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Background: Colon cancer (CRC) is one of the malignant tumors with a high

incidence in the world. Many previous studies on CRC have focused on clinical

research. With the in-depth study of CRC, the role of molecular mechanisms in

CRC has become increasingly important. Currently, machine learning is widely

used in medicine. By combining machine learning with molecular mechanisms,

we can better understand CRC’s pathogenesis and develop new treatments

for it.

Methods and materials: We used the R language to construct molecular

subtypes of colon cancer and subsequently explored prognostic genes with

GEPIA2. Enrichment analysis is used by WebGestalt to obtain differential genes.

Protein–protein interaction networks of differential genes were constructed

using the STRING database and the Cytoscape tool. TIMER2.0 and TISIDB

databases were used to investigate the correlation of these genes with

immune-infiltrating cells and immune targets. The cBioportal database was

used to explore genomic alterations.

Results: In our study, the molecular prognostic model of CRC was constructed

to study the prognostic factors of CRC, and finally, it was found that

Charcot–Leyden crystal galectin (CLC), zymogen granule protein 16 (ZG16),

leucine-rich repeat-containing protein 26 (LRRC26), intelectin 1 (ITLN1), UDP-

GlcNAc: betaGal beta-1,3-N-acetylglucosaminyltransferase 6 (B3GNT6),

chloride channel accessory 1 (CLCA1), growth factor independent

1 transcriptional repressor (GFI1), aquaporin 8 (AQP8), HEPACAM family

member 2 (HEPACAM2), and UDP glucuronosyltransferase family 2 member

B15 (UGT2B15) were correlated with the subtype model of CRC prognosis.

Enrichment analysis shows that differential genes were mainly associated with

immune-inflammatory pathways. GFI1 and CLC were associated with immune

cells, immunoinhibitors, and immunostimulator. Genomic analysis shows that

there were no significant changes in differential genes.

Conclusion: By constructing molecular subtypes of colon cancer, we

discovered new colon cancer prognostic markers, which can provide

direction for new treatments in the future.
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Introduction

CRC is the most common digestive system tumors in the

world. In the USA, the incidence of colon adenocarcinoma is

roughly equal between men and women, and is expected to

increase by 100,000 new cases and 50,000 deaths in 2022 (Siegel

et al., 2022). In China, where the incidence is slightly higher in

men than in women, an estimated 590,000 new cases and

300,000 new deaths are expected (Xia et al., 2022). With the

development of detection technology, the early screening of CRC

plays an increasingly important role. For example, colonoscopy is

the most commonly used detection method. In addition, due to

the development of treatment, including surgical treatment and

neoadjuvant therapy, the 5-year survival rate of CRC is close to

64% (Miller et al., 2019). Although the development of new

technologies has brought treatment progress in the CRC, the

carcinogenesis is still unclear. Tumor development is influenced

by the tumormicroenvironment (TME), which contains a variety

of cell types, including immune-infiltrating cells and cancer-

associated fibroblasts. These cells can detach from the original

normal growth and play an important role in tumor cell

proliferation, differentiation, invasion, and metastasis (Schmitt

and Greten, 2021). Except that the pathogenic mechanism for

CRC is not clear, the classification of CRC is still mainly based on

TNM staging, and this classification has insufficient

understanding of CRC. Therefore, it contributes to the

diagnosis and treatment of CRC by elucidating the molecular

mechanism of colon carcinogenesis. In recent years, machine

learning (ML)-based methods for understanding tumors have

received increasing attention (Liu et al., 2020; Collins et al., 2021;

Masud et al., 2021), and many algorithms for predicting and

classifying tumors have emerged (Aziz et al., 2021; Karhade et al.,

2021; Tohka and van Gils, 2021). Existing machine learning

algorithms include linear regression, logistic regression, decision

trees, support vector machines (SVM), naive Bayes, K-mean

clustering method, random forest, dimensionality reduction

algorithms, gradient boosts, and AdaBoost. Jiang et al. used

convolution neural networks to predict the prognosis of stage

III CRC (Jiang et al., 2020). Previous cases of applying machine

learning have achieved good results and demonstrated strong

practicality. In the present study, we construct a CRC prognostic

model based on machine learning and public databases to find

new prognostic markers and their relationship with CRC.

