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ABSTRACT Influenza A virus (IAV) is a respiratory pathogen that causes substantial morbidity and mortality
during both seasonal and pandemic outbreaks. Infection outcomes in unexposed populations are affected
by host genetics, but the host genetic architecture is not well understood. Here, we obtain a broad view of
how heritable factors affect a mouse model of response to IAV infection using an 8 · 8 diallel of the eight
inbred founder strains of the Collaborative Cross (CC). Expanding on a prior statistical framework for
modeling treatment response in diallels, we explore how a range of heritable effects modify acute host
response to IAV through 4 d postinfection. Heritable effects in aggregate explained �57% of the variance in
IAV-induced weight loss. Much of this was attributable to a pattern of additive effects that became more
prominent through day 4 postinfection and was consistent with previous reports of antiinfluenza myxovirus
resistance 1 (Mx1) polymorphisms segregating between these strains; these additive effects largely reca-
pitulated haplotype effects observed at the Mx1 locus in a previous study of the incipient CC, and are also
replicated here in a CC recombinant intercross population. Genetic dominance of protective Mx1 haplo-
types was observed to differ by subspecies of origin: relative to the domesticus null Mx1 allele, musculus
acts dominantly whereas castaneus acts additively. After controlling for Mx1, heritable effects, though less
distinct, accounted for �34% of the phenotypic variance. Implications for future mapping studies are discussed.
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Pathogenic response to viral infection varies dramatically between indi-
viduals infected with the same viral strain and dose, and much of this
variation is heritable. The impact of host genetics is evident both on the
primary exposure to a virus during early life (Strunk et al. 2013) and upon
infection with newly emerging viral strains; the latter, where prior im-
mune exposure to a variant viral strain is not cross-protective, being
especially common for quickly evolving RNA viruses such as the influ-
enza A virus (IAV) (Morens et al. 2010). Pathogenesis induced by IAV,
whether contracted during early childhood or later in life, is thus likely to
have a significant heritable component. A greater understanding of this
heritability should improve our ability to not only identify populations at
risk of enhancedmorbidity andmortality during an emerging pandemic,
but also to identify successful options for treatment.

The past several years have seen significant progress in identifying
and characterizing host genes that modulate susceptibility to IAV
infection via knockout mouse studies, in vitro screens, and studies of
primary immunodeficiencies and allelic variants in humans (To et al.
2015). In humans, screening for inborn errors identified a major role
for interferon regulatory factor 7 (Irf7) in modulating the severity of
primary IAV infection (Ciancanelli et al. 2015), and allelic variation in
Ifitm3, which was identified in a high-throughput siRNA screen, was
associated with differential severity of IAV-infection outcomes during
the 2009 H1N1 pandemic (Everitt et al. 2012).

Most of our insights into genes modulating host IAV resistance,
however, have come from studies on mice. These include studies using
knockout mice—which have identified host genetic factors critical to
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antiviral responses, including Tlr3 (Hidaka et al. 2006) and Isg15
(Lenschow et al. 2007)—and studies that examine differences between
laboratory inbred strains. Inbred strain studies were the first to identify
theMyxovirus resistance (Mx) family of proteins as important for host
antiviral response (Staeheli et al. 1988), and inbred studies have con-
tinued to demonstrate the relevance of genetic background to multiple
aspects of IAV pathogenesis (Srivastava et al. 2009; Alberts et al. 2010;
Leist et al. 2016; Samet and Tompkins 2017).

Yet,despite the identificationof clearphenotypicdifferencesbetween
inbred strains, there have been relatively few attempts to dissect the
genetic basis of thosedifferences using traditional quantitative trait locus
(QTL) mapping approaches such as the use of F2s or backcrosses
(although see Boivin et al. 2012). This may be, in part, because tradi-
tional QTLmapping approaches tend to rely on outbred animals—and
when it comes to studying viral pathogenesis, outbreds are in many
respects problematic. One important limitation is phenotyping: study-
ing the response to an infection is equivalent to studying the causal
effect of an applied treatment in that its strict definition relies on a
comparison between otherwise identical individuals subject to infection
vs. control. But such like-for-like comparisons are biologically and
technically challenging to make in an outbred population, where every
individual is genetically distinct, and this has undesirable consequences
for downstream interpretation: namely, that when genetic determi-
nants of severe IAV pathogenesis are confounded with those influenc-
ing baseline phenotypes, the roles of any detected QTL are ambiguous.
A related disadvantage of outbreds from the perspective of genetics is
the inability to obtain biological replicates, which makes it harder to
distinguish which aspects of pathology are stable consequences of ge-
netics vs. products of stochastic variability. This is particularly impor-
tant, since it also makes it almost impossible to follow-up on genuinely
extreme responders for additional mechanistic and genetic analysis.
Translating strain differences in IAV pathogenesis to meaningful
QTL studies ideally requires an experimental paradigm that combines
population-level genetic diversity with individual-level replicability.

An exciting opportunity is therefore presented by replicable genetic
referencepopulations, in particular, those basedonpanels of recombinant
inbred (RI) strains. Across a panel of RIs, genetic background varies,
providing a basis for QTL mapping; within a RI strain, individuals are
genetically identical, providing a basis for replication. The combination
allows infection response to be rigorously defined and genomic regions
affecting that response to be mapped. It also permits the creation of
sophisticated experiments that target a wider range of heritable mecha-
nisms: crossing RIs with each other to form RI intercrosses (RIXs), or
crossing themwith outside strains, produces replicable systems capable of
distinguishing, for example, additive, dominance, and parent-of-origin
effects, among others (e.g., Xiao et al. 1995; Hua et al. 2002, 2003;
Kollipara et al. 2002; Threadgill et al. 2002; Mei et al. 2005; Gonzalo
et al. 2007; Swanson-Wagner et al. 2009; Shang et al. 2015; Liu et al. 2012;
Zhou et al. 2012; Hallin et al. 2016; Williams and Williams 2017).

