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Abstract: Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBMs com-
monly acquire resistance to standard-of-care therapies. Among the novel means to sensitize GBM
to DNA-damaging therapies, a promising strategy is to combine them with inhibitors of the DNA
damage repair (DDR) machinery, such as inhibitors for poly(ADP-ribose) polymerase (PARP). PARP
inhibitors (PARPis) have already shown efficacy and have received regulatory approval for breast,
ovarian, prostate, and pancreatic cancer treatment. In these cancer types, after PARPi administra-
tion, patients carrying specific mutations in the breast cancer 1 (BRCA1) and 2 (BRCA2) suppressor
genes have shown better response when compared to wild-type carriers. Mutated BRCA genes are
infrequent in GBM tumors, but their cells can carry other genetic alterations that lead to the same
phenotype collectively referred to as ‘BRCAness’. The most promising biomarkers of BRCAness in
GBM are related to isocitrate dehydrogenases 1 and 2 (IDH1/2), epidermal growth factor receptor
(EGFR), phosphatase and tensin homolog (PTEN), MYC proto-oncogene, and estrogen receptors beta
(ERβ). BRCAness status identified by accurate biomarkers can ultimately predict responsiveness to
PARPi therapy, thereby allowing patient selection for personalized treatment. This review discusses
potential biomarkers of BRCAness for a ‘precision medicine’ of GBM patients.

Keywords: glioblastoma; PARP; PARP inhibitors; BRCAness

1. Introduction

Glioblastoma multiforme (GBM) has a radically altered genome and epigenome [1,2],
which partially explains its aggressiveness. These modifications comprise point mutations,
changes in the gene copy number, complete rearrangements, and epigenetic alterations [3].
Part of these genetic aberrations arise from the dysregulation of one or more molecular
pathways responsible for recognizing and repairing DNA damage. Collectively, this
molecular network is dubbed the DNA damage repair (DDR) machinery. When damaged
DNA cannot be repaired, a functional DDR machinery triggers a signaling cascade, leading
to cell senescence or apoptosis. These signaling pathways are disrupted in GBM, and
despite the accumulation of DNA damage, cancerous cells will thrive, maintaining survival
and pathological cell division [2,4].

While genomic instability contributes to the poor prognosis for GBM patients [5],
the damaged DNA offers a target for pharmacological approaches that induce cancer cell
death by a mechanism called synthetic lethality. This killing process occurs only if two
molecular pathways are simultaneously deficient in one cell, whereas the isolated defect is
innocuous [6]. One class of drugs that explores this killing mechanism are the inhibitors
of poly(ADP-ribose) polymerase (PARP) enzyme, an important DDR component. PARP
inhibitors (PARPis) can induce synthetic lethality in cancer cells with preexistent defects in
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the homologous recombination (HR) repair pathway, such as deleterious mutations of the
breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) suppressor genes [7,8].

The majority of GBM clinical trials evaluating PARPis do not investigate the BRCA
status to compare outcomes between patient groups [9]. One possible explanation is the
expected low frequency of BRCA mutations in GBM, compared to breast, ovarian, and
pancreatic cancer [10,11]. However, the reduction of BRCA expression due to the modu-
lation of EF2 transcriptional factors, cyclin-dependent kinases changes in methylation of
histones [12], or disruption of other DDR effectors [13] can similarly impair HR repair, re-
sulting in the same phenotype observed for BRCA mutations. Collectively, these alterations
that mimic BRCA mutations are known as ‘BRCAness’ [14]. Unraveling of GBM biology
found mutations [1] in other genes that also result in BRCAness and confer sensitivity to
PARPi treatment.

The increased understanding of GBM molecular landscape [1,15,16] has revealed
promising biomarkers for prognostic assessment, resistance mechanisms [4,15], and targets
for new therapies. We examine here the value of biomarkers that indicate the BRCAness
status in GBM as an objective decision-making criterion for adding PARPi in the current
glioma therapy.

