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Abstract: Today it is well established that early life stress leads to cardiovascular programming that
manifests in cardiovascular disease, but the mechanisms by which this occurs, are not fully under-
stood. This perspective review examines the relevant literature that implicates the dysregulation
of the gasomediator hydrogen sulfide and the neuroendocrine oxytocin systems in heart disease
and their putative mechanistic role in the early life stress developmental origins of cardiovascular
disease. Furthermore, interesting hints towards the mutual interaction of the hydrogen sulfide and
OT systems are identified, especially with regards to the connection between the central nervous
and the cardiovascular system, which support the role of the vagus nerve as a communication link
between the brain and the heart in stress-mediated cardiovascular disease.

Keywords: hydrogen sulfide; oxytocin; oxytocin receptor; cardiovascular disease; early life stress;
cystathionine-γ-lyase; cystathionine β-synthase; 3-mercaptopyruvate sulphurtransferase

1. Early Life Stress: Definition and Cause

The significant role that early life stress (ELS) (e.g., poverty, childhood maltreatment
such as physical, sexual, and psychological abuse, maternal separation and/or neglect
(CM), and psychological comorbidities) plays in the development of cardio-metabolic
disease has recently gained prominence [1]. Basu et al. reviewed the incidence of child mal-
treatment in association with cardiovascular disease (CVD) (e.g., coronary artery disease,
myocardial infarction (MI), stroke, ischemic heart disease) and found a positive association
of 91.7% and for hypertension 61.5% [2]. Furthermore, it has recently been established that
ELS can contribute to an increased risk of mortality and different CVDs: arthrosclerosis,
MI, stroke, arterial hypertension, chronic heart failure, and ischemic and coronary heart
disease [1,3]. In a very recent population-based retrospective cohort study in the United
Kingdom, Chandan et al. report that child maltreatment leads to an increased risk for CVD
and hypertension, a doubling of type 2 diabetes, and of all-cause mortality [4].

Recently the gasotransmitter hydrogen sulfide (H2S) and the neuroendocrine oxytocin
(OT) systems have been shown to interact and play parallel roles in the heart and brain
in response to trauma, both physical and psychological [5–10]. Trauma can result from
either a physical injury or be of psychological origin, the latter being trauma instigated by
a deep emotional pain that threatens the integrity of the self [11]. Psychological trauma is
characterized by an intense emotional response to a perceived life-threatening situation and
inability to cope. Childhood trauma is defined as “physical/sexual abuse, medical trauma,
motor vehicle accident, acts of terrorism, war experiences, natural and human-made
disasters, witnessed homicides/suicides” [11]. Physical trauma is normally associated with
an impact against the body and/or physical injury. ELS and childhood trauma have an
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extremely high incidence with 30–40% of the general adult population reporting having
experienced some kind of early life adversity [11]. Recent research has established that both
physical and psychological trauma share physiological correlates [12,13]. These include the
OT and H2S systems which are reported to be cardio-protective and display antioxidant and
anti-inflammatory properties in models of psychological and physical trauma [12,14–17].
The purpose of this perspective is to explore the role of the H2S and OT systems in the
cardiovascular system and their mediating potential in ELS. For the purposes of clarity and
simplification, the term ELS will be used from now on to include early life adversity, CM,
and childhood trauma.

2. H2S System

H2S is classified as a gasotransmitter along with the previously characterized nitric
oxide (NO) and carbon monoxide (CO). It is produced endogenously and has report-
edly pleiotropic effects in mammalian cells and tissues [18]. H2S endogenous production
is threefold: (1) it can be enzymatically produced by cystathionine γ-lyase (CSE), cys-
tathionine β-synthase (CBS), and 3-mercaptopyruvate sulphurtransferase (3MST) [19]; (2)
non-enzymatic pathways that generate H2S include thiosulphate, glucose, polysulfides,
glutathione, and elemental sulfur; (3) the gut microbiota is another source of H2S, almost
half of the fecal H2S is bacterially derived, and sulfate-reducing bacteria release H2S as
they oxidize organic compounds [20].

All of the above-mentioned pathways, except for the bacterial microbiota, are found in
the heart and vasculature. In particular, CSE and 3MST have been reported to be expressed
in the vasculature and hence play a role in the regulation of smooth muscle vasomotor
tone. CBS expression has been shown to be inversely correlated with homocysteine levels,
which is a factor in the progression of CVD [21]. There are a number of reviews on H2S
and its protective effects in the cardiovascular system [17,19–29]. The expression of H2S-
producing enzymes has been identified in the cardiovascular system, specifically in the
following cell types: smooth muscle cells, cardiomyocytes, endothelial cells and immune
cells [9,10,12,19,30,31].

H2S has been shown to play a role in modulating the cardiovascular system as a
basal vasorelaxant, a blood pressure and heart rate regulator [32,33], and by inducing
angiogenesis [19,34] through hypothalamic control. The results of animal (see Table 1)
and human studies (see Table 2) investigating the regulation of H2S in the cardiovascular
system are summarized below. In humans, H2S levels were correlated with disease severity
in hypertensive patients [35] and are significantly reduced in hypertensive children (see
Table 2) [36]. Albeit, in general, reported H2S levels must be taken with some degree
of skepticism in that there is no agreed upon standard for H2S measurements, and the
discrepancy in the literature regarding blood sulfide concentrations is considerable, varying
by up to three orders of magnitude as reviewed by McCook et al. [37,38]. In rodents,
the administration of H2S improved myocardial fibrosis, reduced oxidative stress and
hypertension (see Table 1) [24]. The administration of sodium hydrosulfide (NaHS), an H2S
releasing salt, in a rat model of hemorrhagic shock significantly reduced metabolic acidosis
while simultaneously attenuated inducible nitric oxide synthase (iNOS) expression and
NO production in the heart and aorta (see Table 1) [39]. The H2S-dependent vasoactive
effects are mediated by downstream signaling cascades that stimulate Akt-dependent
endothelial nitric oxide synthase (eNOS). Interestingly, the H2S and OT systems share
these downstream signaling mechanisms which converge on the same nitric oxide synthase
(NOS)/NO-dependent pathway [12,17,40].
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Table 1. Summary of animal studies: effects of stress/trauma/comorbidity and treatment on the cardiovascular system, H2S system and the OT/OTR system.