RI genetic reference panels range from inbred lines derived from
crosses between two mouse strains to more complex multiparental
crosses. The BXD RI panel, derived from two founder strains,
C57BL/6J and DBA/2J, has been used to study the impact of genetic
variation on susceptibility to IAV infection and map QTL associated
with these effects. Boon et al. (2009) studied H5N1 infection in females
from 66 BXD strains, and Nedelko et al. (2012) studied H1N1 infection
in 53 BXD strains, with both studies identifying QTL associated with
susceptibility to infection. The Collaborative Cross (CC) RI panel is a
multiparental population (MPP) descended from eight inbred founder
strains (Threadgill et al. 2002; Churchill et al. 2004), with these foun-
ders including representatives from the three major domesticated
house mouse subspecies (Yang et al. 2011). As such, the CC captures
considerably more genetic diversity and, thanks to its breeding struc-
ture, this diversity is also more uniformly distributed across the ge-
nome, with as many as eight distinct haplotypes segregating at any
given locus within the population (Collaborative Cross Consortium
2012; Srivastava et al. 2017). The eight CC founder strains have distinct
pathogenesis profiles in response to influenza virus (Leist et al. 2016),
suggesting that the CC RI panel is capable of a broader phenotypic
range than would be observed in less complex populations. Indeed,
studies using an incompletely inbred, ancestor population of the CC
(pre-CC), demonstrated high levels of phenotypic variation across the
population and successfully mapped several QTL associated with var-
iation in susceptibility to IAV infection (Ferris et al. 2013; Bottomly
et al. 2012). The CC therefore represents a promising resource
for studying how genetically diverse populations respond to IAV
infection.

Determining an optimal strategy for how the CC should be used to
study the genetic architecture of IAV pathogenesis is nonetheless
complicated because (1) the space of possible experimental designs is
vast, and(2) informationaboutwhat typesofheritable effectsare likely to
be present is extremely limited. Regarding (1), with �75 CC strains
currently available, including all reciprocal F1 hybrids (so called
CC-RIXs), there are .5600 potential replicable configurations. Since
only a subset of these configurations can be explored within any re-
alistic experiment, any chosen experimental design necessarily targets
some types of heritable effects to the exclusion of others. Regarding (2),
to date, most in vivo studies of IAV pathogenesis have been confined to
candidate genes or additive interactions at single loci; studies investi-
gating the broader question of what types of heritability are at play
during IAV infection are largely absent.

To rationally design studies of heritable effects in complex popula-
tions such as the CC it is therefore helpful to have advance knowledge of
which types of heritable effects might be present. One source of such
information is phenotype data collected on the multiparental founders
and their F1 hybrid offspring, a combination that can be more formally
described as an (inbred) diallel. Diallels have a long history in quanti-
tative genetics, having been used originally in plant breeding studies to
judge the relative merits of different strain combinations and sub-
sequently for gaining insight into the heritable architecture of a broad
range of phenotypes [e.g., references in Christie and Shattuck (1992),
Lenarcic et al. (2012), and Okoro and Mbajiorgu (2017)], including
host–pathogen interactions in, e.g., crickets (Rantala and Roff 2006)
and flies (Wayne et al. 2011) (see Statistical Models and Methods and
Discussion for connections to other diallel literature).

Here we use a diallel of the CC founders and their reciprocal F1
hybrids (hereafter, a CC founder diallel) to give an overall predictive
picture of the range and relative influence of the different types of
heritable effects on IAV pathogenesis that are likely to be present in CC
founder-derived MPPs, a group that includes not only replicable MPPs
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such as the CC and the CC-RIX but also irreplicable ones such as the
Diversity Outbred (DO) population (Svenson et al., 2012). We take
advantage of the diallel design’s replicability to measure IAV-induced
pathogenesis in a precise way, as the response to an applied treat-
ment defined in terms of postinfection (p.i.) weight-loss differences
(deltas) between matched sets of mock and infected individuals
(Figure 1). Adapting a recently developed statistical framework
for analyzing treatment-response diallels (Crowley et al. 2014), we
use those deltas to model how pathogenic response to IAV is mod-
ulated by parentage, sex, and their interaction, framed in terms of
additive genetics, dominance, epistasis, parent-of-origin, and sex-
specific versions thereof.

After observing that, following IAV infection, diallel individuals
show a broad, continuous distribution of day 4 (D4) p.i. weight loss, we
find, through statistical modeling, that the IAV-induced weight loss
includes substantial contributions of host additive, epistatic, and sex-
specific effects, with much of the heritable variation closely tracking
the genotype state implied by the three distinct functional alleles of
the previously identified resistance locus Mx1. Confirming previous
findings, the functional CAST/EiJ (CAST)Mx1 allele, in contrast with
functional NZO/HlLtJ (NZO) and PWK/PhJ (PWK)Mx1 alleles, pro-
vides intermediate levels of protection against H1N1 influenza strains.
Unexpectedly, and confirmed through additional modeling, we found
that different classes of functionalMx1 alleles exhibit distinct func-
tional patterns, additive or dominant, when combined with null
Mx1 alleles. Further, illustrating our general rationale, we show that
the major strain-specific, Mx1-effect patterns are consistent across
two CC founder-derived MPPs: the pre-CC, as determined from
reanalysis of a previously published data set (Ferris et al. 2013),
and a previously unpublished 105-line CC-RIX, in which we con-
duct a limited analysis focused on the Mx1 locus.

EXPERIMENTAL MATERIALS AND METHODS

CC founder diallel mice
The inbred and F1mice usedwithin this studywere bred in-house at the
UniversityofNorthCarolinaatChapelHill (UNC-CH).This colonywas
directly descended from the subset of animals used togenerate the initial
CC funnels (Collaborative Cross Consortium 2012) and included mice
from the following eight strains at The Jackson Laboratory: A/J (AJ;
#000646), C57BL/6J (B6; #000664), 129S1/SvImJ (129; #002448),
NOD/ShiLtJ (NOD; #001976), NZO (#002105), CAST (#000928),
PWK (#003715), and WSB/EiJ (WSB; #001145). Mice from the
UNC-CH colony were then used to generate all 62 possible inbred
and (reciprocal) F1 combinations between these eight strains, exclud-
ing NZO ·CAST andNZO · PWKmatings which are nonproductive
(Chesler et al. 2008) (Figure 2A). This yielded a total of 124 distinct
combinations of sex and parentage (hereafter, described as “diallel
categories”). Lung tissues were collected from a subset of each of the
founder inbred strains in this study, at day 2 (D2) and D4 p.i., and
were used for a separate comparative RNA-seq analysis by Xiong et al.
(2014).

Mouse infections in the diallel
Mice were weaned at�21-d old and housed four per cage, within each
diallel category, under standard conditions (12 hr light/dark; food and
water ad libitum). Of the four mice in a cage, one was randomly
assigned to mock and three to influenza infection, as there is no evi-
dence that mice can transmit influenza virus. Each cage was then
assigned to a harvest time point: D2 p.i. (n = 533 mice), or D4 p.i.
(n = 510 mice).