2. PARPi and Synthetic Lethality

PARP is a family of enzymes that comprises 17 members with different functions,
such as maintenance of genomic stability, transcriptional regulation, and cell death [16,17].
PARP1 is the best-characterized member of this family and plays a pleiotropic role in DDR,
thus becoming an attractive target for cancer therapy [18]. The major role of PARP1 is
binding to and repairing DNA insults, mainly single-strand breaks (SSBs) through the base
excision repair (BER) pathway [19]. PARP1 uses NAD+ as a substrate to modify acceptor
proteins with poly(ADP-ribose) (PAR) and forms a scaffold, which in turn attracts BER
components [16,17].

SSBs occur endogenously [20] and can evolve into double-strand breaks (DSBs) during
DNA replication, which is the most deleterious DNA insult. In turn, DSBs are repaired by
a complex network of proteins that belong to HR. BRCA1 and BRCA2 work at different
stages of HR [15] and are required for a fool-proof repair of DNA DSBs through the HR
pathway [12]. BRCA1 is a protein that functions in both checkpoint activation and DNA
repair. Differently, BRCA2 mediates the core mechanism of HR [21]. HR happens during
the S and G2 phases of the cell cycle due to the requirement for a sister template to promote
DSB repair [22]. If there is a deleterious mutation of the BRCA1/2 genes, DSB will be fixed
by the nonhomologous end-joining (NHEJ) pathway, which is an error-prone pathway.
Therefore, BRCA1/2 mutated cancer cells are heavily reliant on a DDR repair pathway
that will promptly fix SSBs before they become the deleterious DSBs [18]. Conversely, if
PARP activity is inhibited in BRCA-deficient cancer cells, genomic aberrations accumulate
beyond a bearable threshold and cause cancer cells to die by synthetic lethality, as depicted
in Figure 1 [6,7,23].

The sensitivity of BRCA mutated cancer cells to PARP1 inhibition has brought this
enzyme to the forefront of therapeutic interest, and multiple potent candidate molecules
have been and continue to be developed [7,8]. All PARPis approved for clinical use, or
tested in clinical trials, consist of small synthetic molecules that interact with the NAD+
binding domain. Each PARPi presents a unique pharmacokinetic profile, efficacy [24],
and cytotoxicity. Cytotoxicity is dependent on two concurrent mechanisms, namely (1)
catalytic inhibition of PAR polymer formation and (2) trapping of PARP1 onto the DNA
lesion, forming a complex of PARP1–PARPi–DNA [6]. Their trapping potency is the most
relevant factor that leads to synthetic lethality [25], due to the collapse of the replication
fork when it encounters the trapped PARP1–PARPi–DNA complexes where deleterious
DSBs are formed and cause further cell cytotoxicity [25,26]. This mechanism surpasses the
effects of killing cancer cells of only unrepaired SSBs due to the absence of PARP1 in the
cell [25].
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Figure 1. Synthetic lethality. PARPi mechanism of action and relevant DNA repair pathways in-
volved in BRCA mutated cells. SSBs: single-strand break; DSBs: double-strand break; PARP: 
poly(ADP-ribose) polymerase; PARPi: PARP inhibitor; NAD+: nicotinamide adenine dinucleotide; 
BRCA: breast cancer gene. 
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to standard therapies [23]. This malignant neoplasia shows a widespread invasive behav-
ior and causes progressive destruction of brain tissues, leading to death [23]. Despite ad-
vances in GBM treatment, the median survival time of patients diagnosed with GBM is 
14.5 months [1–3]. Standard treatment protocols include surgical debulking when feasible, 
followed by radiotherapy and/or chemotherapy with alkylating agents such as te-
mozolomide, followed by adjuvant use of the same chemotherapeutic [27]. Despite this, 
fewer than 2% of patients currently survive longer than 5 years after diagnosis [28]. As 
expected, all current treatment options for GBM face limitations. Surgical resection is chal-
lenging due to the infiltrative nature of GBM and the lack of identifiable tumor margins 
[29]. Moreover, invasive surgery may require withdrawal of adjuvant therapies, thereby 
reducing treatment options [30]. For radiotherapy, the hypoxic areas of GBMs lead to sub-
therapeutic concentration of reactive oxygen species, which are responsible for cell tox-
icity, thus reducing treatment efficacy [31]. In the case of alkylating agents, despite the 
fact that temozolomide can cross the blood–brain barrier [32], tumor resistance is fre-
quently developed, resulting in GBM regrowth [33]. 

