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CYTOSKELETON

Capturing intermediate 
filament networks
Mapping intermediate filaments in three dimensions reveals that the 
organization of these filaments differs across cell types.

PIERRE A COULOMBE

Cells are highly structured systems that 
contain a network of filaments known as 
the cytoskeleton. This scaffolding struc-

ture helps cells to maintain their shape, internal 
organization, and integrity under stress. It also 
plays important roles in intracellular transport, 
cell signaling and in cell proliferation, growth, 
differentiation and death. To fulfill their purpose, 
cytoskeletal filaments must be spatially orga-
nized, regulated and integrated in a manner that 
meets the rapidly changing needs of a cell (Kim 
and Coulombe, 2007; Block et al., 2015).

Recent advances in microscopy and image 
analysis have provided transformative insight into 
the three-dimensional (3D) architecture of cellular 
components in tissues, organs and entire organ-
isms. Now, in eLife, Rudolf Leube and colleagues 
at RWTH Aachen University – including Reinhard 
Windoffer as first author – report on new insights 
into networks of intermediate filaments in three 
different types of epithelial cells (Windoffer 
et al., 2022).

The researchers used confocal microscopy and 
newly developed image analysis tools to describe 
the 3D organization of the entire intermediate 
filament network in three types of epithe-
lial cells: MDCK cells, which are derived from 

canine kidneys, HaCaT keratinocytes derived 
from human skin, and retinal pigment epithelial 
(RPE) cells from mice. To visualize the network 
of keratin intermediate filaments in all three cell 
types, a specific keratin, known as Keratin 8 (K8), 
was tagged with a green fluorescence marker. 
The 3D models were generated based on micros-
copy images of filaments containing fluorescent 
K8, and the digitized representations of these 
images were analyzed at different scales to quan-
titatively describe the properties of the filaments 
and the networks they form.

From a methodology standpoint alone, the 
study by Windoffer et al. breaks new ground and 
sets the stage for an atlas-type collection holding 
information on the organization and architec-
ture of intermediate filaments for a plethora of 
cell types, under various biological conditions. 
Among the myriad findings reported in this 
article, three stand out because they help capture 
the breadth of the study.

First, on a cellular scale, intermediate fila-
ments show a specific spatial organization in the 
three cell types analyzed. For instance, MDCK 
kidney cells feature distinct apical and basal 
keratin intermediate filament networks that are 
interconnected but each possess unique features 
(Figure 1). HaCat cells are comparatively very flat 
and are densely packed with keratin filaments 
that enclose the nucleus laterally and include 
long bundles that run parallel to the cell’s longest 
axis. Retinal pigment epithelial (RPE) cells, which 
were analyzed in the natural context of the eye 
in situ, exhibit a comparatively less dense keratin 
intermediate filament network that is surprisingly 
prominent in the cytoplasmic apical domain, 
which faces photoreceptor cells in the retina. The 
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mechanisms underlying these differences, and 
others reported by the researchers, are certainly 
worth investigating.

Second, at a subcellular level, Windoffer et 
al. provide a thorough account of several key 
properties of intermediate filaments, which help 
inform the reciprocal interplay between mechan-
ical forces and network architecture at both local 
and cell-wide levels. Again, an interesting mix of 
convergence and divergence are reported for the 
three cell types analyzed.

Third, at a molecular level, conversions of 
digital representations of the intermediate fila-
ments into biochemical quantities revealed that 
the mass of keratin in skin keratinocytes is similar 
to mass measurements obtained using quantita-
tive western blotting (Feng et  al., 2013). Such 
detailed knowledge can help guide future efforts 
to identify and characterize the mechanisms that 
regulate the amount of keratin proteins and fila-
ments present in several types of epithelial cells.

With this rigorous, innovative and elegant 
study, Windoffer et al. provide a methodolog-
ical framework to probe the architecture and 
organizing principles of intermediate filament 
networks for any cell type in 3D. This contribu-
tion is timely in that it complements emerging 
evidence about the high-resolution structure of 
mature, intermediate filaments emanating from 
cryo-electron tomography imaging (e.g., Turgay 
et al., 2017; Weber et al., 2021) and also from 
crystallographic studies (e.g., Lee et  al., 2020; 
Eldirany et al., 2021).

High resolution information about both core 
architecture of individual intermediate filaments 

and their spatial organization as intricate 3D 
networks within cells is sorely needed to foster 
a deeper understanding of their mechanical 
and non-mechanical roles in epithelial cells, and 
their disruption in disease. As we await addi-
tional quantitative data of intermediate filaments 
networks in other cell types and/or biological 
circumstances, the study by Windoffer et al. sets 
the stage for follow-up analyzes regarding the 
principles and mechanisms underlying the spatial 
organization of intermediate filaments in vivo.
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Figure 1. Intermediate filaments in different cell types. Top left: Lateral view of intermediate filament networks 
in canine kidney epithelial cells (MDCK). The connected apical and basal networks each possess unique features. 
Bottom left: Human skin keratinocytes (HaCaT) are flat and densely packed, with long bundles of intermediate 
filaments enclosing the nucleus laterally. Right: Retinal pigment epithelial cells (RPE) in the (mouse) eye in situ show 
a comparatively less dense network that is surprisingly prominent in the apical area, which faces photoreceptor 
cells in the retina.

Image credit: Images reproduced from Windoffer et al. with permission, CC BY 4.0 (Windoffer et al., 2022).
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