At 8–12 wk of age, based on their assignments, mice were anes-
thetized with isoflurane and inoculated intranasally with 500 plaque-
forming units (PFU) of mouse-adapted IAV (H1N1 A/Puerto Rico/8/
1934; short name PR8) or with the diluent, phosphobuffered saline
(PBS), alone as a mock control. For each inbred strain and F1 cross,
about sixmice (range: 5–9) of each sex were infected with IAVPR8, and
about twomice (range: 2–3) of each sex weremock infected. This gave a
total of 1043 mice across 54 experimental batches. Treatment assign-
ment was random: same-sex siblings from the same cage (and therefore
batch) were randomly assigned at weaning to mock or infected groups
prior to beingmoved to new cages. The 1043mice were housed in�260
cages (about four mice per cage), with 775 infectedmice and 268mock-
infected mice. Body mass was recorded daily. All animal experiments
were carried out in compliance with the Guide for the Care and Use of
Laboratory Animals (Institute of Laboratory Animal Resources, Na-
tional Research Council, 1996, https://www.ncbi.nlm.nih.gov/books/
NBK232589/). Animal protocols were approved by the Institutional
Animal Care and Use Committee of UNC-CH.

Mouse infections in the pre-CC and CC-RIX
To verify that strain-specific haplotype effects measured in the diallel
were consistent with those at the host resistance locusMx1, we sought
out CC-related IAV infection data sets for which we could isolateMx1
locus-specific effects.

Existing data from pre-CC study: In the QTL mapping study of host
response to IAV infection of Ferris et al. (2013), 155 female pre-CCmice
from as many pre-CC lines were infected with IAV (PR8) at 8–12 wk of
age and assayed for p.i. weight loss via daily weights, with phenotypes
collected including starting weight (D0) and weight at D4 p.i. (Figure
2B). This study did not include mock-infected mice.

CC-RIX study: In total, 1402 femalemicewere bred from105F1crosses
of CC strains (i.e., 105 CC-RIX lines) (Figure 2C and Supplemental
Material Figure S2 in File S7), as part of an ongoing QTL mapping
study. These mice were infected at 8–12 wk of age with 5000 PFU IAV
(A/California/04/2009; short name CA04), a human 2009 pandemic
H1N1 isolate (Itoh et al. 2009), and phenotypes were collected, includ-
ing starting weight (D0) and weight at D7 p.i. CC-RIX were bred under
similar conditions to diallel mice. This experiment, whose broader
analysis is still ongoing, included both flu-infected and mock-treated
mice. However, since the design did not match these to the same
exacting degree as the diallel, with mock controls missing entirely for
some batch/line combinations, in the current study we consider data
from the infectedmice only. CC animals used to generate CC-RIX lines
were purchased from the Systems Genetics Core at UNC-CH; infor-
mation about CC strains available for distribution is found at http://
csbio.unc.edu/CCstatus/index.py?run=AvailableLines (Morgan and
Welsh 2015).

STATISTICAL MODELS AND METHODS
Our statistical analysis of heritable effects in the diallel (hereafter, diallel
effects) relies heavily on the BayesDiallel model and approach de-
scribed by Lenarcic et al. (2012) and Crowley et al. (2014). BayesDiallel
was originally proposed in Lenarcic et al. (2012) for diallel analysis of
routine, single outcome phenotypes, describing how themean value of
those phenotypes was shifted by changes in parentage and sex. Al-
though in some ways the method was built upon a canon of existing
diallel literature (e.g., references in Christie and Shattuck 1992), including
more recent work that used random effects (Zhu and Weir 1996; Tsaih
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et al. 2005) and Bayesian hierarchical modeling (Greenberg et al. 2010),
in otherways it represents a new parameterization and a generalization of
many earlier methods [see Lenarcic et al. (2012) for explicit connections
to those methods]. In Crowley et al. (2014), we extended BayesDiallel to
treatment-response phenotypes, in particular, to when the modeled out-
come is the phenotypic difference between placebo and treated matched
pairs; the model in this case describes a causal effect modification, or, in a
slight abuse of terminology, a gene-by-treatment (G · T) effect. Herein,
that treatment-response approach is extended further to our more com-
plex matching regime of quartets rather than pairs, and with a different
imputation procedure to deal with quartets that are incomplete.

This section begins by reviewing the BayesDiallel model for single
outcome phenotypes. This is used not only to analyze our primary
baseline phenotype, body weight at day 0 (D0 weight), but is also
foundational for our subsequent analyses. Then we introduce our
definition of infection response based onmatched quartets, which gives
rise to treatment responses defined for each of four time points (D1,D2,
D3, andD4 p.i.), and describe how they aremodeled using BayesDiallel.

The analysis is thenmodified further to estimate the impact of haplotype
state at the resistance locusMx1, andwe describe how the interaction of
haplotype pairs at this locus is examined by estimating relative degrees
of haplotype additivity and dominance. Finally, we describe an illus-
trative comparative analysis of the effect of the Mx1 locus on IAV
response in pre-CC and CC-RIX mice.

Diallel model for single outcome phenotypes
Diallel effects for single outcome phenotypes, that is, phenotypes
measured as a single value per mouse, were modeled using the “fulls”
model of BayesDiallel (Lenarcic et al. 2012; Crowley et al. 2014).
BayesDiallel is a Bayesian linear mixed model that decomposes phe-
notypic variation into separate heritable components corresponding
to additive genetics, dominance/inbred effects, parent-of-origin
(“maternal”), epistasis, and all sex-specific versions thereof. It
models the phenotype value yi of mouse i as

yi ¼ mþ cTi aþ
XR
r¼1

uðrÞi þ dTi bþ ei   ; (1)

where m is the intercept, and ei is the residual error, normally distrib-
uted as ei � Nð0;s2Þ; with variance s2: The cTi a term represents the
contribution of an arbitrary set of user-specified fixed effect covari-
ates, with predictors encoded in vector ci and fixed effects a; thePR

r¼1u
ðrÞ
i term represents the contribution of an arbitrary set of R

user-defined random effect covariates, which for single outcome phe-
notypes in this study always includes an effect of experimental batch;
and the dTi b term represents the contribution of heritable compo-
nents of the diallel, written as a linear combination of the diallel
effects vector b and diallel category vector di: Here di is shorthand
for dfjksg½i�;where fjksg½i� denotes i’s diallel category, that is, its unique
combination of mother strain j, father strain k, and sex s. The diallel
category vector dfjksg is defined with the diallel effects b so as to give
the linear combination shown in Equation 2, where aj is the additive
effect of strain j (e.g., the additive effect parameter aAJ is the expected
increase in phenotype on adding one haploid genome of strain AJ);mj

is an additional increase in phenotype induced by strain j being the
mother (parent-of-origin effect); indicator IfXg is 1 if X is true and
0 otherwise; binbred is the overall effect of being inbred; bj is the
additional effect of being inbred for strain j; vjk is the additional effect
of combining strains j with k regardless of which is the mother
(symmetric epistasis); indicator SfXg is 1=2 if X is true and 21=2
otherwise; wjk is a deviation from vjk induced by parent-of-origin
(asymmetric epistasis); f is the effect of being female rather
than male; and fa

j is the sex-specific deviation from additive effect
aj; with other superscripted f terms (e.g., fm) defined analo-
gously. Each set of related variables, e.g., the additive effects
a1; . . . ; aJ for J parents, is modeled as a group via a constrained

