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Abstract
Background and purpose: In an era of individualized multiple sclerosis (MS) patient man-
agement, biomarkers for accurate prediction of future clinical outcomes are needed. We 
aimed to evaluate the potential of short-term magnetic resonance imaging (MRI) atrophy 
measures and serum neurofilament light chain (sNfL) as predictors of the dynamics of dis-
ability accumulation in relapse-onset MS.
Methods: Brain gray and white matter, thalamic, striatal, pallidal and cervical spinal 
cord volumes, and lesion load were measured over three available time points (mean 
time span 2.24  ±  0.70  years) for 183 patients (140 relapsing-remitting [RRMS] and 
43 secondary-progressive MS (SPMS); 123 female, age 46.4 ± 11.0 years; disease duration 
15.7 ± 9.3 years), and their respective annual changes were calculated. Baseline sNfL was 
also measured at the third available time point for each patient. Subsequently, patients 
underwent annual clinical examinations over 5.4 ± 3.7 years including Expanded Disability 
Status Scale (EDSS) scoring, the nine-hole peg test and the timed 25-foot walk test.
Results: Higher annual spinal cord atrophy rates and lesion load increase predicted 
higher future EDSS score worsening over time in SPMS. Lower baseline thalamic volumes 
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INTRODUC TION

In an era of individualized multiple sclerosis (MS) patient manage-
ment, biomarkers for accurate prediction of future clinical outcomes 
are needed. Currently, signal intensity changes on magnetic reso-
nance imaging (MRI) representing focal inflammatory events are 
the main considerations in clinical routine and guide therapeutic 
decisions [1]. However, numerous studies have demonstrated that 
metrics of diffuse central nervous system (CNS) neurodegenera-
tion, measured on serial MRI acquisitions as volume loss over time, 
correlate better with clinical progression occurring within the same 
time frame [2,3]. Additionally, serum neurofilament light chain (sNfL) 
levels have been shown to be associated with disease activity as well 
as long-term brain and cervical spinal cord (cSC) volume loss [4].

In clinical settings, however, the value of models assessing cor-
relations between concurrently acquired disability measures and 
potential disease biomarkers is limited. Individualized patient man-
agement would require prediction of the dynamics of clinical disease 
progression in the future. For instance, it would be meaningful to 
identify patients at risk of losing walking ability faster than others and 
to be able to predict accurately the extent of this clinical progression.

Based on the well-established strong correlation between clin-
ical disability measures and concurrently acquired longitudinal 
metrics of CNS atrophy, the aim of the present study was to eval-
uate whether cross-sectional and short-term atrophy measures, 
quantified on MRI, as well as cross-sectional sNfL values, can pre-
dict future dynamics of disability accumulation in a large real-world 
relapse-onset MS cohort.

METHODS

Study design and participants

We analyzed selected data from a large cohort of relapsing-remitting 
(RR) and secondary-progressive (SP) MS patients (235 patients 
in total recruited at baseline) from a single center (MS Center, 
University Hospital, Basel) [3,5–7] in retrospective fashion. Patients 
were followed over a maximum of 13 years (14 annual time points). 
The diagnosis of MS was made in accordance with international 

panel-established criteria [8]. The local ethics committee approved 
the study (EKBB-46/04) and all patients signed informed consent.

Procedures

All patients underwent yearly standardized neurological and neu-
ropsychological examination, conducted by trained and certified 
examiners. The annual examination included Expanded Disability 
Status Scale (EDSS) classification (http://www.neuro​status.org), 
the nine-hole peg test with the dominant and non-dominant hand 
(D9HPT and ND9HPT, respectively), the timed 25-foot walk test 
(T25fwt) as well as the Symbol Digit Modalities Test (SDMT) and 
Paced Auditory Serial Addition Test (PASAT). For our purposes, clini-
cal data only from the third available time point onwards were used 
for further analysis, representing the future clinical development 
(Table S1). Treatment was documented in each follow-up (Table S2).

In contrast, MRI data of the first three available time points 
for each patient were included in the image analyses represent-
ing baseline volumes/volume changes (Table S1). The use of three 
MRI scans for the calculation of longitudinal atrophy and lesion 
load change measures was selected to minimize potential variabil-
ity originating from physiological (e.g. hydration status) as well as 
image acquisition and image segmentation factors. All MRI scans 
were performed using the same 1.5-T Magnetom Avanto magnetic 
resonance scanner (Siemens Healthineers, Erlangen, Germany). 
The MRI protocol included a high-resolution three-dimensional T1-
weighted magnetization-prepared rapid acquisition with gradient 
echo sequence of the brain, acquired in sagittal orientation (TR/
TI/TE = 2080/1100/3.0 ms; flip angle = 15°, 160 slices, resolution: 
0.98 × 0.98 × 1 mm3), which also covered the upper cSC. Additionally, 
a double-spin-echo proton density/T2-weighted sequence was ac-
quired (TR/TE1/TE2 = 3980/14/108 ms; 40 slices, 3-mm slice thick-
ness without gap with an in-plane resolution of 1 × 1 mm2).