Author and Year Species Type of Stress/Trauma/Comorbidity/Treatment Read Out (Cardiovascular/H2S/OT/OTR)

Physical

Trautwein et al., 2021 [5] Mice

naïve
∆MST animals

Hemorrhagic Shock wt
Hemorrhagic Shock & Blunt Chest Trauma wt

Constitutive CSE & OTR in cardiomyocytes
CSE & OTR↓
CSE & OTR↓
CSE &OTR↓↓

Merz et al., 2020 & Nußbaum
et al., 2016 [10,31] Swine (hypercholesteremic) Septic Shock

(vs. sham animals)

Systemic Troponin↑
↓ cardiac output

CSE & OTR↓

Merz et al., 2018 [9]
Mice

CSE−/−

(vs. wt)

native wt
Blunt Chest Trauma

(& cigarette smoke exposure (CS))
Blunt Chest Trauma CSE−/−

(& CS)
Blunt Chest Trauma CSE−/−& GYY4137 administration (& CS)

Constitutive OTR in cardiomyocytes
OTR↓

OTR↓↓
OTR↑↑

Meng et al., 2015 [24] Rats
Physical

Myocardial Ischemia/Reperfusion Injury
GYY4137 administration

Myocardial Ischemia/Reperfusion led to:
↑CSE mRNA expression in the myocardium

↓CSE activity in the myocardium
GYY4137 administration led to:

↓CSE mRNA expression in the myocardium
↑CSE activity in the myocardium
↑cardiac ejection fraction
↑fractional shortening
↓ischemia area

alleviated histological injury
↓oxidative stress
↓apoptosis

Merz et al., 2017 [30] Swine (hypercholesteremic vs.
young german)

Septic Shock
(vs. sham animals)

Acute circulatory failure
Coronary Arteries:
↓CSE in the media

No CBS in the media; but localized to the adventitia and
atheromatous plaques

No 3MST
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Table 1. Cont.

Author and Year Species Type of Stress/Trauma/Comorbidity/Treatment Read Out (Cardiovascular/H2S/OT/OTR)

Mani et al., 2013 [41]
Mice

CSE−/−

(vs. wt)

Knock out &
atherogenic diet

NaHS administration

Early fatty streak lesions in the aortic root
↑Plasma levels of cholesterol & low-density lipoprotein

cholesterol
Hyperhomocysteinemia

↑ Lesional oxidative stress and adhesion molecule
expression

↑Aortic intimal proliferation
CSE−/− treated with NaHS: inhibited the accelerated

atherosclerosis development

Kobayashi et al., 2009 [42] Rabbit Myocardial Ischemia/Reperfusion Injury

Postinfarct treatment with OT led to:
↑Left ventricular function & remodeling

↓Infarct size
OTR↑

Authier et al., 2010 [43] Swine Myocardial Infarct

Swine treated with OT immediately after the myocardical
infarct for up to seven days:

↓Fraction shortening & no effect on lesion size
8d post myocardial infarct: swine with ↑basal
endogenous OT levels receiving OT treatment:

↓Ventricular function & ↑infarct size
28 d post myocardial infarct: in comparison to placebo

animals with ↑endogenous OT levels, swine with
↓endogenous OT: ↓infarct size

OT administration led to:
↓Cardiac OTR in ↑endogenous OT animals, but not in

↓endogenous OT animals

Klein et al., 2018 [44] Rats Nutrient insufficiency in neonates

OTR-rich brain regions show:
NF-kB was retained ↑ in the cortex, striatum nuclei, and

medial preoptic nucleus
NF-kB was ↓ & unchanged in nucleus of the solitary tract,

paraventricular nucleus, and supra-optic nucleus
Unprimed by colostrum:

↑Endoplasmic reticulum stress in solitary tract
Primed by colostrum:

↓Endoplasmic reticulum stress in solitary tract
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Table 1. Cont.

Author and Year Species Type of Stress/Trauma/Comorbidity/Treatment Read Out (Cardiovascular/H2S/OT/OTR)

Iseri et al., 2005 [45] Rats Sepsis
(vs. sham animals)

Sepsis led to:
↑Malondialdehyde (indicating lipid peroxidation in

colon, uterine & liver
↓Glutathione (key antioxidant) in colon & uterine

↑Myeloperoxidase (indicating neutrophil infiltration) in
colon & liver

↑Collagen levels in the uterus & liver
↑serum TNF-α levels

Subcutaneous OT treatment reversed the above negative
effects induced by sepsis, while hepatic glutathione levels

were not affected

Tain et al., 2016 [46] Rats Pregnant
maternal suramin treatment

Induced programmed hypertension in male offspring
↑Plasma nitric oxide synthase inhibitor (ADMA)

Maternal n-acetylcysteine administration prevented
hypertension

Protective effects of n-acetylcysteine:
↑Plasma glutathione level, ↑3MST, & restoration of
suramin-induced reduction in H2S synthesis in the

kidneys

Tai et al., 2016 [47] Rats High-fat diet from weaning on/prenatal dexamethasone

Prenatal dexametahsone and postnatal high-fat diet
induced programmed hypertension in adult offspring

Prevented by maternal n-acetylcysteine therapy
↑gene expression of H2S-generating enzymes
↑Renal 3MST protein levels and activity

↑Plasma glutathione level,
↓oxidative stress

Petersson et al., 1997 [48] Rats
Spontaneously
hypertensive,

subcutaneous OT or saline for 5 days to ♂and ♀rats

♂: ↓blood pressure, no effect on heart rate, (vs.
saline-treated controls), effect was gone 3d after the last

injection
♀: no effect on blood pressure and heart rate

Melnik et al., 2017 [49] Rats Castrated

Castration in ♂led to:↓CSE, ↓H2S, ↑proliferation,
polyploidization & apoptosis in myocardium (vs. ♀)

Castration in ♀led to: ↑CSE, ↑H2S, ↓proliferation,
polyploidization & apoptosis in myocardium (vs. ♂)
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Table 1. Cont.