With a better understanding of GBM biology, novel pharmacological strategies are 
being developed, most of which target specific molecular pathways, as reviewed else-
where [34,35]. For example, epidermal growth factor receptor (EGFR), a transmembrane 
protein, is overexpressed or mutated in 40% of GBM and confers proliferative capabilities 
to cancerous cells [1]. However, none of the EGFR-targeting drugs showed significant ef-
ficacy in patient treatment [36]. Another important GBM treatment approach is the anti-
vascular endothelial growth factor antibody bevacizumab with antiangiogenic properties; 
it received accelerated approval from the Food and Drug Administration (FDA) in 2009 
as a single agent for progressive GBM following prior therapy [37]. Unfortunately, further 

Figure 1. Synthetic lethality. PARPi mechanism of action and relevant DNA repair pathways involved
in BRCA mutated cells. SSBs: single-strand break; DSBs: double-strand break; PARP: poly(ADP-
ribose) polymerase; PARPi: PARP inhibitor; NAD+: nicotinamide adenine dinucleotide; BRCA:
breast cancer gene.

3. GBM: Brief Overview

GBM is a highly aggressive primary brain tumor that commonly acquires resistance
to standard therapies [23]. This malignant neoplasia shows a widespread invasive be-
havior and causes progressive destruction of brain tissues, leading to death [23]. Despite
advances in GBM treatment, the median survival time of patients diagnosed with GBM
is 14.5 months [1–3]. Standard treatment protocols include surgical debulking when fea-
sible, followed by radiotherapy and/or chemotherapy with alkylating agents such as
temozolomide, followed by adjuvant use of the same chemotherapeutic [27]. Despite
this, fewer than 2% of patients currently survive longer than 5 years after diagnosis [28].
As expected, all current treatment options for GBM face limitations. Surgical resection
is challenging due to the infiltrative nature of GBM and the lack of identifiable tumor
margins [29]. Moreover, invasive surgery may require withdrawal of adjuvant therapies,
thereby reducing treatment options [30]. For radiotherapy, the hypoxic areas of GBMs lead
to subtherapeutic concentration of reactive oxygen species, which are responsible for cell
toxicity, thus reducing treatment efficacy [31]. In the case of alkylating agents, despite the
fact that temozolomide can cross the blood–brain barrier [32], tumor resistance is frequently
developed, resulting in GBM regrowth [33].

With a better understanding of GBM biology, novel pharmacological strategies are
being developed, most of which target specific molecular pathways, as reviewed else-
where [34,35]. For example, epidermal growth factor receptor (EGFR), a transmembrane
protein, is overexpressed or mutated in 40% of GBM and confers proliferative capabilities
to cancerous cells [1]. However, none of the EGFR-targeting drugs showed significant
efficacy in patient treatment [36]. Another important GBM treatment approach is the anti-
vascular endothelial growth factor antibody bevacizumab with antiangiogenic properties;
it received accelerated approval from the Food and Drug Administration (FDA) in 2009 as a
single agent for progressive GBM following prior therapy [37]. Unfortunately, further trials
and meta-analyses demonstrated that bevacizumab does not improve overall survival for
patients newly diagnosed with GBM [38]. New antiglioma therapies are critically needed
as GBM remains an incurable disease and PARPis are valuable candidates.

Mounting evidence supports that PARP1 plays a central role in GBM biology. Bartkova
et al. demonstrated that the DDR machinery is constitutively activated in GBM tissue
even before any exposure to chemotherapy or radiotherapy [39]. Treatment-resistant
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cell subpopulations, sometimes dubbed GBM stem-like cells (GSCs), present a primed
DDR machinery proficient at responding to any DNA insults, including those caused by
some conventional anticancer therapies [40,41]. The DDR efficacy of GSCs is linked to
the intrinsic oxidative and replicative stress experienced by these cells [40,42]. PARP1 is
overactive in GSCs [42] as a response to high levels of nicked DNA [39]. Accordingly,
PARP1 expression at the protein and RNA level correlated positively with increasing tumor
grade and poorer overall survival compared to reference samples [43]. When inhibitors
against components of the DDR machinery, such as PARPis, are employed in GSCs in
in vitro experiments, sensitivity to radio- and chemotherapy is rescued, demonstrating the
central role of DDR in GBM [40,44].