Figure 1 Phenotype and treatment-response classes for analysis of
IAV infection in the diallel. Each filled square represents a weight or
weight-change phenotype that is modeled independently. The gray
square represents the starting body weight in all animals, prior to
treatment, at D0 (analyzed with model 1 in Table 2). Light blue squares
represent animals that were mock treated and red squares represent
animals infected with IAV, with daily weights for each taken from D1 to
D4 p.i. (and these were analyzed with model 2 in Table 2). Purple
squares represent infection response, the primary quantity of interest,
estimated using match quartets of one mock to three infected mice
(analyzed with models 3 and 4 in Table 2). Labels within each square
indicate phenotypes analyzed, where weight = preinfection body
weight, pct = p.i. percent change in starting D0 weight (post), and
“delta” = infection response, as described in the Statistical Models
and Methods section. The coloring increases in saturation from D1
to D4 for the influenza and matched quartet groups to indicate an
overall increasing amount of p.i. weight loss over time.

dTfjksgb ¼ aj þ ak|fflfflffl{zfflfflffl}
additive

þ mj 2mk|fflfflfflfflffl{zfflfflfflfflffl}
maternal

þ Ifj¼kg
�
binbred þ bj

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

inbred  penalty

þ Ifj 6¼kg
�
vjk þ Sfj, kg � wjk

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

epistasis

þ Sfs¼femaleg �

2
66664fþ fa

j þ fa
k|fflfflfflfflffl{zfflfflfflfflffl}

sex·additive

þ fm
j 2fm

k|fflfflfflfflfflffl{zfflfflfflfflfflffl}
sex·maternal

þ Ifj¼kg
�
finbred þ fb

j

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sex·inbred  penalty

þ Ifj 6¼kg
�
fv
jk þ Sfj, kg � fw

jk

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sex·epistasis

3
77775; (2)
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normal distribution, that is, a1; a2; . . . ; aJ � marginally Nð0; t2aÞ;
but subject to

P
jaj ¼ 0; after Crowley et al. (2014). The variance of

each group, e.g., t2a; was modeled with a weak inverse gamma prior,
t22
a � x2ðd:f : ¼ 0:2;mean ¼ 0:2Þ; with this prior also used for the
residual variance s2: The prior for fixed effects, e.g., m, is set to a
vague normal distribution, m � Nð0; 103Þ: A summary of the diallel
effects parameters is given in Table 1. Model fitting proceeded using
Markov chain Monte Carlo (MCMC) via Gibbs sampling (algorithm
in Lenarcic et al. 2012), with results based on samples from 12:5 · 106
MCMC iterations (five chains of length 2500, after 500 iterations
burn-in). See also the later section Reporting BayesDiallel results:
highest posterior density, model inclusion probability, variance pro-
jection, and treatment response variance projections.

Modeling infection response as mock-corrected percent
change in body weight p.i.
A standardmeasure used to assess pathogenesis in IAV-infectedmice is
weight loss. Weight loss correlates with several host and viral factors,
including viral load, immune response phenotypes, and lung histopa-
thology (Ferris et al. 2013; Leist et al. 2016); as such, it provides a simple,
noninvasive measure of infection pathology that can be assessed for a
large number of mice. We measured the percentage change in body
weight relative to D0,

pctday½group�i ¼ 100 ·weightday½group�i

.
weightD0½group�i ; (3)

for mouse i on day 2 fD1;D2;D3;D4g in group 2 fflu;mockg;
where, e.g., weightD4½flu�i and weightD0½flu�i are the body weights for
IAV-infected mouse i at D4 and at D0, respectively. These measures,
which we describe as single outcome phenotypes, were analyzed using
BayesDiallel as above (Table 2), but they were not the main focus of
our study. Our main focus was a derived measure, IAV-infection
response, defined next.

In defining IAV-infection response, we note that from a causal
inference perspective (described more fully in Appendix A) weight loss
in an IAV-infected mouse (e.g., pctD4½flu�i ) reflects two confounded
processes: weight loss due to IAV-induced pathogenesis, and weight
loss due to other aspects of the experimental procedure. To obtain an
unconfounded estimate of weight loss due to IAV-induced pathogen-
esis alone, we defined IAV-infection response as the difference between
weight loss in mice subject to infection by IAV and those subject to
mock. Specifically, since in our experimental design we match one
mock mouse to three infected—this reflecting our expectation that
phenotypes from infected mice will be more variable and will thus need

more replicates for comparable precision—infection response was de-
fined in terms of “matched quartets,” q ¼ 1; . . . ;Q; where each
matched quartet q comprised four mice of the same diallel category
from the same experimental batch, with the first three mice, q½1�; q½2�
and q½3�; being IAV infected and the last mouse, q½4�; receiving mock
treatment. Infection response at a given day for quartet q was thus
defined as a delta,

deltadayq ¼ 1
3

X3
f¼1

pctday  ½flu�q½ f � 2 pctday  ½mock�
q½4�   ; (4)

following the more general definition in Equation A2 in Appendix A.
Diallel effects on infection response were then modeled using