Author and Year Species Type of Stress/Trauma/Comorbidity/Treatment Read Out (Cardiovascular/H2S/OT/OTR)

Lozic et al., 2014 [50] Rats
Air-jet

(overesxpressing OTR in paraventricular nucleus vs. sham)
Pretreatment of OTR overexpressing rats with OT

At baseline conditions:
rats overexpressing OTR: ↑baroreceptor reflex sensitivity,

↓blood pressure variability (vs. sham)
Exposure to stress: ↑blood pressure, blood pressure

variability & heart rate in all rats
Sham animals: ↓baroreceptor reflex sensitivity during

stress
Pretreatment of OTR overexpressing rats with OT:
↓baroreceptor reflex sensitivity, ↑blood pressure and

heart rate variability (baseline and stress)
Pretreatment of sham rats with OT: ↓baroreceptor reflex

sensitivity, ↑blood pressure variability (baseline and
stress) only ↑ heart rate variability during stress

Garrott et al., 2015 [51] Rats
Left ventricular hypertrophy,

heart failure,
OT treatment

Activation of hypothalamic OXT neurons to elevate
parasympathetic tone let to: ↓cellular hypertrophy, IL-1β

& fibrosis
with OT treatment:

Cardiac contractility parameters were significantly ↑
Heart rate sensitivity to β-adrenergic stimulation was ↑

Psychological

Wigger et al., 2020 [8] Mice

Maternal
Separation

(Early Life Stress)
LTSS (long)
STSS (short)

CSE & OTR↓↓
CSE↓ & OTR↑↑

Peters et al., 2014 [52] Mice

Chronic psychosocial stress: chronic subordinate colony
housing

Infusion of OT (intracerebroventricular for 15 days) high and
low dose

High dose OT led to: anxiogenic phenotype, OTR
binding in septum, amygdala & median raphe nucleus

low dose OT led to:
prevents hyper-anxiety, thymus atrophy, adrenal

hypertrophy & ↓adrenal ACTH sensitivity (in vitro)
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Table 1. Cont.

Author and Year Species Type of Stress/Trauma/Comorbidity/Treatment Read Out (Cardiovascular/H2S/OT/OTR)

Wsol et al., 2008 [53] Rats
Alarming stressor (air jet)

Animals received intracerebroventricular: vehicle, OT, or
OT-antagonist

Under resting conditions: infusions no effect on
cardiovascular parameters
alarming stressor evoked:
↑mean arterial blood pressure

↑heart rate
Animals that received the OT antagonist (vs. OT and

vehicle treated):
↑↑mean arterial blood pressure

↑↑heart rate

Li et al., 2016 [54] Mice Maternal separation (vs. control without maternal separation)

Maternal separation led to changes in the proximal colon:
↓crypt lengths, ↓goblet cells per crypt, ↓glutathione

peroxidase activity, ↑expression of thiobarbituric acid
reactive substances & inducible nitric oxide synthase

mRNA, ↑IL-6, TNFα & myeloperoxidase
Administration of NaHS led to: ↓↓negative effects

Liu et al., 2017 [55] Rats Chronic
unpredictable mild stress

↑Depressive-like behavior, ↑hippocampal endoplasmic
reticulum stress & ↓Sirt-1

NaHS administration led to:
↓Depressive-like behaviors, ↓hippocampal endoplasmic

reticulum stress & ↑Sirt-1

Abbreviations: H2S = hydrogen sulfide; OT = oxytocin; OTR = oxytocin receptor; CSE = cystathionine γ-lyase; 3MST = 3-mercaptopyruvate sulphurtransferase; ∆MST = genetic mutation of 3MST; CS = cigarette
smoke exposure; CBS = cystathionine β-synthase; NaHS = Sodium hydrosulfide; wt = wild type; CSE−/− = CSE knock out; ACTH: adrenocorticotropic hormone. ↓ slightly down, ↓↓ strongly down, ↑ slightly up,
↑↑ strongly up.
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Table 2. Summary of human studies: effects of stress/trauma/comorbidity and treatment on the cardiovascular system, H2S system and OT/OTR system.

Author and Year Species Type of Stress/Trauma/Comorbidity/Treatment Read Out (Cardiovascular/H2S/OT/OTR)

Sun et al., 2007 [35] Human (Adult)

Ever-treated hypertensive patients (vs. control
patients)

Ever-treated hypertensive patients with grade 2 and
3 hypertension (vs. control patients)

↓Plasma H2S levels
↑Homocysteine
↓Plasma H2S levels

Chen et al., 2007 [36] Human (Children) Essential hypertension (vs. children with normal
blood pressure) ↓Plasma H2S levels

Polhemus et al., 2014 [17] Human (vs. age matched controls) Heart failure End stage cardiomyopathy, reduced heart function
↓Plasma H2S levels

Polhemus et al., 2015 [56] Human (vs. healthy sibjects) Heart failure
Administration of SG1002

No changes in safety effects & plasma H2S levels in
healthy subjects and heart failure patients

Meusel et al., 2021 [57] Human (only males) Intranasal OT
(vs. placebo)

↑Resting muscle sympathetic nerve activity
↑Resting diastolic blood pressure

No effect on: systolic and mean arterial blood pressure,
heart rate, baroreflex sensitivity at vasoactive drug

challenge, ACTH, cortisol or norepinephrine

Rajpal et al., 2018 [58] Humans Patients with/without cardiovascular disease

Caucasian ♀with cardiovascular disease: ↓plasma acid
labile sulfide levels (vs. ♀without cardiovascular

disease)
Caucasian ♂with cardiovascular disease: ↓plasma

bound sulfane sulfur levels (vs. ♂without
cardiovascular disease)

No gender H2S bioavailability differences in african
americans, but: general ↓H2S bioavailability (vs.

caucasians)
↑CSE 1364 G-T allele frequency in patients with

cardiovascular disease (vs. without cardiovascular
disease)

Plasma H2S bioavailability was predictive for
cardiovascular disease in caucasian subjects

Abbreviations: H2S = hydrogen sulfide; OT = oxytocin; CSE = cystathionine γ-lyase; ACTH: adrenocorticotropic hormone. ↓ slightly down, ↑ slightly up.
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3. Oxytocin/Oxytocin Receptor

The neuroendocrine OT system, in contrast to the highly diffusible gaseous mediator
H2S, that does not require a membrane receptor, is based on a ligand–receptor interaction.
Thus, the nonapeptide OT requires the presence of the OT receptor (OTR), a member of the
G-protein coupled receptor family Gq for its mode of action. The binding of OT to its recep-
tor stimulates pro-survival kinases such as ERK and PI3K/Akt, which can in turn activate
eNOS or CSE (H2S) [59]. The NO-mediated vasodilatory effects of OT are at least in part
also reported to regulate blood pressure [60,61] and body fluid homeostasis, through an
interaction with H2S [14,62]. OTR expression has been detected in cardiomyocytes, vascula-
ture (smooth muscle cells and endothelium), macrophages, peripheral blood mononuclear
cells and cardiac fibroblasts [9,12,63–68]. There are a number of recent reviews available on
the role of OT in the heart [60,63,69,70] which interestingly reflect the fact that OT shares
many of the properties also reported for H2S, e.g., increase of glucose uptake in cardiac
cells, anti-inflammatory and antioxidant activity [71,72], blood pressure lowering capacities
via NO-mediated vasodilation [73], negative inotropic and chronotropic effects, natriuretic
effects, and effects on endothelial cell growth [60,74–76].