Patient serum samples were collected on the same day as the 
clinical visit and sNfL levels were measured by Simoa assay, as pre-
viously described [4]. For our purposes, the sNfL data from only 
the third available time point for each patient (deployed as baseline 
measurement similarly to previous studies [9]) were used for further 
analysis (Table S1).

predicted higher walking speed worsening over time in RRMS. Lower baseline gray mat-
ter, as well as higher white matter and spinal cord atrophy rates, lesion load increase, 
baseline striatal volumes and baseline sNfL, predicted higher future hand dexterity wors-
ening over time. All models showed reasonable to high prediction accuracy.
Conclusion: This study demonstrates the capability of short-term MRI metrics to accu-
rately predict future dynamics of disability progression in a real-world relapse-onset MS 
cohort. The present study represents a step towards the utilization of structural MRI 
measurements in patient care.
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Analysis of MRI

Lesion segmentation

All brain white matter (WM) lesions were segmented on T2-weighted 
and proton density images by trained expert observers according to 
the standard operating procedures used at the local institution for 
the analysis of clinical phase II and phase III trials and were then filled 
to correct for tissue misclassification due to MS lesions [10]. Using 
these segmentations, the T2-weighted lesion volume of each patient 
was extracted.

Volumetric quantification of CNS structures

All morphological analyses were performed on the T1-weighted 
brain images. Brain gray matter (GM) and WM volume were com-
puted for each patient with the fully automated tool “SIENAX” for 
cross-sectional studies version 2.6 [11,12]. The volume of the deep 
GM nuclei, including thalamic, striatal and pallidal volumes, was 
estimated based on an established nomenclature [13] using the 
“MAGeT” algorithm [14,15] as described in previous studies [16–18]. 
Both quantification methods were performed on T1-weighted im-
ages after lesion-filling in order to reduce biases related to tissue 
misclassification and to improve image registration [19,20]. A 35-mm 
long cSC segment, extending roughly between the foramen magnum 
and the C2/C3 intervertebral disc, was analysed using “CORDIAL”, 
as described in previous methodological and clinical studies [3,7,21].

All segmentations were visually inspected for quality and ex-
cluded from further statistical analysis in case of segmentation 
errors. The “SIENAX” baseline volume correction factor regarding 
variations in head size was used for normalizing the volumes of all 
CNS structures beside the cSC [12]. All analyses were performed on 
these normalized volumes.

Statistical analysis

The mean annual volume change rate (AVCR) of all CNS structures at 
the beginning of our study period was calculated as the percentage 
of the annualized changes using the first three available time points 
for every patient (Appendix S1 and Table S1). Similarly, the mean ab-
solute annual volume change (AAVC) of T2-weighted lesion load (in 
mm3) was calculated for each patient in the same scans.

To approximate a normal distribution, logarithmic transforma-
tions were performed for the EDSS, D9HPT and ND9HPT, whereas 
an inverse transformation and a cubic transformation were con-
ducted for the T25fwt and PASAT, respectively.

The RRMS and SPMS patient groups were evaluated separately. 
We constructed linear mixed-effect regression (LMER) models pre-
dicting the patients' annually assessed clinical outcomes (EDSS, 
D9HPT, ND9HPT, T25fwt, SDMT and PASAT of third time point 
onwards over 5.4 ± 3.7 years), collected over 11 years, and entered 
as dependent variables using MRI metrics, with baseline NfL as an 

independent variable. In the initial full model, we entered demo-
graphics (sex and age), disease duration, disease type (in models 
including the relapse-onset MS cohort), medication (grouped as 
injectable, oral or infused), and years of education (for PASAT and 
SDMT analysis), MRI metrics (baseline and AVCR/AAVC) and base-
line sNfL values as independent variables. In the case of D9HPT 
and ND9HPT, contralateral thalamic, striatal and pallidal volumes 
were entered into the LMER model. All LMER analyses were per-
formed using a random intercept and a random time slope for each 
subject to allow for within-subject and between-subject variance 
(Appendix S1). For each independent variable, both the main effect 
(corresponding to the correlation to the intercept of the respective 
clinical outcome) as well as the interaction term with the time vari-
able (corresponding to the correlation to the slope of the respective 
clinical outcome over time) were evaluated. The interaction terms 
between independent variables and the time variable model how 
these modify the course of the outcome over time, after correcting 
for the main effects of the independent variables. We then used a 
step-down model-building approach for best model selection as pro-
posed before [22,23], which is based on a deletion of effects from 
the full model using F-statistics and the Satterthwaite's approxi-
mation to degrees of freedom with a p-value threshold of 0.05. In 
case of significant interaction terms with time, the respective main 
effects were kept in the model according to the principle of margin-
ality. The primary goal of this work was to find models that perform 
well in predicting the future development (or course) of important 
clinical outcomes and not to evaluate the utility of individual bio-
markers. In addition, despite multicollinearity originating from pos-
sible moderate or high correlations between predictive variables 
entered in our models, multicollinearity issues do not influence pre-
cision of the models' predictions, or the goodness-of-fit statistics. 
Therefore, we did not account for multicollinearity issues in our anal-
ysis. After model selection, p values were not used for any testing of 
statistical hypothesis and were solely reported for completeness in 
Tables S1 to S5; therefore, multiple comparisons correction was not 
performed.

For each final LMER model, we then conducted a leave-one-out 
fashion cross-validation analysis. In order to measure the accuracy 
of our prediction models, we calculated the mean absolute error, 
the root-mean-square error and the mean absolute percentage error 
(MAPE) as well as their respective 95% confidence intervals (CIs). 
We then ranked the accuracy of our models according to their mean 
MAPE values as proposed before [24]. Specifically, a MAPE of 0%–
10% was graded as high predictive accuracy, a MAPE of 10%–20% 
as good predictive accuracy, a MAPE of 20%–50% as reasonable 
predictive accuracy and a MAPE of >50% as inaccurate prediction.

All statistical analyses were conducted using R version 3.6.3 
(https:// https://www.r-proje​ct.org/).