BayesDiallel inmanneranalogous tothe singleoutcomecase inEquation
1, as

deltadayq ¼ uþ cTqaþ
XR
r¼1

uðrÞq þ dTqbþ eq   ; (5)

where now the unit of observation is thematched quartet q rather than
the individual i and where, for example, dq is shorthand for dfjk;sg  ½q�;
the diallel category appropriate for q. The shift to modeling treatment
response does, however, change how the parameters are interpreted.
The intercept in the above formula, relabeled as u, now acquires a
special meaning, representing an overall causal effect due to infection,
and the diallel effects in b now describe how that causal effect is mod-
ified by parentage, sex, and their interaction. For example, the additive
effect parameter aAJ is the expected increase in infection response on
adding one haploid genome of strain AJ. Regarding covariates, as for
the single outcome phenotypes, this model included a random effect
of batch and, to reduce potential dependence between the delta’s
and baseline body weight, we also included a fixed effect covariate
for the quartet mean D0 weight (i.e., D0q ¼ P4

f¼1weight
D0
q½ f �=4) in

cq (Table 2).
Although our experimental design stipulated even multiples of four

mice per diallel category, practical constraints on animal breeding and
availability meant that in some cases this number was three or five,
such that some quartets had eithermissing infecteds or surplusmocks.
To ensure the definition of delta in Equation 4 remained consistent,
and in particular that delta’s from different quartets had comparable
precision, the diallel analysis was performed on M ¼ 1000 imputed
versions of the data, with each imputed data set being comprised of
exact quartets in which missing phenotypes had been filled using
stochastic regression imputation and surplus mocks had been (ran-
domly) deleted (details in Appendix B). On each imputed data set we
collected 125 MCMC samples from 12,500 total time steps (i.e., by
recording values at every 100th time step); results were based on the
aggregate of these samples from the M imputed data sets (i.e., on
125,000 MCMC samples in total).

Reporting BayesDiallel results: highest posterior density,
model inclusion probability, variance projection,
and treatment response variance projections
Point and interval estimates of individual diallel effects, e.g., additive
effect aAJ; are reported as posterior means and 95% highest posterior
density (HPD) intervals. The overall contribution of a particular in-
heritance group is reported in two ways: as a variance projection
(VarP), e.g., VarP[a] for the contribution of additive effects to a phe-
notype or treatment response VarPs (TreVarPs), e.g., TreVarP[a] for
the contribution of additive effects to an infection response; and as a

Figure 2 Diagram of breeding strategy for diallel, pre-CC, and CC-RIX.
(A) The diallel cross produces inbred (n = 8) and F1 (n = 54 lines) ge-
notypes from an 8 · 8 cross of inbred strains. (B) The pre-CC is com-
prised of incompletely inbred (n = 155 lines) genotypes from
155 inbreeding funnels. (C) The CC-RIX produces F1 hybrid lines (n =
105 lines) from a sparse, round robin-like cross of 65 inbred CC strains.
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model inclusion probability (MIP), e.g., MIP[a] for the probability of
additive effects being included in the model.

TheVarP is a heritability-likemeasure that predicts howmuchof the
total phenotypic sumof squares would be explained by each component
in a new, completely balanced diallel. Unlike traditional heritability, it is
calculated based on the effects,b; rather than the variance components,
t2a; . . . ; t

2
w;s

2; and as such benefits not only from greater interpret-
ability but also from the stability and accuracy provided by hierarchical
shrinkage (as detailed in Crowley et al. 2014). Since the VarP is a
function of the posterior predictive distribution and calculated at each
iteration of theMCMC, it is reported via Bayesian posterior summaries,
specifically, the posteriormedian and the 95%HPD interval. The VarPs
for infection response phenotypes are, following Crowley et al. (2014),
given the special name of TreVarPs to acknowledge their more delicate
interpretation.

The MIP reflects a different type of inference: rather than being a
function of the parameters estimated in the full, sexed BayesDiallel
model of Equations 1 and 2, it describes the results of model selection,
that is, an assessment of which diallel categories could be excluded
without a substantial loss in fit. As in Crowley et al. (2014), we use the
exclusionary Gibbs group sampler of Lenarcic et al. (2012). Each diallel
category is set to have a prior inclusion probability of 0.5, reflecting a
prior opinion that inclusion and exclusion are equally likely. This prior
is then updated by the phenotype data and the model selection pro-
cedure to give a (posterior) MIP. MIPs are interpreted following the
conventions in Crowley et al. (2014): MIPs in the range (0.25, 0.75)
indicate that the data does not provide sufficient evidence to make an
informed decision about exclusion or inclusion; MIPs within (0.05,
0.25] or [0.75, 0.95) represent positive evidence for exclusion or in-
clusion respectively; (0.01, 0.05] or [0.95, 0.99) represent strong
evidence; and [0, 0.01] or [0.99, 1] represent strong to decisive
evidence. These conventions are based on those proposed by Kass
and Raftery (1995) for Bayes factors, which are connected to MIPs
by the relation

Bayes  factor ¼ MIP
12MIP

·
12MIP0
MIP0

;

where MIP0 is the prior inclusion probability, and where the above
simplifies to MIP=ð12MIPÞ in our case of MIP0 ¼ 0:5:

Estimating Mx1 effects in the diallel
The critical host resistance factor (Mx1) has been shown to drive IAV
resistance in the CC founder strains and has been mapped in the
pre-CC (Ferris et al. 2013). Mx1 was previously described as having
three major, naturally occurring functional classes of resistance to in-
fluenza H1N1 arising from the subspecies Mus musculus domesticus
(hereafter, dom; members include AJ, B6, 129, NOD, and WSB), M.
musculus castaneus (cast; CAST), and M. musculus musculus (mus;
PWK and NZO), of which domesticus is considered to be null whereas
musculus and castaneus are protective. (Note that domesticus Mx1 in
the CC founder strains is comprised of two unique null alleles, and that
the subspecificMx1 alleles observed in the CC may not be representa-
tive of the those segregating in the wild.) To estimate the contribution
ofMx1 haplotypes as discernible in the diallel, and thereby also estimate
the extent of heritable effects that remain afterMx1 is controlled for, we
define the following haplotype combinations (diplotypes) as six levels
of the random effect, uðMx1  diploÞ : {dom · dom}, {dom · cast}, {cast ·
cast}, {cast · mus}, {mus · dom}, and {mus · mus}; we then repeat our
diallel analysis with this effect included (model 4 in Table 2).