Materials and methods

Data source

RNA-seq data and clinical data are from the TCGA database,

and these data are downloaded from the University of California

Santa Cruz (UCSC) Xena database.

Cluster analysis

We used consensus clustering analysis to randomly select

5,000 genes in the CRC samples from the TCGA database to

construct molecular subtypes of CRC. The key parameters

include 80% resampling, k-estimated maximum value of

6,500 repetitions, and PAC measure (PAC measure

(proportion of ambiguous clustering) explained; optimal k is

the k with the lowest PAC value) to filter the best k value.

Prognosis between different clusters is compared using

Kaplan–Meier analysis. All these analyses are performed using

R package “ConsensusClusterPlus” (Wilkerson and Hayes,

2010). The clustering results will be presented in the

heatmaps, and the survival analysis results will be presented

by GraphPad prism7.

Differential expression genes analysis

We performed the clusters of prognostic value for RNA-seq

differential gene analysis using the R package “limma”. We

performed RNA-seq data differential analysis on cluster1,

which consisted of 144 samples, and cluster3 which consisted

of 150 samples. To exclude the influence of extreme values or

outliers, we deleted genes with no expression significance

(including p > 0.05 or FDR>0.05). Finally, we screened the

genes with |logFC|≥1 as the differential genes of cluster1 and

cluster3 of the CRC subgroup.

Survival analysis

In order to explore whether the expression levels of

differential genes between the two clusters have an impact on

prognosis, we used an external database to analyze the

differentially expressed genes. Gene expression profiling

interactive analysis (Tang et al., 2019) (GEPIA2, http://gepia2.

cancer-pku.cn, version 2) is an online tool that searches the

TCGA database, which collected RNA sequencing data of

9,736 tumors and 8,587 normal samples in total. The

GEPIA2 database was used to analyze the effect of two

clusters of differentially expressed genes on survival.

Enrichment analysis

A web-based gene set analysis toolkit (Liao et al., 2019)

(WebGestalt, http://www.webgestalt.org/option.php) can

enrich genes of interest to understand their functions and

pathways involved. GO analysis is a common annotation

method for genes and gene products, including molecular

functions, biological pathways, and cellular components.
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KEGG analysis is a resource for analyzing gene functions and

information. In order to study the differentially expressed genes’

enrichment information of cluster1 and cluster3, we used the

WebGestalt website to conduct GO and KEGG online

enrichment analyses; parameters considered analytically

meaningful for enrichment analysis included p < 0.05 and

FDR<0.05.

Protein–protein interaction analysis

We used the STRING database (https://string-db.org/)

(Szklarczyk et al., 2021; Siegel et al., 2022) to explore the

interaction between the proteins expressed by these genes.

Through the PPI network, we could study whether these

genes played a role in the prognosis of subtype models of

CRC, independently or together. Then, we used the MCODE

plugin of the Cytoscape software to find the core network of PPI.

Immune infiltration analysis

In order to study the impact of these differential genes on

immune function between the two clusters, we used the

TIMER2.0 (Li et al., 2020) database for analysis. TIMER2.0

(http://timer.comp-genomics.org/) is a database that

comprehensively analyzes the correlation between tumors and

immune infiltrating cells. In addition to the TIMER2.0 database,

we also used the TISIDB database to analyze the relationship of

these DEGs with immunoinhibitors and immunostimulators.

TISIDB (Ru et al., 2019) (http://cis.hku.hk/TISIDB/) is an

online database for immune infiltration analysis based on the

TCGA database.

Genomic alteration analysis

The cBio Cancer Genomics Portal (Wu et al., 2019)

(cBioportal, http://cbioportal.org) is a database that collects

multiple tumor genomics. We used this tool to analyze

genomic alterations in 10 genes with prognostic significance

in subtypes of CRC to explore their impact.