The same discrepancy as for the reported H2S values also holds for OT measurements:
there are major difficulties in the detection of OT, and reported concentrations are not very
reliable, ranging from 1–1000 pg/mL in humans as reviewed by Szeto et al. [68,77]. It is also
known to be unstable due to its short half-life (3–5 min) [68]. OT and arginine-vasopressin
(AVP) share high sequence and structural homology. Thus, OT can also act through the
AVP receptor (AVPR) system [78] and vice versa due to its 57% receptor homology and
the fact that at the ligand level, they only differ in two amino acids (3 and 8). AVP can
bind to the OTR with the same affinity that it binds to AVPRs, reviewed by Stoop et al.
and Dumais et al. [78–81]. OT administration reveals dose-dependent reductions in body
temperature and heart rate. These effects were proposed to be mediated through the
AVPR1a [82]. Although they share a close homology, the AVPR1a is less affected by
gonadal hormones than OTR [80]. The crosstalk amongst the receptors have led to much
speculation ranging from OT and AVP having similar to diametrically opposite effects.
Given the fact that OT can activate AVPR and, reciprocally, the AVP ligand can activate
the OTR, it is more likely that it is the receptor activation and its specific location that may
mediate the effects rather than the ligand itself [81]. To date, there are associations but there
is no knowledge of what this reciprocal binding and interaction exactly elicit; a thorough
discussion is beyond the scope of this work and has been recently reviewed [80,83,84]. In
the following section, a brief summary of the cardiovascular interaction of the endogenous
H2S and OT systems will be provided (for a more thorough review, see Denoix et al. [12]).

4. H2S and Oxytocin in Cardiovascular Disease

One of the problems encountered in delineating the interaction of the H2S and OT
systems in CVD and trauma is the fact that there is an imbalance of the literature and
research currently available: reports on OT in psychological trauma and H2S in physical
trauma are abundant, whereas the inverse, H2S in psychological trauma and OT in physical
trauma, are more limited [12]. In the following sections, a review of the literature for the
H2S and OT systems in trauma, both physical and psychological, as they pertain to CVD
will be addressed.

Atherosclerosis, i.e., the formation of fibro-fatty lesions in the vascular wall is the
main cause of death from CVD [85], is characterized by increased low density lipoproteins,
attenuated high density lipoproteins, oxidative stress, endothelial dysfunction, reduced NO
bioavailability and inflammation [85,86]. Interestingly, chronic cardiovascular pathology
has been associated with dysfunctional release of endogenous H2S (see Tables 1 and 2) [19].
Both H2S [41,87,88] and OT [77,89] have been reported to reduce atherosclerotic plaque
formation and mitigate inflammation after exogenous administration.

In an effort to design more translationally relevant pre-clinical trials, experiments
have been performed with a pig strain, Familial Hypocholesteremia Bretoncelles Meishan
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(FBM), displaying human-like coronary atherosclerosis [90]. The FBM is a crossbreed of
the Rapacz pigs, characterized by a homozygous R84C low-density lipoprotein (LDL)
receptor mutation associated with recessive Familial hypercholesterolemia in pigs [91]
which develop marked atherosclerosis and consecutive CAD upon an atherogenic diet [90].
FBM swine exhibit significantly elevated cholesterol levels, increased levels of isoprostanes,
decreased levels of plasma nitrite/nitrate, well-established markers of lipid peroxidation,
and NO availability, as well as significantly lower creatinine clearance compared to healthy
German landrace swine [31]. In recent studies on resuscitated, co-morbid, septic FBM
pigs, CSE, arguably the most important source of endogenous H2S in the cardiovascular
system, displayed significantly reduced tissue expression in the coronary arteries [30],
kidney [92], and myocardium [31]. These were associated with increased troponin levels,
reduced cardiac OTR expression [10] and a lower cardiac output [30]. Interestingly, in their
naïve state without septic shock, the FBM pig strain already presented with decreased
CSE expression in the media of the coronary artery and elevated nitrotyrosine formation a
marker of nitrosative and oxidative stress (see Table 1) [30].

Overall, these observations agree well with the fact that atherosclerosis and hyperten-
sion are associated with reduced levels of CSE [41]. Wang et al. [59] propose that since both
H2S and OT are able to act via regulation of NO that CSE may be able to mediate cardio-
protection by upregulating OTR through the reperfusion injury salvage kinase (RISK)
pathway [5,59]. The RISK pathway has been suggested to be the downstream molecular
pathway, where H2S and OT signaling converge in cardioprotection in atherosclerosis [59].
The RISK pathway is activated in endothelial cells, through the activation of eNOS/NO
as an angiogenic and vasodilating factor. In other cells, such as cardiomyocytes, RISK-
activated pathways regulate apoptosis and antioxidant signaling [12]. RISK activation
leads to PI3K Akt, eNOS cascades, and ERK 1/2 activation [59], which in turn promotes
reperfusion by stimulating cell migration and angiogenesis. The PI3K/Akt cascades are
also activated through H2S and are reported to promote myocardial protection [93]. Sup-
porting the above claims, Kobayashi et al. [42] reported that post-infarct administration of
OT significantly attenuated MI size, left ventricular (LV) function, and remodeling by both
activating and upregulating the OTR, which led to stimulating the pro-survival signals Akt,
ERK, and STAT3. The authors suggest that these pro-survival signals contributed to the
cardio protective effects [42]. Furthermore, they also reported increased levels of phospho-
rylated p-eNOS and suggested that the Akt-eNOS signaling played a role in the beneficial
effects of OT in their model (see Table 1) [42]. So far, these signaling pathways for H2S- and
OT-mediated myocardial protection have only been identified in animal models [59,93].
Nonetheless, evidence in humans points to the fact that heart failure patients, with severe
end-stage cardiomyopathy and reduced heart function, presented with significantly lower
H2S levels in contrast to age-matched controls [17], which was associated with reduced
NO levels [56]. These observations led to a phase I clinical trial on an H2S prodrug SG1002
in healthy and heart failure patients with promising results. The data suggest that SG1002
was well tolerated and increased H2S blood levels and NO bioavailability (see Table 2) [56].