Estimating a dominance index for Mx1 alleles: Dominance is typ-
ically defined in the context of bialleles, but since in this population
Mx1 has a multiallelic series, we define dominance of Mx1 between
allele pairs. Following Kacser and Burns (1981), which is built on the
work of Wright (1934), we define the “dominance index” for a wild-
type (wt) against a mutant (mut) allele as

Dðwt; mutÞ ¼ uðwt wtÞ 2 uðwt mutÞ

uðwt wtÞ 2 uðmut mutÞ; (6)

where values for D are close to 20.5 when the effect of the wt is
overdominant to the mut (the effect of the mut is underrecessive),
0 when the effect of the wt is completely dominant to the mut (the
effect of the mut is recessive), close to 0.5 when the effect of the wt is
additive (not dominant, or incompletely dominant) to the mut, close
to 1 when the effect of the wt is recessive (the effect of the mut is
dominant), and close to 1.5 when the effect is underrecessive (the
effect of the mut is overdominant). Overdominance is given by values
ofD that are much less than zero and underdominance by values that

n Table 1 Model parameters, random and fixed (overall), from Equations 1, 2, and 5

Parameter Color Description Type Levels

m (or u) Overall mean (or overall infection response) Fixed 1
a D0 body weight Fixed 1
uðbatchÞ Experimental batch Random 44 or 52a

uðMx1  diploÞ Mx1 diplotype Random 6
aj Blue Strain-specific additive Random 8
mj Green Strain-specific maternal (parent-of-origin) Random 8
binbred Red Overall inbred penalty Fixed 1
bj Orange Strain-specific inbred penalty Random 8
vjk Purple Strain pair-specific symmetric epistasis Random 28
wjk Brown Strain pair-specific asymmetric epistasis (parent-of-origin) Random 28
f Gray Overall female Fixed 1
fa
j Light blue Sex-by-strain-specific additive Random 8

fm
j Light green Sex-by-strain-specific maternal (parent-of-origin) Random 8

finbred Pink Overall female inbred Fixed 1
fb
j Light orange Sex-by-strain-specific inbred penalty Random 8

fv
jk Lavender Sex-by-strain pair-specific symmetric epistasis Random 28

fw
jk Tan Sex-by-strain pair-specific asymmetric epistasis (parent-of-origin) Random 28

a
Random effect levels for uðbatchÞ differ according to the number of experimental batches within each phenotype being modeled: 52 levels for D0, D1pct, D2pct,
D1delta, D2delta; and 44 levels for D3pct, D4pct, D3delta, and D4delta. In the text, h is used to indicate the level of batch for a given individual or quartet.
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are much greater than one. This definition is used to define domi-
nance indices uðcast;  domÞ and uðmus;  domÞ; describing the degree of dom-
inance of the protective alleles castaneus and musculus, respectively,
against the null allelle domesticus. To assess the degree to which
castaneus and musculus differ in their relation to domesticus, we
further define a “dominance difference index,”

DDðmus2cast;  domÞ ¼ Dðmus;  domÞ 2Dðcast;  domÞ  ; (7)

where negative values indicate thatmusculushasmore of a dominance-
based relationship to domesticus than does castaneus, positive values
indicate the converse, and zero indicates that the relationships of
castaneus and musculus to domesticus show dominance equally.

When the BayesDiallel model includes Mx1 effects, the aforemen-
tioned dominance index and dominance difference index are both
functionals of the posterior; posterior samples of these indices were
therefore obtained by simply applying Equations 6 and 7 to the sampled
Mx1 effects at each time step of the MCMC.

The Kacser and Burns (1981) dominance index is a simple repar-
ameterization of the degree of dominance parameter, aCR; defined by
Comstock and Robinson (1948) and used by Gardner and Lonnquist
(1959). In the Comstock–Robinson model, the mean-centered pheno-
types are coded as (translating from our model above): uðwt;  wtÞ ¼ w;
uðwt; mutÞ ¼ aw; and uðmut; mutÞ ¼ 2w: This gives the relation
Dðwt; mutÞ ¼ ð12 aCRÞ=2 or equivalently, aCR ¼ 12 2Dðwt; mutÞ:
This alternate dominance parameterization is explored further using
BayesDiallel in Turner et al. (2017).

Estimating haplotype effects at the Mx1 locus in the
pre-CC and CC-RIX
The additive effect parameters estimated in the diallel do not precisely
distinguish the effects at the Mx1 locus because they are confounded
with any potential genome-wide effects that follow the same pattern of
strain classification. An unconfounded estimate of haplotype effects
at Mx1 requires a population in which the remainder of the genome
is randomized, e.g., by recombination. To this end, we make use of two
related data sets on IAV-induced weight loss in two CC-derived MPPs:
IAV (PR8) infection in the pre-CC and IAV (CA04) infection in a set of
CC-RIX lines. These two studies, described in more detail below, were
in other respects less rigorous than our diallel: the experimental mea-
surement of the infection response was based on infected mice only
with nomocks in the pre-CC, and althoughmocks were collected in the
CC-RIX, their relative sparsity (200–300 mocks to .1400 infecteds)
complicates analysis based onmatching alternate treatment groups; the
experimental batching was subject to a less exacting degree of random-
ization across genetically distinct categories; the available combinations
of Mx1 diplotypes are limited mostly to homozygotes in the pre-CC,

and incompletely and unevenly sampled in the CC-RIX; and the Mx1
diplotype state for each line is known only probabilistically, having
been inferred by hidden Markov models (HMMs) applied to genotyp-
ing data. Nonetheless, if effects at theMx1 locus were largely indepen-
dent of those elsewhere in the genome, we might expect that Mx1
effects in the pre-CC and CC-RIX would be broadly consistent with
those in the diallel.

Estimation of haplotype effects at the Mx1 locus was performed
using the Diploffect model (Zhang et al. 2014), a Bayesian hierarchical
model that estimates effects of diplotype substitutions at a specified
QTL when the diplotype states themselves are known only probabilis-
tically. The effects estimated by Diploffect are analogous to those esti-
mated by BayesDiallel: phenotype yi of mouse i is modeled as

yi ¼ mþ cTi aþ
XR
r¼1

uðrÞi þ dipTi bþ ei  ; (8)

where dipi is a vector representing the diplotype state of mouse i at the
QTL and is shorthand for dipf jkg½i�;where f jkg½i� denotes i’s diplotype
state comprised of haplotypes from CC founder strains j and k, b are
the corresponding effects, and all other variables are as in Equation 1.
The diplotype vector dipfjkg is defined with b so as to give the linear
predictor

dipTfjkgb ¼ aj þ ak þ Ifj 6¼kggjk  ; (9)

where aj and ak are additive (haplotype) effects modeled as aj �
Nð0; t2addÞ; broadly equivalent to the additive effects in BayesDiallel’s
Equation 2; and gjk � Nð0; t2domÞ are dominance deviations, which
are the converse to BayesDiallel’s inbred parameters. Dominance
deviations are expected to be poorly informed when heterozygotes
are sparsely represented, as in the CC-RIX and in particular the
largely inbred pre-CC, but are nonetheless included to stabilize in-
ference of additive effects. For numerical stability, phenotypes were
first centered and scaled to unit variance, and variance parameters
(s2 or t2effect; where effect is add, dom, or r 2 R) were given mildly
informative priors of the form t22

effect � Gað1; 1Þ: Estimation proceeded
by importance sampling (the DF.IS and DF.IS.kinship methods in
Zhang et al. 2014) using integrated nested Laplace approximations
(INLA; Martins et al. 2013), with 100 importance samples taken,
and parameter estimates for additive effects are reported as poste-
rior means, posterior medians, and HPD intervals.