Among those molecules approved by regulatory agencies and new molecules, three
PARPis have undoubtedly demonstrated the capacity to accumulate onto the GBM tissue,
beyond plasmatic concentrations, in preclinical models and are being tested clinically,
namely veliparib [45,46], niraparib [47], and pamiparib [48]. However, knowledge of
biomarkers of the DDR status in GBM is still incipient, limiting the number of strategies
available for monitoring the effect of PARPi treatment, tailoring treatment, or determining
which patients would benefit from it.

4. BRCAness Biomarkers in GBM

Biomarkers that reveal the BRCAness status of GBM may predict the outcome for
a PARPi administered as a single agent or combined with other therapies [49]. We re-
viewed data from the most promising candidate biomarkers of BRCAness in GBM, namely
mutate isocitrate dehydrogenases 1 and 2 (IDH1/2), EGFR mutated variant (EGFR vIII),
phosphatase and tensin homolog (PTEN), MYC oncogene, and the estrogen receptors beta
(ERβ). Figure 2 schematically represents the molecular pathways where these biomarkers
are involved in ultimately impairing HR.

4.1. IDH-1/2

Missense mutations of IDH1/2 genes disrupt HR and affect 9% of GBM tumors [50].
These genes code for enzymes of the citric acid cycle that catalyze the conversion of
isocitrate to alpha-ketoglutarate, as depicted in Figure 2a [51]. In contrast, mutated IDH
enzymes will convert alpha-ketoglutarate to 2-hydroxyglutarate, an oncometabolite that
inhibits lysine-specific demethylase 4A/B (KDM4A/B) [52]. Both enzymes remove histone
trimethylation, allowing DDR proteins, such as 53BP1 (P53 binding protein1), to access
and repair DSB [53]. Notably, preclinical studies reveal that IDH1/2 mutations predict
susceptibility to PARPi therapy [52,54]. Taken together, IDH mutations are expected to
cause a BRCAness phenotype through disruption of HR and lead to sensitivity to PARPi
therapy in GBM cells [54].

Another impact of IDH1 mutation that modulates PARPi sensitivity is related to alpha-
thalassemia/mental retardation syndrome X-linked (ATRX) gene, commonly mutated
in lower-grade astrocytoma and secondary GBM [55]. Mutant IDH1 cooperates with
mutation/loss of ATRX, driving cells to rely on the alternative lengthening of telomere
(ALT) pathway [56]. Preclinical ALT-dependent glioma models were more sensitive to
PARPi trapping than ATRX wild type. This sensitivity was attributed to a new mechanism,
not dependent on BRCAness [57]. However, other studies indicate that ATRX loss in
gliomas can halt HR, inducing PARPi sensitivity [58,59]. Further studies are warranted.