RESULTS

After exclusion of all relapse-onset patients with less than three 
available yearly MRI sessions (52 patients in total), data from 

https://www.r-project.org/
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183 MS patients (140 RRMS, 43 SPMS) were used for further sta-
tistical analysis. After three yearly MRI examinations (mean time 
span: 2.24 ± 0.70 years; minimum 2 years), patients received clinical 
follow-ups for up to 11 years (mean follow-up time 5.4 ± 3.7 years; 
mean number of follow-ups 6.0 ± 3.6; Figure 1). Baseline demograph-
ics and clinical characteristics, are described in Table 1. Baseline MRI 
metrics, sNfL values, AVCR and AAVC are shown in Table 2. Baseline 
MRI metrics and sNfL as well as AVCR are also shown in Figure 2. 
Trajectories of clinical scores are shown in Figure 3.

Prediction of future clinical progression

Details of all final LMER models for the EDSS, 9HPT and T25fwt 
are shown in detail in Tables 3 and 4, as well as in Tables 3 and 4. 
Interestingly, mostly baseline and short-term atrophy measures 
were predictive of future clinical worsening over time. Important 
predictors for all clinical outcomes in the RRMS, SPMS groups and 
the whole cohort are summarized in Table 5.

Expanded Disability Status Scale

Relapsing-remitting MS

No variables were associated with future EDSS changes over 
time (mean yearly increase of log[EDSS] of 0.014  ±  3.1  ×  10−3, 
p = 2.6 × 10−5). The cross-validation analysis demonstrated good pre-
dictive accuracy with a mean MAPE of 17.0% (95% CI 14.7%–19.3%). 

The fact that our model had good predictive accuracy using only 
predictors of the average patient EDSS may suggest a low variability 
of EDSS increase over time between patients.

Secondary progressive multiple sclerosis

Higher cSC AVCR (faster volume loss) and lesion-load AAVC 
(faster increase) were significantly associated with higher future 
EDSS worsening over time (mean yearly increase of log[EDSS] 
of 0.024 ± 5.2 × 10−3, p = 6.7 × 10−5). The cross-validation analy-
sis demonstrated good predictive accuracy with a mean MAPE of 
11.2% (95% CI 8.4%–14.1%).

Timed 25-foot walk test

Relapsing-remitting MS

Lower baseline thalamic volumes were significantly associated with 
higher future T25fwt worsening over time (mean yearly decrease 
of 1/T25fwt of −6.4  ×  10−4  ±  3.6 × 10−4, p  =  0.095). The cross-
validation analysis demonstrated reasonable predictive accuracy, 
with a mean MAPE of 36.9% (95% CI 22.3%–51.6%).

Secondary progressive MS

Higher baseline GM, baseline lesion volumes, GM AVCR (faster 
volume loss), WM AVCR (faster volume loss) and cSC AVCR (faster 
volume loss) as well as lower baseline pallidal volumes were signifi-
cantly associated with higher future T25fwt worsening over time 
(mean yearly decrease of 1/T25fwt of −4.2  ×  10−3  ±  1.7  ×  10−4; 
p  =  0.087). The cross-validation analysis demonstrated inaccurate 
prediction, with a mean MAPE of 167.9% (95% CI 71.2%–264.7%).

Dominant hand nine-hole peg test

Relapsing-remitting MS

In terms of the dominant hand-dexterity, lower baseline GM vol-
umes were significantly associated with higher future D9HPT 
worsening over time (mean yearly increase of log[D9HPT] of 
0.012 ± 2.0 × 10−3, p = 7.5 × 10−7). The cross-validation analysis 
demonstrated highly accurate prediction with a mean MAPE of 
5.5% (95% CI 4.8%–6.3%).

Regarding the analyses of the non-dominant hand dexterity, 
higher lesion load AAVC (faster increase) was significantly associ-
ated with higher future ND9HPT worsening over time (mean yearly 
increase of log[ND9HPT] of 0.011 ± 1.6 × 10−3, p = 1.9 × 10−8). The 
cross-validation analysis demonstrated highly accurate prediction 
with a mean MAPE of 5.7% (95% CI 4.8%–6.5%).

F I G U R E  1  Number of patients participating in each follow-
up. RRMS (red), relapsing-remitting multiple sclerosis; SPMS 
(turquoise), secondary progressive multiple sclerosis [Colour figure 
can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Secondary progressive MS

In terms of the dominant hand dexterity, no variables were associ-
ated with future D9HPT changes over time (mean yearly increase 
of log[D9HPT] of 0.031  ±  0.011; p  =  0.013). The cross-validation 

analysis demonstrated highly accurate prediction, with a mean 
MAPE of 9.2% (95% CI 7.2%–11.1%).

For the non-dominant hand dexterity, higher baseline striatal 
volumes, baseline NfL, WM AVCR (faster volume loss) and spinal 
AVCR (faster volume loss), as well as higher lesion-load AAVC (faster 