The role of OT in myocardial injury has also been evaluated in a pig model of MI
revealing a rather complex interaction: in animals treated immediately after the MI for
up to seven days, OT had significantly decreased fraction shortening and had no effect
on lesion size; one animal even died from a fatal ventricular arrhythmia [43]. At 8 days
post MI, pigs with high basal endogenous OT levels receiving OT treatment displayed
deterioration of ventricular function and increased infarct size at 28 d post MI in comparison
to placebo animals with high endogenous OT levels. Thus, OT administration led to a
significant adverse effect in animals with high endogenous OT levels [43]. In contrast,
the low endogenous OT group that received exogenous OT administration starting at
day 8 post MI had reduced infarct size [43]. Interestingly, the authors reported a trend
towards increased infarct size in the low endogenous OT placebo group compared to the
high endogenous placebo arm. Furthermore, administration of OT reduced cardiac OTR
expression in high endogenous OT treated animals, but not in low endogenous OT treated
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ones [43]. Rightly, the authors point out that there is very limited information on the cardiac
OTR expression, and their report was the first to show a decrease in cardiac OTR protein
after a long-term infusion of OT (see Table 1) [43]. Unfortunately, no basal OTR levels,
neither in the naïve state nor post MI, were provided in these experiments. Thus, there
is no way of assessing the receptor–ligand interactions in the heart in the uninjured state,
nor how the expression of the OTR is modulated by injury. It is clear, though, that the
high endogenous levels of OT where protective but were deleterious in combination with
exogenous OT administration.

Intriguingly, the authors stratified their pigs into low (<115 pg/mL) and high (>115 pg/mL)
level groups but did not describe the reason why their pigs presented with such different
endogenous OT levels. However, they did make the following interesting comment: “It is
possible that animals presenting high PTOT [pretreatment OT levels] perceived more stress,
which could influence outcome” [43]. This statement is counterintuitive: why should high
endogenous OT levels lead to higher stress perception? The contrary would be expected
since OT has anxiolytic effects. That being said, it is noteworthy that this “influence” may
be reflective of an acute perception of threat and not a chronic disease state. Nevertheless,
it does appear that the high levels of OT, coupled with the exogenous OT administration,
are associated with a reduction of the cardiac OTR levels, either through desensitization
or internalization [94]. This attenuation of the OTR expression may represent an adaptive
response in that the exogenous infusion in this arm proved to be detrimental. Thus, the
potential of OT to exert its cardio-protective effects seems to be at least in part dependent
on the presence and levels of both its receptor and ligand. In fact, the protective effects of
OT are mostly mediated though the OTR, both in response to normal adaptive stressors or
to trauma and injury [84,95].

There are only a couple of reports which have actually looked at the interaction of
the H2S and OT system directly, and they are discussed below. In an acute-on-chronic
disease murine model of traumatic injury, the interaction of the H2S and OT system was
shown in response to cardiovascular injury. Trauma significantly reduced cardiac OTR
expression, and this downregulation was further aggravated in mice with genetic CSE dele-
tion. In addition, the loss of cardiac OTR was restored by exogenous H2S administration
through the slow releasing H2S donor morpholin-4-ium 4-methoxyphenyl(morpholino)
phosphinodithioate) GYY4137 (GYY) [5,9]. Naive CSE knock out (ko) mice had lower levels
of OTR [12], and similarly, naïve mice with a genetic deletion of OTR presented with a
reduction of CSE expression [8]. Global genetic deletion of 3MST was shown to result in
hypertension and cardiac hypertrophy in old age and was accompanied with increased
anxiety-like behaviors [96]. Recently, in mice with a genetic mutation of 3MST (∆MST),
cardiac CSE and OTR was reduced both in the naive and post-injury state. Moreover, the
mitochondrial complex IV activity was reduced in the ∆MST mice in comparison to the
wild type mice after injury (see Table 1) [5].

5. Developmental Origins of Health and Disease: Heart

ELS is multifactorial, and a diversity of environmental influences can affect cardiovas-
cular programming and the development of CVD in later life. Amongst these environmen-
tal influences, ELS plays a significant role, stemming from the womb, and includes maternal
nutrition, smoking, alcoholism, medication/drugs, and illness [20] leading to vulnerability
of the fetal cardiovascular system, e.g., morphological and functional adaptations that
stiffen the vascular tree, small coronary arteries, endothelial dysfunction, reduced number
of cardiomyocytes, atherogenic blood lipid profiles, and coagulopathies [20,97]. That these
effects may stem from the womb was only discovered fairly recently due to pioneering
work such as that by Higgins et al. [98] which linked pre-eclampsia with the high blood
pressure of the offspring, which worsened as the offspring matured, as well as their keen
suggestion that the prenatal environment was responsible rather than genetic defects. This
was followed by the work of Barker and Osmond [99] that showed the association of infant
mortality, childhood nutrition, and ischemic heart disease. More groundbreaking studies
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have subsequently led to the concept and active pursuit of a better understanding of how
afflictions in utero influence later life, now called the developmental origins of health and
disease (DOHaD) [100]. Recent evidence suggests that the cardiovascular programming
leading to CVD disease, although the causes are varied, have common mechanisms. Albeit
they are not fully delineated or understood, experimental modeling has implicated ox-
idative stress, NO, renin angiotensin system, nutrient-sensing signals, and gut microbiota
dysbiosis [20,97,101,102]. As pointed out above, both the H2S and OT systems have been
shown to interact in these very mechanisms instrumental in cardiac programming.