Results

Machine learning divides CRC into
different subtypes

We performed a consensus clustering method of CRC

samples in the TCGA database using the PAC measure to

select the best value of k = 2 (Figures 1A–C). In the TCGA

database, 448 samples with complete follow-up information

were included in the study. The 448 samples were divided into

FIGURE 1
CRC subtype characteristics and difference in overall survival (OS). (A) Consensus clustering analysis yields three matrices, each representing
one CRC subtype. (B) Consensus clustering cumulative distribution function (CDF) for k = 2–9. (C) Relative change in area under the CDF curve for
k = 2–6. (D–F) Survival time curve between 3 clusters.
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three subtypes; cluster1 included 144 samples,

cluster2 included 154 samples, and cluster3 included

150 samples. The rest of the clustering results are shown in

Supplementary Figure S1. By comparing the survival times of

the three clusters, we found a significant survival difference

between clusters 1 and 3. The survival time of cluster3 was

better than that of cluster1, while there was no significant

difference in survival time between clusters 1 and 2 and

between clusters 2 and 3 (Figures 1D–F).

Screening of DEGs

To explore which genes are responsible for the difference in

survival times between cluster1 and cluster3, we performed a

differential analysis of 5,000 genes in clusters 1 and 3 using

package “limma”. A total of 58 genes were differentially

expressed between the two clusters (Figure 2A). All DEGs

were described in Supplementary Table S1. The expression

levels of these genes in cluster3 were significantly higher than

FIGURE 2
DEG’s expression between cluster1 and cluster3. (A) DEGs of two clusters via volcano. (B) DEGs with prognostic significance via boxplot.

FIGURE 3
The effect of DEGs on survival time. (A)CLC, (B) ZG16, (C) LRRC26, (D) ITLN1, (E) B3GNT6, (F) CLCA1, (G)GFI1, (H) AQP8, (I)HEPACAM2, and (J)
UGT2B15.
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those in cluster1 (Figure 2B). Through external database

validation with GEPIA2, we found a total of 10 genes whose

differential expression played a significant role in prognosis,

including CLC, ZG16, LRRC26, ITLN1, B3GNT6, CLCA1,

GFI1, AQP8, HEPACAM2, and UGT2B15 (Figures 3A–J).

The increased expression of these genes will have a better

prognosis; when combined with the above model, we

speculated that these genes will have a greater impact in CRC.

Enrichment analysis

We then used the WebGestalt online tool to perform

enrichment analysis for all 58 DEGs between the two

subtypes. Both GO and KEGG enrichment analysis results

are shown in Figure 4, and the results showed that these genes

were mainly enriched in immune-related pathways. GO

includes immune response, defense response, and

regulation of immune system processes. In addition,

pathways related to cell morphology and cell membrane

were also enriched, including cell activation, intrinsic

component of the plasma membrane, and cell surface. The

KEGG pathway showed that it is mainly enriched in the

cytokine–cytokine receptor interaction pathway. These

results suggest that immune factors play an important role

in the prognosis of both subtypes.

Genome alteration analysis

By studying changes in the genome, we found no significant

changes (less than 5%) in each of these 10 genes (Figure 5).

Therefore, we speculate that these changes do not have a

significant impact on gene function.

Protein–protein interaction network
analysis

We performed protein interaction analysis on DEGs using

the STRING database (Figure 6A), and the results suggested that

among the 10 genes with significant effects on CRC prognosis,

CLC, ITLN1, ZG16, AQP8, CLCA1, and GFI1 interacted with

other DEGs. This indicates that some genes play a role in the

prognosis of CRC independently, and some of them may be

regulated by other genes, thus having a complex impact on the

prognosis of CRC. We used the MCODE plugin to select the core

regulation network, setting the parameters as the degree cutoff of

2, node score cutoff of 0.2, and k-core of 2, and the module with

an MCODE score >4 was presented. The results are shown in

Figure 6B. These results suggest that AQP8 and ZG16 have an

impact on the prognosis of CRC subtypes, but they are still

regulated by other DEGs. The remaining DEGs have no direct

impact on the prognosis of CRC subtypes, but they indirectly

affect prognosis by regulating AQP8 and ZG16.