Characteristics Overall RRMS SPMS p

Number of patients 183 140 43

Baseline age, years

Mean ± SD 46.4 ± 11.0 43.8 ± 10.2 55.0 ± 8.8 6.5 × 10−10

Range: min;max 21;70 21;70 25;69

Women/men 123/60 99/41 24/19 0.102

Baseline disease duration, years

Mean ± SD 15.7 ± 9.3 14.0 ± 8.7 21.3 ± 9.2 1.8 × 10−5

Range: min;max 2;49 2; 43 7;49

Baseline EDSS score

Median 3.0 2.5 5.0 5.8 × 10−15

Range: min;max 0;7.5 0;6.5 1.5;7.5

Baseline T25fwt, s

Mean ± SD 7.4 ± 8.3 5.6 ± 3.7 14.4 ± 14.8 3.4 × 10−12

Range: min;max 2.2;73.5 2.2;32.5 4.3;73.5

Baseline D9HPT, s

Mean ± SD 23.4 ± 13.4 20.1 ± 8.4 31.7 ± 21.2 5.6 × 10−6

Range: min;max 13.7;132.9 13.7;83.7 16.8;132.9

Baseline ND9HPT, s

Mean ± SD 25.4 ± 19.6 23.5 ± 19.2 31.6 ± 19.7 10−6

Range: min;max 14.5;215.5 14.5;215.5 18.7;145.0

Baseline SDMT

Mean ± SD 47.0 ± 13.4 48.9 ± 13.8 40.6 ± 9.9 9.6 × 10−5

Range: min;max 11.0;94.0 11.0;94.0 21.0;69.0

Baseline PASAT

Mean ± SD 45.9 ± 12.5 46.9 ± 11.9 40.7 ± 14.6 0.065

Range: min;max 2;60 2;60 7;60

Baseline medication

Interferon 151 116 35 0.928

Mitoxantrone 27 20 7

Glatimer Acetate 3 2 1

Mycophenolate 
mofetil

1 1 0

Natalizumab 1 1 0

Number of follow-ups

Mean ± SD 6.0 ± 3.6 6.2 ± 3.6 5.5 ± 3.5 0.269

Range: min;max 1;12 1;12 1;12

Note: Between-group comparisons for baseline demographic and clinical data were performed 
using Welch's two sample t-test and Pearson's chi-squared test with Yate's continuity correction 
where appropriate.
Abbreviations: D9HPT, dominant hand nine-hole peg test; EDSS, Expanded Disability Status Scale; 
ND9HPT, non-dominant hand nine-hole peg test; PASAT, Paced Auditory Serial Addition Test; 
RRMS, relapsing-remitting multiple sclerosis; SD, standard deviation; SDMT, single digit modality 
test; SPMS, secondary progressive multiple sclerosis; T25fwt, timed 25-foot walk test.

TA B L E  1  Baseline demographics and 
clinical characteristics
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TA B L E  2  Baseline magnetic resonance imaging metrics and neurofilament light chain values as well as annual rates of central nervous 
system volume change

Characteristics Overall RRMS SPMS p

BL GMV, cm3

Mean ± SD 745.4 ± 61.1 756.9 ± 61.0 708.1 ± 44.7 5.6 × 10−8

Range: min;max 580.2;922.1 580.2;922.1 609.1;820.3

BL WMV, cm3

Mean ± SD 727.8 ± 50.6 731.7 ± 50.9 715.3 ± 47.9 0.053

Range: min;max 587.0;834.7 587.0;834.7 638.3;811.3

BL THV, cm3

Mean ± SD 12.9 ± 2.10 13.1 ± 2.16 12.1 ± 1.42 0.072

Range: min;max 7.17;17.2 7.17;17.2 8.54;14.7

BL STV, cm3

Mean ±SD 20.8 ± 2.42 21.1 ± 2.5 19.9 ± 1.8 0.219

Range: min;max 14.7; 28.1 14.7; 28.1 16.0; 26.4

BL PAV, cm3

Mean ± SD 3.16 ± 0.28 3.19 ± 0.37 3.06 ± 0.35 0.689

Range: min;max 2.17;4.46 2.17;4.19 2.48;4.46

BL SCV, cm3

Mean ±SD 2.34 ± 0.32 2.39 ± 0.304 2.17 ± 0.33 3.9 × 10−6

Range: min;max 1.55; 3.05 1.60; 3.05 1.55; 2.87

BL T2LV, cm3

Mean ± SD 6.28 ± 6.81 5.83 ± 6.17 7.73 ± 8.52 0.102

Range: min;max 0;30.7 0;24.0 0.01;30.7

BL NfL, pg/ml

Mean ±SD 35.9 ± 21.2 33.5 ± 19.7 43.6 ± 24.3 0.006

Range: min;max 1.3;141.7 8.5;120.1 1.3;141.7

GMV ACR, %

Mean ± SD −0.25 ± 1.00 −0.27 ± 0.97 −0.17 ± 1.08 0.523

Range: min;max −3.78;2.14 −3.78;2.13 −3.22;1.64

WMV ACR, %

Mean ± SD −0.38 ± 0.98 −0.38 ± 1.01 −0.39 ± 0.87 0.952

Range: min;max −3.69;1.92 −3.69;1.92 −2.11;1.70

THV ACR (%)

Mean ± SD −0.44 ± 1.11 −0.50 ± 1.15 −0.22 ± 0.94 0.149

Range: min;max −5.00;2.50 −5.00;2.50 −2.68;1.28

STV ACR (%)