The traditional approach to help prevent CVD focused on modifying behavioral
patterns in adults. Recently, the American Heart Association has identified childhood as
an important period to intervene for reducing the risk over the life span [2]. It is suggested
that interventions reducing early risk factors may be more instrumental than interventions
that attempt at remediating CVD later in life [3].

It is well established that psychological stress, e.g., ELS, is a known risk factor for the
development and progression of CVD (see Figure 1) [59,103–107]. The OT/OTR system has
been studied with regards to how it may impact on maternal behavior, optimism, and social
reward perception, as well as anxiolytic effects and stress-related responses [65,108,109].
Psychological stress increases blood pressure and heart rate; the chemical blockade of
the OTR was shown to worsen the cardiovascular response to stress [52,53,110,111]. In
rodent models of maternal separation, the neonates respond with increased inflammation,
and OT infusion has been shown to be beneficial [44,84]. Looking at the role of cardiac
OTR in adult mice exposed to ELS, Wigger et al. found that there were “dose” response
differences with regards to the expression of OTR and CSE, the most important H2S-
producing enzymes in the heart [8]. They reported that neonatal chronic psychological
trauma during a short-term separation stress (STSS) paradigm had the opposite effect on
the expression of OTR in the heart in comparison to long-term separation stress (LTSS) (see
Table 1) [8]. In these experiments on a psychological trauma model, “chronically” LTSS
leads to a long-term reduction in cardiac OTR and CSE expression. The findings are in
line with those reported by Merz et al. [9] in a combined acute-on-chronic physical trauma
model, where there was a downregulation of the OTR in cardiac tissue. Interestingly, the
authors speculate that the upregulation of the OTR in the heart in the STSS group may be
mediating stress resilience, whereas the attenuated expression in the LTSS group mirrors
stress-induced vulnerability [8]. It is noteworthy that in the ∆MST phenotype, resulting
from a genetic mutation of 3MST, the naïve mice display a similar loss of cardiac CSE
and OTR as reported for the chronic stress group and as a result of physical trauma [5].
This suggests a possible important, yet not fully resolved, role for 3MST in the context of
stress-induced cardiovascular disease and further supports the mutual and interrelated
roles of the H2S and OT systems in both physical and psychological trauma (see Table 1) [5].
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Figure 1. Interaction of OT and H2S in the brain and the heart: contribution to physical manifes-
tation/protection of ELS-induced CVD in adulthood. ELS affects cardio-vascular programming
and the development of CVD in adulthood. Pregnant women who experienced ELS may pass on
ELS-triggered behavior/physical conditions: nutrition, smoking, alcoholism, medication/drugs, and
illness. Long-term effects on the cardiovascular system of the fetus can be morphological and func-
tional adaptations, stiffening of the vascular tree, small coronary arteries, endothelial dysfunction,
reduced number of cardiomyocytes, atherogenic blood lipid profiles, and coagulopathies. Bringing
together literature reports on OT and H2S suggests that both are significant common mediators
of cardio-protective effects during development as well as in adulthood through their antioxidant
and anti-inflammatory effects and eNOS-dependent vasorelaxation. Pre-clinical studies suggest
that chronic stress and/or acute trauma leads to a downregulation of the OTR and CSE (the main
endogenous H2S-producing enzyme in the vasculature). OT: oxytocin; H2S: hydrogen sulfide;
ELS: early life stress; CVD: cardiovascular disease; eNOS: endothelial nitric oxide synthase; CSE:
cystathionine-γ-lyase.

Recent reports on the role of H2S in psychological trauma, in particular ELS, suggest
an amelioration of colon stress related injuries by exogenous H2S administration [54].
Interestingly, OT administration, in this context, has also revealed colon-protective actions
through anti-oxidative and anti-inflammatory properties [45]. The significant role of H2S
in the prevention of ELS-driven development of adult CVD has been recently discussed by
Hsu et al. [20,22,112]. H2S has shown beneficial results in ELS models of developmental
hypertension: suramin-induced preeclampsia [46] and perinatal high fat diets [20,22,47],
as well as improved depressive behavior induced by chronic unpredictable mild stress (see
Table 1) [55].

6. Gender

Evidence from epidemiological studies has not only confirmed that ELS increases
the incidence of CVD and blood pressure (inverse relationship between birth weight and
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blood pressure) in adulthood, but that it does so in a gender-specific manner [113]. In
general, men have higher blood pressure during early adulthood, whereas females are
normotensive, but when exposed to ELS, succumb to increased blood pressure [113,114].
Li et al. found that women who have experienced physical abuse and/or emotional neglect
had a significantly higher risk for ischemic heart disease and for CVD in general [115].
Albus et al. report that microvascular dysfunction and vasospasm are associated with
exposure to stress in women [1]. Interestingly, aging also increases the risk of CVD in
women, with menopause increasing the risk and reducing the sex difference [113,114,116].
In particular, the incidence of postmenopausal women presenting with broken heart
syndrome (Takotsubo cardiomyopathy), 90%, is striking [1]. There is evidence that both the
OT and H2S systems play gender-specific roles, and the production of OT has been shown
to vary between males and females [117]. In hypertensive rats, OT administration reduced
blood pressure in male but not in female rats [48]. In contrast to the results in hypertensive
rats, in a human study in healthy male subjects receiving intranasal OT led to an increase
in blood pressure (see Table 2) [57].

Interestingly, in a psychological stress study in children, only prepubescent girls
who had ELS with a history of physical abuse showed increased urinary levels of OT
in response to a social stressor, while no differences were seen in boys with or without
ELS [118]. Furthermore, the authors state that the fact that OT levels were much higher
at baseline in the ELS girls suggests that this may reflect fundamental changes in the
OT system after ELS in girls [118]. The possibility that these changes are protective or
an indication of resilience is not addressed, but it is noteworthy that the control girls,
in response to a social stressor, displayed increased cortisol concentrations, whereas the
ELS girls had lower levels of cortisol before, during, and after the stress test. Again, no
differences were found in boys [118]. The cycles of menstruation are also reported to
influence OT levels [119]. There are gender-specific responses to OT during physical or
psychological challenges [120,121] after exogenous administration of OT [119,122–128]
as well as a tendency towards “tend and befriend” by women and “fight or flight” by
men [119,129]. Intriguingly, in a study designed to address the tend-and-befriend response
to stress in women, intranasal OT administration resulted in reduced heart variability in
study subjects receiving support, which manifested in lower cortisol levels after the TSST,
but only in the women with ELS who received support from a friend [130]. This finding
is in contrast to the majority of the literature suggesting that oxytocin administration is
contraindicated for individuals with ELS [83,131]. The above begs the question of the
significant psychological role played by social support in the context of OT administration
and its therapeutic potential.