At the time of writing, several clinical trials are ongoing using PARPi in patients pre-
senting with mutated IDH1/2, and the results are awaited eagerly. Two phase I/II clinical
trials (NCT03749187 and NCT03914742) will test pamiparib associated with temozolomide
for patients that present newly diagnosed or recurrent high-grade glioma with IDH1/2
mutation. Utilizing an inclusion criterion of IDH gene mutation, veliparib is being tested in
combination with conventional therapies in a phase II clinical trial (NCT03581292) (Table
1). Currently, olaparib is the only PARPi being tested as a monotherapy in recurrent or re-
fractory malignant gliomas in patients that present confirmed IDH1/2 mutations (Table 1).
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These clinical trials are at phase II (NCT03212274 andNCT03561870). The later showed that
the single-arm trial did not meet its primary endpoint, which was progression-free survival
for a six-month period in 45 percent of the 35 enrolled patients. Median progression-free
survival was 2.3 months [60].
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Figure 2. BRCAness phenotype in GBM that leads to impairment of the homologous recombination repair (HR) and PARPi
sensitivity. (a) The mutated isocitrate dehydrogenase (IDH) enzyme results in the newly acquired ability to produce the
oncometabolite 2-hydroxyglutarate (2HG) that inhibits lysine-specific demethylase 4A/B (KDM4A/B), which removes
methyl (Me) groups from histones (H). In turn, the methylated histones will hinder the interaction of P53 binding protein
1 (53BP1) with double-strand breaks (DSB) and HR repair. (b) The overexpression of epidermal growth factor receptor
(EGFR) or the constitutively active EGFR variant III (EGFR vIII) will lead to activation of the PI3K/Akt/mTOR pathway
and consequently the activation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) that will inactivate
ATM through phosphorylation. (c) PTEN transported to the nucleus induces the transcription of RAD51, an important
component of the HR. In GBMs where PTEN is mutated or null, the transcription of RAD51 is reduced, and the HR is
impaired. (d) MYC protooncogene directly suppresses the expression of CDK18 through interaction with its promoter
that is responsible for activating the ATR through phosphorylation. ATR is an important component of HR. (e) ERβ is a
cytoplasmatic receptor that suppresses the transcription of different components of the HR, such as RAD51, ATM, and
ATR. IDH: isocitrate dehydrogenase; TCA: tricarboxylic acid cycle; KG: alpha-ketoglutarate; 2HG: 2-hydroxyglutarate;
KDM4A/B: lysine-specific demethylase 4A/B; H: histone; EGFR: epidermal growth factor receptor; EGFR vIII: EGFR variant
III; DNA-PKcs: DNA-dependent protein kinase catalytic subunit; ATM: ataxia telangiectasia mutated; PTEN: phosphatase
and tensin homolog; EF2: transcription factor 2; ATR: ataxia telangiectasia and Rad3-related; ERβ: estrogen receptor beta.
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Table 1. Summary of clinical trials using PARPi that have used biomarkers for prediction of PARPi sensitivity.

Drug/Company Study Start Associated Therapy Clinical Trial Molecular Biomarker Status Cancer Type

Olaparib, OR Lynparza,
OR (AZD2281)

KuDOS/Astra-Zeneca

Mar 2018 monotherapy NCT03212274
Phase II mutated IDH1/2 recruiting glioblastoma

Jun 2018 monotherapy NCT03561870
Phase II mutated IDH1/2 active, not recruiting recurrent

high-grade glioma

Jul 2011 temozolomide NCT01390571
Phase I

DNA repair genes,
PTEN, MGMT

methylation status,
mismatch repair

completed relapsed GBM

Veliparib OR (ABT888) Abbvie

Dec 2018 radiation therapy and
temozolomide

NCT03581292
Phase II DDR markers recruiting glioma without H3 K27M OR

BRAFV600E mutations

Dec 2014 temozolomide NCT02152982
Phase II and III

mutated IDH1/2
MGMT active, not recruiting newly diagnosed GBM

Jul 2009 temozolomide NCT00946335
Phase I

MGMT, mismatch,
DNA repair pathways completed pediatric gliomas

Niraparib OR,
Zejula, OR (MK4827)

Merk/Tesaro
Dec 2019 tumor treating field NCT04221503

Phase II
methylation status of

MGMT recruiting recurrent GBM

Pamiparib OR (BGB290) Beigene

Apr 2019 temozolomide NCT03749187
Phase I

mutated IDH1/2 and
others recruiting newly diagnosed glioma grade II

OR III

Jan 2020 temozolomide NCT03914742
Phase I and II mutated IDH1/2 recruiting recurrent GBM

Aug 2017 radiation therapy and/or
temozolomide

NCT03150862
Phase I and II MGMT Methylation active, not recruiting newly diagnosed or

recurrent/refractory glioblastoma
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4.2. EGFR vIII

Additionally, the commonly mutated EGFR variant III (EGFR vIII) also modulates
DDR in GBM and increases the tumor dependency on PARP1 activity, as represented in
Figure 2b [1]. EGFR vIII is a constitutively active mutant that preferentially induces the
proliferative phenotype through the activation of the PI3K/Akt/mTOR pathway [61,62].
In turn, this pathway activates the DNA-dependent protein kinase catalytic subunit (DNA-
PKcs) [36] that has the capacity to phosphorylate specific sites of ataxia telangiectasia
mutated (ATM) protein, thereby deactivating it [63]. ATM is a crucial kinase of HR that
triggers checkpoint signaling upon DNA injuries and recruits the machinery responsible
for DSB repair. In addition, DNA-PKcs triggers DSB repair through NHEJ preferentially
over HR [22,64]. As discussed earlier, NHEJ is an error-prone DNA repair pathway: these
cells are highly dependent on PARP1 to avoid death, thus remaining responsive to PARPi
therapy [65].