Mean ± SD −0.17 ± 0.84 −0.21 ± 0.82 −0.01 ± 0.90 0.166

Range: min;max −2.41;2.07 −2.41;1.53 −2.39;2.07

PAV ACR, %

Mean ± SD −0.81 ± 1.36 −0.77 ± 1.36 −0.94 ± 1.36 0.458

Range: min;max −6.26;2.84 −6.26;2.84 −4.06;2.14

SCV ACR, %

Mean ± SD −0.38 ± 1.25 −0.45 ± 1.19 −0.65 ± 1.45 0.355

Range: min;max −4.45;2.62 −4.09;2.62 −4.45;2.57

T2LV AAC, cm3

Mean ± SD 0.13 ± 0.42 0.14 ± 0.41 0.11 ± 0.45 0.449

Range: min;max −0.88;1.67 −0.88;1.67 −0.50;1.43

Note: Between-group comparisons for baseline MRI metrics and NfL values were performed using analysis of covariance after correcting for sex, age 
and disease duration. Between-group comparisons for ACR of MRI metrics were performed using analysis of covariance after correcting for sex, age, 
disease duration and baseline values.
Abbreviations: AAC, annual absolute change; ACR, annual change rate; BL, baseline; GMV, cerebral gray matter volume; MRI, magnetic resonance 
imaging; NfL, neurofilament light chain; PAV, pallidal volume; RRMS, relapsing-remitting multiple sclerosis; SCV, spinal cord volume; SD, standard 
deviation; SPMS, secondary progressive multiple sclerosis; STV, striatal volume; THV, thalamic volume; WMV, cerebral white matter volume.
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increase), were significantly associated with higher future ND9HPT 
worsening over time (mean yearly increase of log[ND9HPT] of 
0.037  ±  0.011; p  =  0.003). The cross-validation analysis demon-
strated highly accurate prediction, with a mean MAPE of 8.7% (95% 
CI 6.5%–10.9%).

Predictive models of cognitive scores are shown and discussed 
in Appendix S1 and Tables S3 and S4. SDMT and PASAT scores im-
proved over time in RRMS and were stable in SPMS. Predictive mod-
els for SDMT scores had reasonable-to-good predictive accuracy, 
whereas predictive models for PASAT were inaccurate.

Analyses were also performed for the whole cohort and the final 
models are presented in Appendix S2 and Table S5. The predictive 
capabilities of those models were similar to those in the RRMS and 
SPMS groups.

DISCUSSION

In the present study, we were able to build reliable, robust models 
capable of accurate predictions of future clinical worsening over 
time in individual patients (as shown by our leave-one-out fashion 
cross-validation analysis) while taking respective baseline values 
into account for each subject. Moreover, there was a dissociation 
in the prediction of clinical scores between RRMS and SPMS, with 
different variables predicting future clinical outcomes in these two 
groups. Finally, our models for the EDSS, 9HPT and T25fwt (only in 
RRMS) demonstrated high predictive capabilities in our validation 

analysis. This study simulates a relatively common real-world clinical 
scenario of MS patients being regularly assessed with serial MRI as 
well as clinical examinations, and shows the potential of short-term 
blood and MRI biomarkers in predicting future disease dynamics.

We were able to build models that not only accurately predict 
future disease severity but also the dynamics of progression of 
neurological deficits, as measured by the EDSS. In these models, a 
dissociation between RRMS and SPMS patients became apparent. 
On the one hand, the cSC AVCR as well WM lesion load AAVC—
reflecting progressive WM injury—arose as predictors of the dynam-
ics of future neurological deterioration in SPMS. With regard to the 
cSC, our results are in accordance with previous work performed in 
the same cohort examining concurrent clinical and atrophy changes, 
which showed that cSC volume loss goes hand in hand with EDSS 
progression in SPMS patients, with a stronger correlation with EDSS 
changes compared to RRMS [3]. With regard to WM lesion load, al-
though some previous studies have shown an association between 
increasing lesion load and disability [25,26], this was not confirmed 
in other studies [27]. On the other hand, there were no predictors 
of higher EDSS worsening in RRMS. These between-group differ-
ences can be interpreted in a number of ways. First, SPMS patients 
are older and have sustained a greater toll of neuronal damage over 
larger periods of time, entailing longer and chronic immune activa-
tion, increased oxidative stress-related damage as well as greater 
loss of trophic support, mitochondrial dysfunction and exhaustion of 
repair and compensatory mechanisms [28–30]. In addition, in view of 
the similar cSC ACVR and WM lesion load expansion in both groups, 

F I G U R E  2  Boxplots of baseline and longitudinal magnetic resonance imaging metrics as well as baseline serum neurofilament light chain 
(NfL) by disease type in relapse-onset multiple sclerosis (MS). Relapsing-remitting (RR) and secondary progressive (SP) MS are depicted with 
red and turquoise, respectively. (a) GMV, brain gray matter volume, (b) WMV, brain white matter volume, (c) THV, thalamic volume, (d) STV, 
striatal volume, (e) PAV, pallidal volume, (f) SCV, spinal cord volume, (g) T2LV, T2-weighted lesion volume, (h) NfL. Whiskers correspond to 
25th and 75th percentiles [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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as well as the lower baseline cSC volumes in the SPMS group, it is 
possible that patients with RRMS still have sufficient reserves of 
cortical adaptation, remyelination, axonal repair and neuroprotec-
tion, which allow them on the one hand to maintain or re-establish 
the functionality of neuronal tissue and on the other hand to “mask” 
the produced axonal loss taking place in the cSC and cerebral WM 
through neuroplasticity occurring at higher cortical centers [31–34]. 
This allows axonal and myelin damage to be “translated” in a much 
more straightforward way into clinical deficits once the threshold of 
neuronal injury and/or repair has been exceeded. Another explana-
tion with regard to cSC atrophy being a significant predictor is that 
EDSS progression in SPMS is more motor-driven than in RRMS, since 
the higher EDSS scales, commonly seen in SPMS patients, depend 
largely on ambulation.

With regard to the prediction of future walking speed, reflecting 
lower extremity function, we were able to build a model for accurate 
T25fwt prediction in RRMS. In this model, lower baseline thalamic 
volumes were associated with a higher T25fwt worsening over time, 
in line with previous longitudinal studies that point to a longitudi-
nal association between disability and thalamic atrophy progression 
[2,18]. By contrast, the respective model for SPMS patients demon-
strated inaccurate T25fwt predictions. A possible explanation for 
this might be the considerably higher within- and between-subject 
variability of these measures in SPMS patients compared with RRMS 
patients, which can also be visualized in the 95% CI of our T25fwt 
measures in Figure 3. This may have hampered the construction of 
accurate predictive models in SPMS patients.