Immune-infiltration analysis

In order to explore the relationship between these 10 DEGs

and immune genes and immune infiltrating cells, we used the

TIMER2.0 database. As shown in Figure 7, GFI1 is significantly

correlated with CD8+ T cells (cor = 0.388, p = 2.49e-11),

neutrophils (cor = 0.489, p = 6.41e-18), and DC (cor = 0.462,

FIGURE 4
GO and KEGG enrichment analyses of DEGs in two subtypes.
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p = 5.64e-16), and CLC is significantly correlated with DC (cor =

0.488, p = 7.24e-18), macrophage (cor = 0.329, p = 2.38e-8), and

neutrophils (cor = 0.447, p = 6.55e-15). These results suggest that

not only genes but also immune-infiltrating cells were involved in

two subtypes of CRC. Then, we used the TISIDB database to

explore the relationship between these 10 genes and

immunoinhibitors and immunostimulators. CLC was

significantly correlated with ADORA2A (cor = 0.444, p <
2.2e-16), CD244 (cor = 0.507, p < 2.2e-16), CSF1R (cor =

0.532, p < 2.2e-16), HAVCR2 (cor = 0.462, p < 2.2e-16), IL10

(cor = 0.544, p < 2.2e-16), PDCD1LG2 (cor = 0.492, p < 2.2e-16),

and TGFB1 (cor = 0.41, p < 2.2e-16) of immunoinhibitor, and

GFI1 was significantly correlated with ADORA2A (cor = 0.404,

p < 2.2e-16), CD244 (cor = 0.623, p < 2.2e-16), CD274 (cor =

FIGURE 5
Genomic alteration in DEGs. (A) CLC, (B) ZG16, (C) LRRC26, (D) ITLN1, (E) B3GNT6,(F) CLCA1, (G) GFI1, (H) HEPACAM2, and (I) UGT2B15.
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0.507, p < 2.2e-16), CD96 (cor = 0.581, p < 2.2e-16), CSF1R

(cor = 0.407, p < 2.2e-16), CTLA4 (cor = 0.523, p < 2.2e-16),

HAVCR2 (cor = 0.431, p < 2.2e-16), IDO1 (cor = 0.435, p < 2.2e-

16), LAG3 (cor = 0.587, p < 2.2e-16), PDCD1 (cor = 0.529, p <
2.2e-16), PDCD1LG2 (cor = 0.436, p < 2.2e-16), and TIGIT

(cor = 0.561, p < 2.2e-16) (Figure 8A). CLC was significantly

correlated with CD27 (cor = 0.441, p < 2.2e-16), CD28 (cor =

0.457, p < 2.2e-16), CD48 (cor = 0.583, p < 2.2e-16), CD80 (cor =

0.458, p < 2.2e-16), CD86 (cor = 0.494, p < 2.2e-16), ICOS (cor =

0.441, p < 2.2e-16), IL2RA (cor = 0.534, p < 2.2e-16), TNFRSF17

(cor = 0.48, p < 2.2e-16), TNFRSF4 (cor = 0.423, p < 2.2e-16),

TNFRSF9 (cor = 0.436, p < 2.2e-16), and TNFSF13B (cor = 0.457,

p < 2.2e-16), and GFI1 was significantly correlated with C10orf54

(cor = 0.452, p < 2.2e-16), CD27 (cor = 0.506, p < 2.2e-16), CD28

(cor = 0.427, p < 2.2e-16), CD48 (cor = 0.483, p < 2.2e-16), CD80

(cor = 0.438, p < 2.2e-16), CD86 (cor = 0.444, p < 2.2e-16),

CXCR4 (cor = 0.534, p < 2.2e-16), ICOS (cor = 0.444, p < 2.2e-

16), IL2RA (cor = 0.514, p < 2.2e-16), KLRC1 (cor = 0.515, p <
2.2e-16), KLRK1 (cor = 0.572, p < 2.2e-16), LTA (cor = 0.44, p <
2.2e-16), TNFRSF13C (cor = 0.517, p < 2.2e-16), TNFRSF17