Pre-CC study: In the study of Ferris et al. (2013), IAV-infection re-
sponsewasmeasured on 155mice from asmany pre-CC lines as weight
loss following infection with IAV (PR8 variant, as for the diallel). QTL

n Table 2 Models used for each analysis in this study

Model Number Modela Phenotype(s) Unit Variance Parameters

1 yi ¼ mþ uðbatchÞi þ dTi bþ ei Preb Individuals 12c

2 yi ¼ mþ uðbatchÞi þ cðD0Þi aþ dTi bþ ei Postd Individuals 12c

3 deltaq ¼ uþ uðbatchÞq þ cðD0Þq aþ dTqbþ eq deltae Quartets 12c

4 deltaq ¼ uþ uðbatchÞq þ cðD0Þq aþ uðMx1  diploÞ
q þ dTqbþ eq deltae Quartets 13f

a
See study design in Figure 1 for overview of analyses. See Table 1 and Statistical Models and Methods for parameter and phenotype definitions.

b
D0 [all].

c
This count includes t2batch; {t

2
a ; t

2
m; t

2
b ; t

2
v ; t

2
w }, {t

2
fa ; t2fm ; t2

fb ; t
2
fv ; t2fw }, and s2:

d
D1pct, D2pct, D3pct, D4pct [mock] and D1pct, D2pct, D3pct, D4pct [flu].

e
D1delta, D2delta, D3delta, and D4delta.

f
This count includes t2Mx1  diplo and parameters in c.
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mapping of D4 p.i. weight loss, equivalent to pctD4i in the diallel study,
identified a QTL, HrI1, containing the Mx1 gene, with peak marker
JAX00072951 (chr16:98,148,641; Mouse Diversity Array of Yang et al.
2009). We estimated haplotype effects at this peak marker using Dip-
loffect (Zhang et al. 2014), applied to the phenotype and the original
HMM probabilities of Ferris et al. (2013), with the model including a
fixed effect covariate for D0 weight.

CC-RIX study: For the CC-RIX study of infection response to IAV
(CA04 strain), we calculated weight loss values for all 1402 infected
mice at D7 p.i. (analogous to a pctD7i measure), and for all 105 CC-RIX
lines obtained diplotype probabilities at marker UNC27478095
(16:97,591,482; MegaMUGA array, described in Morgan et al. 2016)
from the Inbred Strain Variant database (ISVdb; Oreper et al. 2017).
Haplotype effects were then estimated by Diploffect applied to
debatched CC-RIX line means as follows. First, we fit a linear mixed
model (by REML using the R package lme4 of Bates et al. 2015) to the
individual-level phenotypes (n = 1402) with fixed effects of D0 weight
and laboratory (two levels), and random effects of mating (107 levels:
105 RIXs + 2 additional levels distinguishing minor breeding differ-
ences, when CC010 and CC042 strains were rederived from breeder
females into a new facility) and infection date (59 levels). The residuals
of this model were then averaged over the ni mice of each CC-RIX
line i and used as the response yi in Equation 8 with precision weight-
ing ei � Nð0;s2=niÞ and a between-line polygenic random effect
u � Nð0;  Gt2GÞ; where the 105 · 105 genetic relationship matrix G
was calculated between all CC-RIX pairs based on the founder haplo-
type probabilities (dosages) at each locus, according to the method
described in Gatti et al. (2014).

Data availability
Analyses were conducted in the statistical programming language R (R
Core Team 2017). In addition to R packages cited above, we used the
packages BayesDiallel (Lenarcic et al. 2012) and Diploffect.INLA (Zhang
et al. 2014). The data, analysis software, and scripts are available on the
flu-diallel repository on GitHub at https://github.com/mauriziopaul/
flu-diallel. A static version is posted as a public, open-access Zenodo
repository at http://dx.doi.org/10.5281/zenodo.293015. Phenotype
data from the diallel and CC-RIX animals used in this study will be
available on the Mouse Phenome Database (Grubb et al. 2014) at
https://phenome.jax.org with persistent identifier RRID:SCR_003212.

File S1 contains an account of the supplemental files which can be
used to reproduce our analysis. File S2 contains the software packages
used for this analysis. File S3 contains the diallel data file, and File S4, File
S5, and File S6 contain the data analysis files required for analyzing the
diallel, pre-CC, and CC-RIX, respectively. File S7 contains supplemental
figures, tables, and an algorithm. After unzipping, the files FluDiData.csv,
Flu-pre-CC-data.csv, and Flu-CC-RIX-data.csv contain raw phenotypes,
cross (or line, strain), and mouse ID information from the three mouse
populations used in this study. The script files MIMQ�.sh are used in
bash to call R scripts to run the BayesDiallel analysis on diallel pheno-
types. The script files main_analysis�.R are used with Diploffect to run
Diploffect analysis on the pre-CC and CC-RIX phenotypes. Additional
�.RData, �.pl, �.alleles, and �.csv files are uploaded which contain settings,
genotypes, and founder haplotype probabilities used by the scripts.

RESULTS
Mice from the eight inbred founder strains of the CC were used to
generate a near-complete 8 · 8 diallel. This study used offspring (n =
1043) of both sexes (519 females and 524 males) representing 62 of the

64 crosses (Figure S1 in File S7), including all inbred combinations (n =
129) and all F1 hybrids (n = 914) except NZO · CAST and NZO ·
PWK. Within each diallel category—defined as the combination of sex
and (reciprocal) parentage—and in each experimental batch,mice were
randomly assigned at weaning to infection or mock groups in a ratio of
3:1; complete sets of three infected with one mock were described as
matched quartets. Mice in the infected group were inoculated with
IAV PR8, and in the mock group with PBS. For each mouse, body
weight was measured prior to infection (D0 or baseline weight), and at
days 1–4 p.i. (D1, D2, D3, D4). D0 weight is reported in grams whereas
p.i. weight is hereafter reported as a percentage of D0 weight, e.g.,
D4pct. Not all mice survived the protocol: one infected mouse died after
D3 weights were taken and one mouse died from anesthesia on D0.