The MRI metrics were also able to produce accurate predictions 
of future hand dexterity function measurements. In all statistical 
models, the dominant hand and non-dominant hand were analysed 
separately, since motor tasks in the non-dominant hand require acti-
vations of larger cortical areas in contralateral visuomotor regions in-
cluding deep GM areas compared to the dominant hand [35]. Indeed, 
deficits of dominant and non-dominant hand function were shown 
to be driven by neuronal injury in different CNS structures, with WM 
(measured either as atrophy or lesion load) and GM injury being as-
sociated with non-dominant and dominant hand function worsening, 
respectively. Widespread interruption of the large network utilized 
for non-dominant hand functions [35] occurring in the cerebral WM 
may explain this dissociation. This was evident in the analyses of both 
RRMS and SPMS patients. In particular, in RRMS, lower baseline GM 
volume was associated with higher future D9HPT worsening over 
time, whereas increasing WM injury (in the form of lesion load or 
WM AVCR) was associated with higher future ND9HPT worsening 
over time in both RRMS and SPMS patients. In addition, higher cSC 
atrophy rates, baseline sNfL and baseline striatal volumes were also 
correlated with ND9HPT worsening over time in SPMS, pointing to 
a more widespread underlying CNS neurodegenerative pathology 

F I G U R E  3  Longitudinal trends of the (a) Expanded Disability Status Scale (EDSS), (b) timed 25-foot walk test (T25fwt), (c) dominant hand 
and non-dominant hand nine-hole peg test (D9HPT and ND9HPT, respectively) as well as (d) Symbol Digit Modalities Test (SDMT) and Paced 
Auditory Serial Addition (PASAT) are presented over 11 years by disease type. Mean trends are shown in blue lines, 95% confidence intervals 
are shown in gray [Colour figure can be viewed at wileyonlinelibrary.com]

TA B L E  3  Final prediction models between clinical scores 
(Expanded Disability Status Scale, nine-hole peg test and timed 
25-foot walk test) and magnetic resonance imaging metrics and 
baseline neurofilament light chain in relapsing-remitting multiple 
sclerosis patients

Final models

log(EDSS) ~ Time + Age + Baseline THV + Baseline PAV + Baseline 
SCV + Annual PAV change rate + (Time|Subject)

Final model: R2m = 32%, R2c = 83%, AIC = −216.7
LOOCV: MAE = 0.243 [0.210–0.276], RMSE = 0.269 [0.234–0.303], 

MAPE = 17.0% [14.7%–19.3%]

1/T25fwt ~ Time + Age + Sex + Baseline GMV + Baseline 
THV + Baseline PAV + Baseline SCV + annual PAV change 
rate + Sex:Time + Baseline THV:Time + (Time|Subject)

Final model: R2m = 32%, R2c = 91%, AIC = −3663.2
LOOCV: MAE = 0.045 [0.039–0.051], RMSE = 0.048 [0.042–0.054], 

MAPE = 36.9% [22.3%–51.6%]

log(D9HPT) ~ Time + Sex + Baseline GMV + Contralateral 
baseline THV + Baseline SCV + Annual T2LV 
change + Sex:Time + Baseline GMV:Time + (Time|Subject)

Final model: R2m = 29%, R2c = 87%, AIC = −846.7
LOOCV: MAE = 0.177 [0.148–0.206], RMSE = 0.193 [0.162–0.224], 

MAPE = 5.5% [4.8%–6.3%]

log(ND9HPT) ~ Time + Sex + Age + Baseline WMV + Baseline 
SCV + Annual WMV change rate + Contralateral annual PAV 
change rate + Annual T2LV changes + Age:Time + Annual T2LV 
changes:Time + (Time|Subject)

Final model: R2m = 33%, R2c = 92%, AIC = −1068.5
LOOCV: MAE = 0.183 [0.149–0.217], RMSE = 0.198 [0.163–0.233], 

MAPE = 5.7% [4.8%–6.5%]

Note: Analysis was performed with linear mixed effect models with a 
random intercept and slope denoted as “(Time|Subject)“ in our models. 
The variable “Time” corresponds to the follow-up time measured in 
years. Variables followed by “:Time” correspond to the interaction 
between the respective MRI or NfL metric and the time variable, 
which relates to the effect of the examined metric to the change of the 
respective clinical score over time (e.g. EDSS change over time). For 
the purpose of model selection, we used a step-down model-building 
approach as proposed before, which is based on deletion of effects 
from the full model using F-statistics. In case of significant interaction 
terms with time, the respective main effects were kept in the model 
according to the principle of marginality. The initial full model (not 
shown in this table) included demographics (sex and age), disease 
duration, medication (injectable, oral, infused), MRI metrics (baseline 
and annual volume change rates of first three time points) and baseline 
sNfL values entered as independent variables.
Abbreviations: AIC, akaike information criterion; D9HPT, dominant-
hand nine-hole peg test; EDSS, Expanded Disability Status Scale; GMV, 
cerebral Gray Matter Volume; LOOCV, leave-one-out cross-validation; 
MAE, mean absolute error; MAPE, mean absolute percentage error; 
MRI, magnetic resonance imaging; ND9HPT, non-dominant hand 
nine-hole peg test; NfL, neurofilament light chain; PAV, pallidal volume; 
R2c, conditional R-squared; R2m, marginal R-squared; RMSE, root-mean 
square error; SCV, spinal cord volume; STV, striatal volume; T25fwt, 
timed 25-foot walk test; T2LV, T2 lesion volume; THV, thalamic volume; 
WMV, cerebral white matter volume.

https://onlinelibrary.wiley.com/
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compared to RRMS. The correlation between high baseline striatal 
volumes and higher ND9HPT worsening was unexpected and was 
confirmed, when introducing only baseline striatal volumes into the 
model (analysis not shown here). Although a series of previous stud-
ies have suggested a direct influence of the immune system on the 
striatum and vice versa [36], in our opinion it is not clear if this asso-
ciation is of a statistical rather than a biological nature.