(cor = 0.417, p < 2.2e-16), TNFRSF18 (cor = 0.525, p < 2.2e-16),

TNFRSF8 (cor = 0.403, p < 2.2e-16), TNFRSF9 (cor = 0.438, p <
2.2e-16), TNFSF13B (cor = 0.4, p < 2.2e-16), and TNFSF14 (cor =

0.465, p < 2.2e-16) of immunostimulator (Figure 8B). In the

correlation of tumor-infiltrating lymphocytes (TILs) with DEGs,

we found that CLC and GFI1 were significantly associated with

immune cells. CLC was associated with T-follicular helper cells

(Tfh, cor = 0.506, p < 2.2e-16), gamma delta T cells (Tgd, cor =

0.486, p < 2.2e-16), type 1 T-helper cells (Th1, cor = 0.544, p <
2.2e-16), regulatory T cells (Treg, cor = 0.555, p < 2.2e-16),

FIGURE 6
PPI network. (A) PPI of the STRING database. (B) Core regulatory networks selected by the MCODE plugin for Cytoscape.
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activated B cells (Act_B, cor = 0.452, p < 2.2e-16), immature

B cells (Imm_B, cor = 0.495, p < 2.2e-16), myeloid-derived

suppressor cells (MDSC, cor = 0.509, p < 2.2e-16), activated

dendritic cells (Act_DC, cor = 0.454, p < 2.2e-16), macrophages

(cor = 0.545, p < 2.2e-16), mast cells (Mast, cor = 0.624, p < 2.2e-

16), and neutrophils (cor = 0.548, p < 2.2e-16), and GFI1 was

associated with activated CD8 T cells (Act_CD8, cor = 0.466, p <
2.2e-16), effector memory CD8 T cells (Tem_CD8, cor = 0.622,

p < 2.2e-16), activated CD4 T cells (Act_CD4, cor = 0.448, p <

2.2e-16), Tfh (cor = 0.403, p < 2.2e-16), Th1 (cor = 0.441, p <
2.2e-16), type 2 T-helper cells (Th2, cor = 0.559, p < 2.2e-16),

Act_B (cor = 0.463, p < 2.2e-16), Imm_B (cor = 0.501, p < 2.2e-

16), MDSC (cor = 0.554, p < 2.2e-16), Act_DC (cor = 0.426, p <
2.2e-16), and macrophages (cor = 0.411, p < 2.2e-16) (Figure 8C).

The results showed that GFI1 and CLCwere significantly related to

immune and inflammation factors, further suggesting that

GFI1 and CLC may be involved in immune and inflammation

factors in the process of regulating the prognosis of CRC subtypes.

FIGURE 7
The relationship between DEGs and immune infiltrating cells. (A)Heatmap of the correlation between DEGs and immune cells. (B) Relationship
between GFI1 and CD8+ T cells. (C) Relationship between GFI1 and neutrophils. (D) Relationship between GFI1 and DC. (E) Relationship between CLC
and neutrophils. (F) Relationship between CLC and macrophages. (G) Relationship between CLC and DC.
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Discussion