Inherently, women have been shown to have a greater antioxidant capacity in their
brains and therefore have been reported to be more protected than males under stressful
situations, e.g., perinatal boys were shown to be more vulnerable to OT exposure while
in the womb and have a higher risk of developing autism [95,132]. There are reported
differences in OT and OTR levels in males and females, which are also well documented
in animal models [119,129,133–136]. OTR is known to be modulated by gonadal hor-
mones [80], and, in addition, both endogenous and exogenous steroids (e.g., estrogen
and testosterone) were shown to influence OT/R expression [84,121]. In animal models,
the hormonal status of the experimental animals is influenced by age, weight, menstrual
cycle (the estrus phase being associated with higher OTR binding [137], high OTR levels in
the luteal phase and the menstruation phase, and low OTR mid-cycle), menopause [78],
ovariectomization, and castration, also decreasing OTR [80]. Sex hormones have also been
associated with their ability to influence the CV-mediated effects of H2S in rats: females
had increased CSE activity and higher myocardial H2S levels than males [49], and estrogen
was shown to increase myocardial CSE expression and endogenous H2S synthesis, which
in turn, was concomitant to reduced inflammation and oxidative stress [138]. In contrast,
H2S biosynthesis in the rat aorta was reported to be responsive to androgen hormones
and not to estrogen or progesterone [139]. In humans, gender specific differences in H2S
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bioavailability were recently reported between Caucasian males and females, leading the
authors to conclude that H2S bioavailability could be considered a biomarker for CVD in a
gender specific manner (see Table 2) [58].

7. Brain Heart Connection

When looking at the brain and nervous system there is also evidence for a bi-directional
effect of the H2S and OT systems in the interaction of the CV and CNS. Particularly of
interest to the relationship of the H2S and OT systems in the regulation of fluid homeostasis
are the supraoptic (SON) and paraventricular nuclei (PVN) [14] of the hypothalamus. The
central integrative structure for the maintenance of osmolality, blood, and body fluid vol-
ume is the hypothalamus [140], which regulates blood pressure and heart rate in response
to changes in peripheral fluid homeostasis [12,14]. In experimental models, dehydra-
tion (48 h) led to a significant increase in plasma OT and OT mRNA in the PVN [141].
Furthermore, chronic selective activation of PVN neurons producing OT attenuated my-
ocardial injury and reduced mortality, concomitantly increasing cardiac parasympathetic
tone [51,142]. H2S, suggestive of its role in the regulation of autonomic and endocrine
functions, was shown, in a dose-dependent manner, to depolarize magnocellular neurons
of the PVN [12,143]. The intra-cerebro-ventricular administration of an H2S releasing salt
(sodium sulfide (Na2S)) in water-deprived (24 h) rats increased plasma levels of OT, while
decreasing hypothalamic nitrate/nitrite [14].

Recently, in a porcine model of acute subdural hematoma (ASDH), the localization
of OT/R was confirmed in the hypothalamus and was also found to co-localize with
CSE [7,12]. Interestingly, CSE and OTR displayed reciprocal expression patterns in the
cerebellum, suggesting a more complex relationship and that different brain regions may
differ in the interaction of the OT/H2S systems [12]. Furthermore, the authors observed
the activation of the H2S and OT systems in the prefrontal cortex, which may assume
particular relevance, because this is one of the brain regions reported to be dysregulated in
posttraumatic stress syndrome (PTSD): the presence of these two systems may be indicating
potentially relevant biological mechanisms of ASDH-induced PTSD [6,144,145].

8. Vagus Nerve—H2S and Oxytocin

A proposed mechanism for the interaction of the H2S and OT systems between the
brain and heart is the vagus nerve. The vagus nerve is a very important player of the
autonomic nervous system, regulating metabolic homeostasis and connecting the brain
with the heart. This is mediated by afferent vagal nerve fibers (80%), which control sensory
signals towards the brain, and efferent vagal nerve fibers (20%), which conduct signals
towards peripheral organs such as the heart, lungs, and gastrointestinal tract. Within
the brain, the nerve fibers of the vagus nerve terminate in the nucleus tractus solitaries,
which is among others connected to the amygdala, the hypothalamus, and the orbitofrontal
cortex [146]. Under stress conditions, the vagus nerve is an important player in keeping the
heart from being overstimulated by the sympathetic nervous system [147]. Oxytocinergic
cells from the PVN are directly connected to the vagal nuclear complex, where OT acts on
sympathetic and vagal output to control heart and blood vessel function [50] (see Figure 2).
The inhibition of OT signaling to the vagus nerve could lead to impaired autonomic control
in cardiovascular disease [50,146]. OTR in the PVN fine-tunes the tonic neural control
of baroreflex sensitivity, short-term blood pressure variability and autonomic control in
cardiovascular diseases [50].
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Figure 2. H2S and OT directly influence the vagus nerve, connecting heart and brain. Baroreceptors in large arteries
sense the arterial pressure and signal to the DMN of the brainstem. The DMN also receives input from OT neurons of the
hypothalamic PVN, which centrally regulates cardiovascular homeostasis. The vagus nerve (parasympathetic) signals
from the DMN to the heart and decreases the heart rate. Notably, the OTR, OT, CBS, and CSE are expressed within
the PVN. The OTR and CBS are expressed in the DMN, while cardiac tissue expresses the OTR, OT, and CSE. These
expression patterns suggest a mutual interplay of the OT and H2S systems, connecting the heart and the brain. Pre-clinical
studies show that acute trauma and/or chronic stress affects cardiac endogenous OT/R and CSE levels, thereby affecting
physiological responses that influence the development of CVD. DMN: dorsal motor nucleus of the vagus nerve; PVN:
paraventricular nucleus; OT: oxytocin; OTR: oxytocin receptor; CSE: cystathionine-γ-lyase; CBS: cytathionine-β-synthase;
CVD: cardiovascular disease. Illustrations of the human, heart and brain were taken from the Library of Science and Medical
lllustrations (somersault18:24, https://creativecommons.org/licenses/by-nc-sa/4.0/).