In addition, an important conclusion drawn from our predictive 
models is that there is no single one-size-fits-all biomarker that pre-
dicts every future clinical outcome. Depending on the clinical out-
come of interest, different variables seemed to be crucial predictive 
factors. Hence, future research in MS patients should rather focus 
on global assessments of the CNS implementing as many regions of 
interest rather than isolated atrophy metrics in order to increase the 
clinical relevance of the findings.

The contribution of cross-sectional MRI metrics—next to lon-
gitudinal measurements of CNS volume loss—to the prediction of 
future clinical worsening over time is quite interesting. It could be 
argued that, apart from the magnitude of ongoing neurodegener-
ation occurring in the CNS, a decisive predictor of future dynamics 
of neurological worsening may be brain reserve as shown by higher 
CNS volumes. According to our results, lower brain reserve is linked 
not only to higher disability but also to more aggressive progression 
of neurological deficits. This might be another argument for early 
treatment in order to retain brain reserve and consequently prevent 
or mitigate aggressive disease courses.

The present study has a number of limitations. We analysed the 
follow-up data of an MS cohort in a retrospective manner. Some pa-
tients were lost to follow-up during the study, leading to incomplete 
datasets and potential bias. However, the use of LMER models in 
our statistical analysis mitigates such issues and is optimal for ob-
servational studies. Despite the long observation time of our study, 
the sample size of SPMS patients was relatively small, which could 
limit the reproducibility of these results in other SPMS populations. 
Moreover, the primary goal of this work was to find models that per-
form well in predicting the dynamics of future clinical outcomes and 
not to evaluate the utility of individual biomarkers. Hence, we did not 
account for multicollinearity issues in our analysis because this does 
not influence the precision of model predictions or the goodness-of-
fit statistics. However, multicollinearity hampers the interpretation 
of the models' individual regression coefficients, and reduces the 
power of our models to identify independent variables that are sta-
tistically significant. Therefore, these values should be treated with 
caution. In addition, despite the fact that treatment was taken into 
account in our models, it may well be that the study was underpow-
ered to evaluate effects from different medications, especially since 
a large number of patients switched treatments during the monitor-
ing time of this study. Future investigations should include greater 
sample sizes, with patients possibly remaining on single disease-
modifying agents. Finally, in this study, MRI scans acquired from a 
1.5-T scanner were used, which may have influenced image quality 
and, as a consequence, the accuracy of our segmentations. Future 
studies using MRI scans acquired in scanners with a higher magnetic 

TA B L E  4  Final prediction models between clinical scores 
(Expanded Disability Status Scale, nine-hole peg test and timed 
25-foot walk test) and magnetic resonance imaging metrics and 
baseline neurofilament light chain in secondary progressive 
multiple sclerosis patients

Final model

log(EDSS) ~ Time + Sex + Disease Duration + Medication + Baseline 
GMV + Baseline THV + Annual SCV change rate + Baseline 
NfL + Annual SCV change rate + Annual T2LV change 
rate + Annual SCV change rate:Time + Annual T2LV change 
rate:Time + (Time|Subject)

Final model: R2m = 39%, R2c = 95%, AIC = −485.6
LOOCV: MAE = 0.191 [0.155–0.227], RMSE = 0.203 [0.164–0.242], 

MAPE = 11.2% [8.4%–14.1%]

1/T25fwt ~ Time + Sex + Disease Duration + Baseline GMV + Baseline 
PAV + Baseline T2LV + annual GMV change rate + annual WMV 
change rate + annual SCV change rate + Sex:Time + Disease 
Duration:Time + Baseline GMV:Time + Baseline PAV:Time + Baseline 
T2LV:Time + annual GMV change rate:Time + annual WMV change 
rate:Time + annual SCV change rate:Time + (Time|Subject)

Final model: R2m = 15%, R2c = 92%, AIC = −783.5
LOOCV: MAE = 0.071 [0.054–0.089], RMSE = 0.074 [0.057–0.092], 

MAPE = 167.9%[71.2%–264.7%]

log(D9HPT) ~ Time + Sex + Medication + Contralateral Baseline 
THV + Contralateral Baseline STV + Contralateral Baseline 
PAV + Medication:Time + (Time|Subject)

Final model: R2m = 22%, R2c = 85%, AIC = 43.2
LOOCV: MAE = 0.324 [0.250–0.397], RMSE = 0.352 [0.275–0.429], 

MAPE = 9.2% [7.2%–11.1%]

log(ND9HPT) ~ Time + Sex + Contralateral baseline STV + Baseline 
NfL + Annual WMV change rate + Annual SCV change 
rate + Annual T2LV change + Sex:Time + Contralateral 
baseline STV:Time + Baseline NfL:Time + Annual WMV change 
rate:Time + Annual SCV change rate:Time + Annual T2LV 
change:Time + (Time|Subject)