4.3. PTEN

PTEN is silenced in 36% of GBMs [23]. Primarily, PTEN regulates the PI3K pathway,
suppressing and having an important role in genomic integrity. Shen et al. demonstrated
that PTEN through the transcription factor E2F1 transactivates the RAD51 gene promotor,
ultimately controlling its gene transcription [66]. Cancer cells without functional nuclear
PTEN, or lacking PTEN expression altogether, exhibit reduced RAD51 expression that
leads to HR defects [67]. Figure 2c schematically represents this molecular scenario. RAD51
is required to physically link homologous DNA molecules and a processed DNA break to
catalyze the DNA strand exchange with an undamaged sister chromatid or homologous
chromosome. Cancer cells lacking PTEN present less capacity to repair DNA insults
caused by irradiation and are susceptible to PARPi therapy to the same extent as cancer
cells presenting BRCA1/2 mutations [67]. Concurrently, PTEN-deficient glioma cells also
presented an impaired HR and increased susceptibility towards PARPi therapy [68]. Lin
and collaborators described that an orthotopic murine model of PTEN-deficient GBM was
more susceptible to the association of veliparib and temozolomide than the control group
with wild-type PTEN [69].

A clinical trial using olaparib in combination with temozolomide (NCT01390571) in
relapsed GBM patients investigated whether PTEN expression and mutation would result
in a different response to treatment. However, this phase I clinical trial was withdrawn
due to severe myelosuppression, and PTEN status was not disclosed [70] (Table 1). Further
investigation is warranted to elucidate the responsiveness of PARPi treatment in GBM with
PTEN deficiency.

4.4. MYC

The MYC oncogene family encodes a set of nuclear phosphoprotein transcriptional
factors that play key roles in cell cycle progression, apoptosis, cellular differentiation, and
metabolism [71]. These genes were found amplified in a subset of GBMs by Hui et al. by
genomic microarray analysis [72]. Increased overexpression/amplification of MYC was
linked to increased sensitivity to PARPi therapy in patient-derived GSCs [13]. Cancer
cells that overexpressed MYC also had a reduction in HR capacity and thus an increased
susceptibility to PARPi [13]. Mechanistically, in GSCs, MYC downregulates CDK18, which
in turn phosphorylates and consequently activates ataxia telangiectasia and Rad3-related
(ATR) kinase, a key regulator of HR, thus conferring susceptibility to PARPi (Figure 2d) [13].

4.5. ERβ

Estrogen receptors are proteins present in the cytoplasm and nucleus of cells where
they modulate gene expression when they form a complex with estrogen hormone [73].
These receptors play a tumor-suppressive role in GBM models [74,75]. In agreement,
aggressive GBM clinical samples showed reduced presence of ERβ in the nucleus com-
pared to less aggressive gliomas and the normal brain tissue [76,77]. Additionally, the
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use of ERβ agonists increased the sensitivity of GBM to temozolomide treatment in pre-
clinical models [75]. Transcriptome analysis of GBM cells overexpressing ERβ revealed
mRNAs related to HR and DDR were downregulated, including RAD51, ATM, and ATR
(Figure 2e) [78]. Hence, ERβ expression could be used as a biomarker to predict PARPi
susceptibility in GBMs due to its role in modulating the expression of important DDR
effectors and associated BRCAness phenotype.

