokines and chemokines (Fig. 5a–d). Inflammation was
completely prevented in mice expressing inactive RIP1
D138N (RIP1 KI) (Fig. 5a–c). Interestingly, mice hetero-
zygous for kinase-dead RIP1 (RIP1 HET) showed
reduced apoptosis in the colon after deletion of Nemo,
reduced serum cytokines and chemokines, and almost
complete protection from colitis (Fig. 5d–g and S5).
Therefore, even partial inhibition of RIP1 can ameliorate
cell death and inflammation in this model of inflammatory
bowel disease.

Next, we tested whether inhibition of RIP1 with GNE684
prevented disease in NEMO IEC cKO mice. Note that
GNE684 alone had no adverse effects on the intestines
of wild-type mice (Fig. 6a–c). Dosing with 50 mg/kg
GNE684 almost completely protected the NEMO-deficient
intestines from colitis and ileitis, and this coincided with
reduced apoptosis of IECs and reduced serum cytokines
(Fig. 6a–c and S6a, b). Protection was also observed with
15 or 5 mg/kg GNE684, whereas 1 mg/kg GNE684 had a
modest effect in the colon but not the ileum (Fig. 6d, e and
S6c). Therefore, inhibition of RIP1 with GNE684 affords
dose-dependent protection from IEC death and associated
inflammation after loss of NEMO.

Inhibition of RIP1 ameliorates arthritis and skin
inflammation

To investigate if RIP1 is activated in other inflammatory
diseases, we performed immunohistochemistry with an
antibody that recognizes human RIP1 autophosphorylated
on Ser166 (pRIP1) [29]. HT29 cells treated with TBZ to
induce necroptosis labeled strongly for pRIP1, whereas rare
to no labeling was observed in untreated cells (Fig. S7a).
Interestingly, pRIP1 was also detected in endothelial cells in
patient samples exhibiting acute myocardial infarction
(Fig. S7b). Both RIP1 and RIP3 have been shown to play a
role in myocardial infarction in animal models [22, 46], so
these kinases may exert their effects in endothelial cells.
Autophosphorylated RIP1 was also detected in human
synovium samples from patients with rheumatoid arthritis
(RA), with immunolabeling primarily in the subsynovial
connective tissue (Fig. 7a).

We next evaluated the role of the kinase activity of RIP1
in a mouse model of arthritis that is induced by anti-
collagen antibodies [40]. Antibody injection caused sub-
acute neutrophilic polyarthritis with concomitant cartilage
injury and bone remodeling (Fig. 7b). Mice expressing
catalytically inactive RIP1 D138N had reduced arthritis in
paws and joints compared to wild-type mice (Fig. 7b).
GNE684 reduced arthritis in wild-type mice to a similar
extent, with protection comparable to that seen using
TNFR2-Fc to block signaling by TNF (Fig. 7c, d). A
combination of GNE684 and TNFR2-Fc did not
reduce arthritis severity further (Fig. 7c, d). Thus, RIP1 may
be activated by TNF to promote arthritis in this
mouse model.

We also noted that pRIP1 immunolabelling was
increased in the epidermis of human psoriasis samples when
compared to control skin (Fig. 7e). Consistent with active
RIP1 contributing to inflammation in the skin, Cpdm mice
that are deficient in SHARPIN develop severe skin
inflammation unless they also express inactive RIP1 D138N
[19]. We found that 6-week-old Cpdm mice, which have

Fig. 6 GNE684 inhibits colitis and ileitis caused by NEMO deficiency
in IECs. a Mice of indicated genotypes were treated with tamoxifen on
days 1–3 and with GNE684 (50mg/kg, PO, BID; 684) from days 2–6.
Graphs depict histology score of colon and ileum sections. b Extent of
cleaved caspase-3 in colon sections of indicated genotypes and treat-
ments. c Representative images of colon and ileum sections analyzed in
a and b. Colon bars= 100 µm, H&E ileum bars= 50 µm, IHC bars=
50 µm. Asterisks indicate p < 0.01, ns–not significant. dWild-type (WT)
or NEMO cKO mice were treated with tamoxifen as in a and with
indicated doses of GNE684 (mg/kg, PO, BID; 684) from days 2–6.
Graphs depict histology score of colon and ileum sections. e Repre-
sentative images of colon sections analyzed in d. Bars= 100 µm
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already developed prominent dermatitis, responded to a
brief 4.5-day treatment with GNE684 and showed a
reduction in dermatitis severity, particularly in ventral cer-
vical skin where lesions tended to be the most severe
(Fig. 7f and S7c, d). Elevated IgM levels in Cpdm mice
were also reduced by GNE684 (Fig. S7e). Therefore,
GNE684 can effectively ameliorate dermatitis in
Cpdm mice.

Discussion

The kinase activity of RIP1 has been implicated in many
pathologies characterized by inflammation and tissue
damage [47]. Thus, inhibition of RIP1 presents an attractive
therapeutic opportunity for the treatment of inflammatory
diseases [29]. The kinase domain of RIP1 has unique
structural features, which allow the development of selec-
tive RIP1 inhibitors [30]. However, interspecies differences
in RIP1 mean that inhibitors blocking human RIP1 can be
over a hundred-fold weaker against murine RIP1 [30].
Although slightly more potent against human RIP1,
GNE684 can also inhibit mouse RIP1 effectively. Coupled
with its favorable pharmacological profile in vivo, GNE684
represents an ideal compound for investigating the physio-
logical role of the kinase activity of RIP1 in disease settings
[48–52]. GNE684 provided much the same level of pro-
tection as genetic inactivation of RIP1 in several inflam-
matory disease models (TNF-driven SIRS, colitis induced
by NEMO deficiency in IECs, and collagen antibody-
induced arthritis). Therefore, GNE684 can reliably inhibit
RIP1 in physiological settings. Importantly, GNE684 was
well tolerated and did not affect the abundance of RIP1, or
NF-κB and MAPK signaling, either with or without TNF
stimulation. Our results demonstrate the benefit of targeting
RIP1 in inflammatory diseases.

Whether RIP1 should be targeted in other disease, such
as cancer, is less certain. Recent reports have advocated for
RIP1 as a target in pancreatic cancer [25, 26], but we
observed no benefit from inhibiting RIP1 in mouse PDAC.
It is important to note that the published studies used
invasive procedures for tumor cell implantation. In addition,
RIP1 was inhibited almost from the time of transplantation.
Therefore, in contrast to our intervention study, RIP1 was
inhibited in more of a prevention setting. Such strategies for
tumor implantation are distinct from autochthonous models,
in which fully established tumors are treated as a mean to
recapitulate clinical intervention treatment. Indeed, two
different inhibitors of RIP1 (Nec-1a and GNE684) failed to
slow the growth of established tumors, or prolong survival,
in two different PDAC models (KPP and KPR). Further-
more, we did not observe macrophage reprogramming and/
or STAT1 activation due to RIP1 inactivation, even when

using GSK547 to inhibit RIP1 as in the published study
[26]. Similarly, we failed to confirm a reported role for RIP3
or the kinase activity of RIP1 in the metastasis of B16
melanoma cells to the lung following tail vein injection.
Collectively, our data question the rationale for targeting
RIP1 in cancer.

In contrast, we confirm that inhibition of RIP1 is bene-
ficial in inflammatory disease models affecting the joints,
skin, and gut. Detection of autophosphorylated RIP1 in
psoriasis and rheumatoid arthritis patient samples indicates
that RIP1 is also active in human inflammation. Thus, there
is a strong rationale for the development of RIP1-targeting
anti-inflammatory therapeutics.
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