Final model: R2m = 27%, R2c = 90%, AIC = −64.6
LOOCV: MAE = 0.310 [0.214–0.407], RMSE = 0.331 [0.234–0.428], 

MAPE = 8.7% [6.5%–10.9%]

Note: Analysis was performed with linear mixed effect models with a 
random intercept and slope denoted as “(Time | Subject)” in our models. 
The variable “Time” corresponds to the follow-up time measured in 
years. Variables followed by “:Time” correspond to the interaction 
between the respective MRI or NfL metric and the time variable, 
which relates to the effect of the examined metric to the change of the 
respective clinical score over time (e.g. EDSS change over time). For 
the purpose of model selection, we used a step-down model-building 
approach as proposed previously, which is based on deletion of effects 
from the full model using F-statistics. In case of significant interaction 
terms with time, the respective main effects were kept in the model 
according to the principle of marginality. The initial full model (not 
shown in this table) included demographics (sex and age), disease 
duration, medication (injectable, oral, infused), MRI metrics (baseline 
and annual volume change rates of first three time points) and baseline 
serum NfL values entered as independent variables.
Abbreviations: AIC, akaike information criterion; D9HPT, dominant 
hand nine-hole peg test; EDSS, Expanded Disability Status Scale; GMV, 
cerebral gray matter volume; LOOCV, leave-one-out cross-validation; 
MAE, mean absolute error; MAPE, mean absolute percentage error; 
MRI, magnetic resonance imaging; ND9HPT, non-dominant hand nine-
hole peg test; NfL, neurofilament light chain; PAV, pallidal volume; R2c, 
conditional R-squared; R2m, marginal R-squared; RMSE, root-mean-
square error; SCV, spinal cord volume; STV, striatal volume; T25fwt, 
timed 25-foot walk test; T2LV, T2 lesion volume; THV, thalamic volume; 
WMV, cerebral white matter volume.
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TA B L E  5  Summary of significant predictors for all clinical outcome changes over time in the relapsing-remitting multiple sclerosis, 
secondary progressive multiple sclerosis groups and the whole cohort

Predictors Groups EDSS T25fwt D9HPT ND9HPT SDMT PASAT

Baseline GMV RRMS X

SPMS X

Whole Cohort

GMV AVCR RRMS

SPMS X

Whole Cohort

Baseline WMV RRMS

SPMS

Whole Cohort X

WMV AVCR RRMS

SPMS X X X

Whole Cohort

Baseline THV RRMS X

SPMS

Whole Cohort

THV AVCR RRMS

SPMS

Whole Cohort X

Baseline STV RRMS

SPMS X X

Whole Cohort X

STV AVCR RRMS

SPMS

Whole Cohort X

Baseline PAV RRMS

SPMS X X

Whole Cohort X

PAV AVCR RRMS X

SPMS X

Whole Cohort X X

Baseline SCV RRMS

SPMS X

Whole Cohort

SCV AVCR RRMS

SPMS X X X X

Whole Cohort X

Baseline lesion-load RRMS

SPMS X X X

Whole Cohort

Lesion-load AAVC RRMS X

SPMS X X

Whole Cohort

Baseline NfL RRMS

SPMS X

Whole Cohort

Abbreviations: AAVC, absolute annual volume change; AVCR, annual volume change rate; D9HPT, dominant-hand nine-hole peg test; EDSS, 
Expanded Disability Status Scale; GMV, cerebral gray matter volume; ND9HPT, non-dominant hand nine-hole peg test; NfL, neurofilament light 
chain; PAV, pallidal volume; RRMS, relapsing-remitting multiple sclerosis; SCV, spinal cord volume; SPMS, secondary progressive multiple sclerosis; 
STV, striatal volume; T25fwt, timed 25-foot walk test; T2LV, T2 lesion volume; THV, thalamic volume; WMV, cerebral white matter volume.
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field (e.g. 3T or 7T) may improve regional segmentation quality due 
to improved contrast. Nevertheless, the use of a single MRI scanner 
and a consistent MRI protocol across all scans in our work reduced 
MRI measurement variability due to technical aspects (e.g. MRI 
scanner changes, multiple MRI scanners or sequences). We evalu-
ated the prediction of future cognitive outcomes, such as sustained 
attention and information processing speed deficits using SDMT and 
PASAT [37,38]. However, these analyses should be interpreted with 
caution because of two main limitations. Firstly, although cognitive 
impairment is established in MS [39] and has been shown to increase 
in long-term longitudinal studies [40], both the SDMT and PASAT in 
our analysis demonstrated a significant increase over time in RRMS 
patients, whereas SPMS patients were fairly stable regarding these 
measures. This can be attributed to a learning effect through repe-
tition, which has also been shown in previous longitudinal studies 
[41], that may mask “true” cognitive worsening. In addition, PASAT 
analysis showed very inaccurate predictions of future cognitive 
performance, which limits the utility of these estimations in clini-
cal practice. It would be important to re-evaluate the prediction of 
future cognitive impairment using MRI metrics in a different cohort 
with declining cognitive performance (including broader cognitive 
domain testing) over time.

In conclusion, the present study demonstrates the capability 
of short-term MRI metrics to accurately predict future dynamics 
of neurological disability progression in a large real-world relapse-
onset MS cohort. Our results underline the central role of neuro-
degeneration and provide new insights into the prognostic power 
of MRI metrics in MS. Due to the long follow-up time (including an-
nual “repeated” measurements), the verification through our cross-
validation analysis and the large sample included in this study, we 
believe that the results are generalizable to other MS populations. 
Hence, the present work represents a step towards the utilization of 
structural MRI measurements in patient care.
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