The OT-producing magnocellular neurons of the PVN have been shown to directly
excite cardiac vagal neurons [51], and the OT system has been implicated in the mainte-
nance of cardiovascular homeostasis and parasympathetic cardiac activity (especially in
stress and anxiety). OTR-overexpressing (only in PVN) rats have higher baroreflex sensi-
tivity and lower blood pressure variability than controls [50]. The chronic stimulation of
OT-producing neurons in the PVN, activating cardiac vagal neurons, increased the parasym-
pathetic tone and reduced cardiac hypertrophy [51]. In myocardial ischemia/reperfusion
(I/R) injury, activation of the vagus nerve, attenuated severe arrhythmias, led to a reduction
of free radical blood levels and reduced mortality [148]. The stimulation of the vagal dorsal
motor nucleus in the brainstem lowered respiratory frequency and induced bradycardic
responses [149]. Both specific activations of OT-producing neurons in the PVN and subcu-
taneous OT administration revealed specific parasympathetic effects [50,150]. Conversely,
an intracerebral injection of OT at basal state and in response to stress (air jet) had no effect
on cardiac function, whereas intracerebral injection of an OT antagonist worsened the
cardiovascular response to stress [53].

Vagus nerve stimulation, in a porcine sepsis model, reduced cellular myocardial de-
pression and cardiac mitochondrial dysfunction [151]. OT also mediated cardio-protection
through the cardiovascular, respiratory, and immune response, thus strengthening an
autonomic cholinergic link [150]. The authors could show in endotoxemic rats that OT
administration (subcutaneously) reduced tachypnea and was beneficial for cardiovascular-
respiratory coupling, as assessed by the spectral components of heart rate variability [150].
Heart rate variability is the main read out for vagus nerve activity [152]. Vagus nerve
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stimulation improved hypotension, while reducing tumor necrosis factor and in the end
prolonged survival [152,153]. Studies in humans implicate low vagus nerve activity to
increased insulin resistance and atherosclerosis [154–158], whereas increased vagus nerve
activity is reported to reduce atherosclerosis [159–165]. An interesting observation is that
OT may be also mediating vagus nerve stimulation by the probiotic bacteria L. reuteri [166],
which has been shown to stimulate OT production in the PVN.

The literature on the role of H2S in vagal nerve-mediated cardiovascular function is
scarce at best, but there is a report that microinjection of an exogenous H2S donor (NaHS)
into the dorsal motor nucleus of the vagus nerve elicited significantly decreased respiratory
frequency and heart rate [167]. In a model of chronic heart failure, microinjection of GYY
into the PVN led to higher renal sympathetic nerve activity, increased blood pressure, and
heart rate and was beneficial for the cardiac sympathetic afferent reflex [168], whereas
hypothalamic H2S administration led to reduced blood pressure [32]. The endogenous H2S-
producing enzyme CBS has been localized in the dorsal motor nucleus of the vagus nerve,
suggesting local H2S production [164,166]. Incidentally, OTR binding and gene expression
were also localized in the dorsal motor nucleus [169] (see Figure 2). H2S is also reported to
influence homeostatic processes and neuronal excitability regulating neurotransmission,
adjusting the osmotic-induced neurohormone release such as OT [14,143,170,171]. “H2S-
dependent oxygen sensing” is CSE-mediated in the carotid body by glomus cells, its
inhibition leads to failure of the hypoxic response accompanied by a loss of catecholamine
release [172,173]. Taken together, the results reported above demonstrate that both H2S
and OT directly influence the vagal nerve through stimulation of the PVN, which leads
to affecting the heart and the cardiovascular system: blood pressure, heart rate, heart rate
variability, and cardiovascular tone (see Figure 2). OT in concert with H2S could have
a direct physiological interaction, affecting the baroreceptor sensitivity and reaction to
hypoxic events in cardiovascular stress.

9. Conclusions

The evidence that ELS leads to cardiovascular programming that manifests in CVD is
incontrovertible, but the mechanisms by which this occurs are not fully understood. In this
perspective review, the gasotransmitter hydrogen sulfide (H2S) and the neuroendocrine
oxytocin (OT) systems were shown to interact and play parallel roles in the heart and brain
in response to trauma, and evidence was provided to support their potential role as media-
tors in the ELS developmental origins of CVD. It is noteworthy that H2S and OT/R share:
(i) signaling cascades that converge on the same signaling pathway, anti-inflammatory
antioxidant properties, (ii) reduce atherosclerosis, and (iii) are cardio-protective in both
physical and psychological trauma models. Furthermore, evidence was put forward sup-
porting the role of the vagus nerve as a putative link for the interaction of the H2S and OT
systems between the brain and the heart. The dysfunction of either system is associated
with increased risk of hypertension and CVD. Nonetheless, discordant findings regarding
the varied effects of OT exposure in early life and the varied responses to OT administration
in individuals with ELS suggest that there is a need to better understand the discrepancy
between the circulating levels of OT and the OTR tissue expression levels. This implies
that multiple factors may be at play in the regulation of the OT system, e.g., stress affecting
endogenous receptor ligand levels, ultimately affecting physiological response. In other
words, the potential of OT to exert its cardio-protective effects seems to be at least in part
dependent on the presence and levels of both its receptor and ligand. The fact that the loss
of cardiac OTR expression could be restored by exogenous H2S administration might be
an alternative to direct OT administration, in potentiating the OT system through collat-
eral support, which may lead to OTR upregulation and restore signaling. The protective
effects of OT are mediated through the OTR in response to normal adaptive stressors to
trauma and injury (acute and/or chronic). The evidence that both the OT and H2S systems
display gender specific roles, especially in response to ELS, mandates the need to include
both sexes in experimental designs to fully comprehend the manifold interactions. The
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complexity of these findings warrants further study in clinically relevant animal models of
ELS. These clinical models should include large animals (small rodent models are notori-
ous for manifesting robust responses, which do not translate to the clinic) of both sexes,
with comorbidities resembling those in the targeted patient populations. Thus, a better
understanding of the complex interaction of the OT and H2S systems in ELS-mediated
CVD may provide an opportunity to decipher the mutual interplay of the body and mind
in CV health and disease.
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