With the development of technology, the scope of artificial

intelligence in the medical field is also expanding. Unsupervised

clustering is a technique that has been applied to the tumor level in

recent years, and consensus clustering (CC) is used to estimate the

number of unsupervised classes in a dataset, providing both

quantitative and visual stability evidence (Wilkerson and Hayes,

2010; Greener et al., 2022). Using this technology to construct

molecular subtypes of CRC can help us better understand the

disease and develop new drugs and treatments. In this study, we

constructed subtypes of CRC based on selected genes with

significant prognostic differences. To investigate what caused this

difference, we explored which of these genes is at work. The model

we constructed found that cluster3 had a better prognosis than

cluster1. When comparing the DEGs of two clusters, we found that

there were 58 DEGs between the two clusters, and all of them were

highly expressed in cluster3. Then, we used external databases to

explore 10 genes (including CLC, ZG16, LRRC26, ITLN1, B3GNT6,

CLCA1, GFI1, AQP8, HEPACAM2, and UGT2B15) that play a

crucial role in the prognosis between the two clusters. The high

expression of these 10 genes is associated with a better prognosis for

CRC. Combined with the high expression of these genes in cluster3,

the results also fit the conclusions from themodel. Genomic analysis

showed that the DEGs did not change significantly. Gene

enrichment analysis provided a way for us to understand the

functions of these genes. Through GO and KEGG enrichment

analysis, we found that DEGs are closely related to immune

function and inflammation. This suggests that the immune

inflammation response system may play an important role in the

prognosis of two clusters. Since these genes are highly expressed in

cluster3, we hypothesized that the immune system has a positive

effect on CRC in cluster3 and these DEGs interact with the immune

system to improve prognosis. To test our hypothesis, we analyzed

10 DEGs associated with the immune system. Results show that

CLC and GFI1 have the highest correlation with immunity. The

immunosuppressive pathway can regulate the immune

environment of the body and prevent the over-activation of the

immune mechanism from causing damage to itself, and

immunoinhibitors are the key factors in this regulation. Immune

stimulation is to activate the immune system, enhance our

immunity, and play an important role in responding to foreign

pathogens, removing self-damaging cells and monitoring and

inhibiting the occurrence and development of tumors. Our study

FIGURE 8
The relationship between DEGs and immunomodulator. (A) The relationship between DEGs and immunoinhibitor, (B) the relationship between
DEGs and immunostimulator, and (C) relations between abundance of tumor-infiltrating lymphocytes (TILs) and expression of DEGs.
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suggests that CLC and GFI1 have dual roles in regulating immune

mechanisms and resulting in a better prognosis for CRC. The

protein encoded by CLC is a lysophospholipase that is expressed

on eosinophils and basophils, implying its function in relation to

inflammation (Su, 2018).

Next, it was found through enrichment analysis that the

DEGs of the two CRC subtypes were related to the

inflammatory pathway, and the PPI network revealed that

these genes interacted with CLC, indicating that the

inflammatory response has an important role in CRC

subtypes in prognosis. Previous research found that CLC can

activate macrophages to secrete IL-1β, thereby aggravating

inflammation (Rodriguez-Alcazar et al., 2019). Our study

also came to the same conclusion. CLC has a significant

correlation with macrophages and mast cells, so

inflammatory mediators under the regulation of CLC in

CRC play a role in the prognosis of both subtypes. Future

studies are expected to explore the role and mechanism of the

inflammatory response. GFI1 encodes a nuclear zinc finger

protein, which functions as a transcriptional repressor. It has

also been shown to be associated with neutrophils (the TIMER

database also shows a correlation). When GFI1 is mutated, it

can lead to neutropenia (Moroy et al., 2015). The relationship

between GFI1 and immunoinhibitors and immunostimulators,

as well as the way of regulating TILs, provides a direction for the

development of new targeted drugs in the future. In addition to

the impact of immune-inflammatory factors on the prognosis

of both subtypes, ZG16, ITLN1, CLCA1, AQP8 and other genes

encoding the transport channels on the cell membrane and

involved in the transport of intracellular substances are also

among the prognostic factors. Although the remaining DEGs

did not directly affect the prognosis of the two subtypes of CRC,

we found that by constructing the protein interaction network

of all DEGs, they could interact with CLC, GFI1, ZG16, ITLN1,

CLCA1, and AQP8 and indirectly participate in the regulation

of prognosis of the subtypes of CRC. According to the model,

we found that the factors that cause the difference in the

prognosis of CRC are very complex, which is the result of

multiple factors.

In summary, our study revealed the prognostic factors affecting

CRC based on immunity, inflammation, transporters, and ion

channels. Despite the positive results, this study has a number of

limitations. For one thing, due to the differences in the original data

and algorithms of the database, the results of this study may be

biased. The small sample size of the database may also lead to

discrepancies in the data, and real-time updates to the database can

also change results. For another, our data need to be confirmed by in

vivo/in vitro experiments, such as gene expression or proteomic

analyses based on clinical samples. In the future, research should

further explore the mechanism of action and pathogenesis of these

genes in order to validate the proposed model’s effectiveness and

provide a new way for the treatment of CRC.
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