5. Clinical Trials and Biomarkers

Considering clinical trials registered in the clinicaltrials.gov database, oncological
studies with PARPis encompass more than 100 completed or ongoing ones and are exten-
sively reviewed elsewhere [24]. Olaparib was the first-in-class PARPi approved by the FDA
for the treatment of ovarian [79], breast [80], prostate [81], and pancreatic cancer [82] in
patients that presented BRCA1 or BRCA2 germline mutations. Subsequently, rucaparib
and niraparib [79] were approved for high-grade ovarian cancer, while talazoparib received
approval for metastatic breast cancer [79]. Generally, patients with pathological BRCA
mutations present the best benefit from PARPi therapy, but clinical studies demonstrated
the efficacy of PARPis against cancers presenting defects in HR due to other genes, such
as ATM and partner and localizer of BRCA2 (PALB2). As a result, olaparib was approved
(May 2020) as a monotherapy for metastatic castration-resistant prostate cancer, for car-
riers of deleterious mutations in ATM and PALB2 [81,83]. Rucaparib increased overall
survival of pancreatic cancer patients carriers of PALB2 in a phase II trial, hence potentially
broadening the population that could be benefited by PARPi treatment [84].

PARPi therapies are also evaluated in clinical trials in combination with a myriad of
other treatments (reviewed in [27,81,85]). Encouraging results were observed when antian-
giogenic agents were combined with PARPis for ovarian cancer treatment [86,87]. Immune
checkpoint inhibitors (ICIs), associated with different PARPis, are being tested in clinical
trials for treatment of different solid cancers with encouraging results for triple-negative
breast cancer patients [85]. The rationale behind this combination is based on the capac-
ity of PARPi to enhance processes such as neoantigen production, antigen presentation,
promotion of tumor-infiltrating lymphocytes, and upregulation of programmed cell death
ligand 1.

For brain tumors, veliparib is the most tested PARPi. This molecule has been studied
in four different phase I trials and in two phase I/II trials where it was combined with
temozolomide and/or radiotherapy in all cases. The majority of those clinical trials are
now completed, and their results are summarized below.

Chronologically, NCT00649207, completed in 2013, was the first trial to examine
whether veliparib could potentiate conventional treatment for brain metastases. The
combined treatment produced more favorable median overall survival when compared
to historical controls [88]. These results lead to a global phase II trial (NCT01657799)
that assessed the effect of veliparib, combined or not with whole-brain radiation therapy
(placebo + WBRT). Six years from the start of the study, the final results were published,
showing no difference in overall survival between the treatment arms [89].

In 2009, two clinical trials were carried out combining temozolomide with veliparib
in pediatric patients (NCT00994071, NCT00946335) [90]. Due to hematologic toxicities,
the recommended phase II dose for veliparib was 25 mg/m2, and that for temozolomide
was 125 mg/m2, which is lower than that used for other malignancies [91]. Based on
these results, another clinical trial (NCT01514201) [92] was carried out in pediatric patients
newly diagnosed with diffuse intrinsic pontine glioma in an attempt to evaluate whether
treatment-naïve patients would present less toxicity with higher doses of temozolomide
associated with veliparib. In this study, patients tolerated well the maintenance treatment
regimen of veliparib (25 mg/m2 twice a day) and temozolomide (135 mg/m2 daily for
5 days every 28 days) after receiving radiation therapy. The treatment was well tolerated
but did not improve overall survival when compared to contemporary historical control
groups [92].
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Another clinical trial was carried out in adult patients with newly diagnosed GBM
(NCT00770471). One of the primary end goals was to determine the maximum tolerated
dose of veliparib when administered in combination with radiotherapy and temozolo-
mide. Unfortunately, this study was halted due to increased hematological toxicity in
patients receiving 10 mg veliparib twice a day during 42 days and 75 mg/m2 of temo-
zolomide daily [93]. Another complete clinical trial using veliparib in brain tumors tried
to define its maximum tolerated dose in combination with temozolomide in adults with
recurrent GBM (NCT01026493). The combined regimen (temozolomide/veliparib) was
tested using two schedules of either 5 or 21 days in a 28-day cycle, which followed two
different dose protocols: 40 mg twice daily of veliparib with 75 mg/m2 temozolomide,
using the 21/28 day schedule, and combined veliparib (40 mg) with temozolomide, using
the 5/28 day temozolomide at 150–200 mg/m2. Final analysis demonstrated that the
treatment did not result in an increased progression-free survival rate when compared to
the control group [94]. At the time of writing, there are two active clinical trials, a phase
II (NCT03581292) and a phase II/III (NCT02152982), that compare conventional therapy
with or without veliparib for newly diagnosed GBM patients; different from the previously
mentioned clinical trials of this section, NCT02152982 is systematically assessing the lev-
els of O-6-methylguanine-DNA methyltransferase (O-MGMT) enzyme as a biomarker of
susceptibility to this PARPi [95] (Table 1). Mechanistically, temozolomide induces differ-
ent types of DNA lesions, and some of them require the repair of PARP1 and O-MGMT
enzyme [96,97]. Hence, the pharmacological inhibition of PARP1 activity in GBM that
presents reduced MGMT expression will result in persistence of lethal DNA lesions and
subsequent enhancement of temozolomide cytotoxicity [33]. In fact, epigenetic changes in
the MGMT promoter that suppress gene expression are commonly present in GBM and
represent a favorable prognostic biomarker for alkylating chemotherapy [98]. Accordingly,
preclinical studies demonstrated that PARPi potentiates temozolomide therapeutic effects
in low MGMT-expressing tumors [45,99].

In an attempt to sensitize GBM to conventional therapies and overcome resistance
mechanisms, other PARPis are being studied. Pamiparib in combination with temozolo-
mide and/or radiotherapy is currently being tested in phase I (NCT03749187) and I/II
(NCT03914742 and NCT03150862) clinical trials in GBM patients [9]. Niraparib was tested
with temozolomide for safety and efficacy in a phase I trial (NCT01294735), but no results
were posted in the clinicaltrials.gov database after completion of the trial in 2012. This
PARPi will be tested in a phase II trial (NCT04221503) associated with tumor treating
field technology, a treatment expected to disrupt cancer cell migration capabilities and
invasiveness through the application of a mild electric field [100] (Table 1).

6. Discussion and Conclusions

GBMs are the most aggressive brain cancer, and they are known for genomic abnor-
malities and resistance to conventional therapies. A better understanding of the cancer
biology of GBM has brought into attention the DDR cascade with the central role of PARP1
as a therapeutic target, opening up the opportunity for the use of PARPis in GBM therapy.
This resulted in the continuous FDA approval of protocols using PARPis for a growing
number of cancer types. Based on preclinical data, clinical trials are evaluating PARPis
for the treatment of GBM patients. However, identification of consistent biomarkers that
would allow predicting therapy response and elucidation of mechanisms of resistance to
these drugs have so far failed.

Since PARP1 enzyme is the target of PARPi molecules, one important feature that
must be assessed is its presence and the capacity of these drugs to engage with the enzyme
throughout the treatment [43]. Currently, PARP1 levels are determined by immunohis-
tochemistry in biopsy samples from GBM patients [43,101], but the known genetic and
morphological heterogeneity of this cancer type limits this strategy as a diagnostic tool [1].
Furthermore, the engagement between PARP1 and its inhibitor requires that the PARPi
molecules reach the cell nucleus and remain there to exert their therapeutic effect [102].
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Therefore, a crucial characteristic of any PARPi is the capacity to accumulate in GBM
tissue [32], evading the molecular efflux pumps [103].

Recent studies have shown that mechanisms of resistance to PARP inhibition are com-
plex and multifaceted, including PARP1 mutations [104], CDK18-mediated resistance [13],
and others [105]. Knowledge about these molecular processes and the heterogeneous
genetic nature of GBM might explain why it is not possible to recapitulate what is observed
in preclinical models in patients. Nonetheless, a growing number of clinical trials are
now investigating biomarkers for PARPi sensitivity, and their results are awaited eagerly.
Possibly, toxicities observed in some of the previous trials could be overcome with the
use of more potent and more specific PARPis [25,106]. Ultimately, in future trials, with
the advancement of biomarker research and the systematic use of ‘omics’ technology, a
companion diagnostic for GBM should be developed, as has already been done for other
cancer types. This will allow a better selection of patients and an optimal combination of
targeted therapies.
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