F1 hybrids of the CC founders show a wide range of
phenotypic outcomes
The CC founders include five strains we have previously characterized
as susceptible to IAV-induced pathology (AJ, B6, 129,NOD, andWSB),
two strains as resistant (NZOandPWK), andone (CAST) that exhibits a
distinct intermediate weight loss phenotype (Ferris et al. 2013). Results
for the inbred founders measured in our diallel replicate those earlier
findings, and the p.i. weight loss among the infected F1 hybrids
spanned the range of phenotypes observed in the founders (Figure S3
in File S7), consistent with the notion of IAV-induced weight loss being
a complex trait with contributions from multiple loci.

Diallel effects on baseline mouse weight strongly
replicate previous CC founder diallel studies
The effects of parentage and sex on D0 weight were estimated using
BayesDiallel. Described further in Statistical Models and Methods,
BayesDiallel decomposes the heritable effects observable in the diallel
into 160 parameters (diallel effects) grouped into 13 distinct heritability
classes. In sketch form, it models the average phenotype of mice of sex s
bred from mother of strain j and father of strain k as

ave:phenotypejks ¼
overall mean
&  covariates

þ aj þ ak þ inbredj þ otherjks|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diallel  effects

;

where covariates always includes experimental batch, aj and ak are the
additive effects of the two parents, inbredj is an additional effect in-
cluded only when j ¼ k, and otherjks models the effects of further
nuances of sex and parentage as deviations from this base model
(listed in Statistical Models and Methods and Table 1).

Diallel effects estimated for D0 weight are reported in Figure S6A in
File S7 as 95% HPD intervals for each parameter, and two summary
measures, VarPs and MIPs, for each of the 13 heritability classes are
given in Figure S6, B and C, in File S7. Briefly, VarPs (Figure S6C in File
S7) report the contribution of the effect group as the proportion of the
total phenotypic variance, whereas MIPs (Figure S6B in File S7) assess
the strength of support for whether an effect group should be included
at all, with probabilities near 1 providing stronger support for inclusion,
probabilities near 0 supporting exclusion, and probabilities near 0.5
reflecting a lack of information either way.

Thepatternof effects forD0weightwas strikingly similar to that seen
for baseline body weight in two previous diallels of the CC founders
(Lenarcic et al. 2012; Crowley et al. 2014), despite those earlier studies
being independent experiments with no particular attempt made to
align experimental protocols, and included substantial additive
effects, strain-specific parent-of-origin effects, signals of epistasis, and
sex-specific versions thereof. For example, we largely replicated the
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pattern of inbred, additive, and maternal effects observed in both
Lenarcic et al. (2012) and Crowley et al. (2014), and also found a
higher-order, sex-specific PWK · CAST symmetric epistatic effect in
Lenarcic et al. (2012). We also observed some new epistatic and sex-
specific epistatic effects largely due to increased power from a larger
sample size.

Diallel effects on IAV-infection response
Infection response was defined as the percentage change in body weight
induced by IAV infection, with more negative values indicating more
severe pathology. This was calculated at each time point—D1, D2, D3,
and D4 p.i.—as the difference between matched infected and mock
mice, yielding a single infection response number (a delta, e.g., D4delta)
for each matched quartet (three infected mice and one mock). The
effects of parentage and sex on infection response were then analyzed
for each time point separately using BayesDiallel as above, with an
additional covariate of D0 weight (see Statistical Models and Methods
for details). Although results are provided in File S7 for all time points,
we will focus on those for D4 p.i. since this showed the greatest differ-
ence between infected and mock.

IAV infection causes weight loss through D4 p.i., with
greater susceptibility in females
IAV infection in the diallel induced an overall mean change in body
weight (i.e., overall infection response u in Equation 5 and Table 1)
of 20.13% (95% HPD interval: 20.48, 0.22; MIP = 1) on D1
p.i., 20.83% (21.33, 20.32%; MIP = 1) on D2 p.i., 25.60%
(26.47, 24.73%; MIP = 1) on D3, and 28.85% (29.92, 27.78%;
MIP = 1) on D4 (Table S3 in File S7; see also progression in Figure 3).
Consistent with previous mouse studies of sex effects on infection
(Lorenzo et al. 2011; Robinson et al. 2011), females given the same
dose of virus as male mice had increased weight loss: a negative effect
of female sex was estimated at all four time points p.i., gradually
increasing in magnitude from 20.89% (21.45, 20.36%) at D1 p.i.
to 22.11% (23.87, 20.30%) at D4 p.i. (Figure 4), suggesting that
enhanced susceptibility in females may occur at least as early as D1
p.i. Although all mice received the same dose of virus regardless of
starting body weight, heavier mice experienced a transient increase in
percent weight loss at D2 p.i. compared with lighter mice: the D0
weight effect (a in Equation 5) on the infection response at D2 p.i.
was 20.31% (20.52, 20.09%), such that for every 10 g of starting
weight beyond 0 g, an additional �3.1% weight was lost on D2;
however, this effect disappeared by D3 p.i. No other significant effects
of starting weight on IAV-induced weight loss were detected at other

time points, indicating that heavier mice were infected at least as
effectively as lighter mice, and that starting body weight does not in
general confound our exploration of strain- and cross-specific effects.

Diallel effects on infection response reflect mostly additive genetics,
consistent with differences in Mx1 haplotype: Infection response in
our diallel was strongly driven by additive effects. On D3 p.i., enhanced
susceptibility to weight loss in infected animals was affected themost by
contributions from strain AJ,22.17% (23.72,20.61%), and enhanced
resistance from contributions of NZO, 2.54% (0.72, 4.27%), and PWK,
1.70% (0.12, 3.23%), strains. On D4 p.i., enhanced susceptibility was
greatest from AJ, 22.77% (24.66, 20.86%), and WSB, 23.09%
(25.01, 21.18%), with enhanced resistance greatest from NZO,
4.07% (1.95, 6.12%), and PWK, 4.06% (1.97, 6.08%) (Figure 4A). In
terms of its additive effect, CAST was more resistant than the Mx1-
null strains (AJ, B6, 129, NOD, and WSB) but about half as resistant
as the Mx1-functional strains (NZO and PWK), consistent with it
conferring intermediate protection in the heterozygote state.

To summarize these effects: for each dose of AJ or WSB genomes
inherited from a parent, �2–3% of additional starting body weight is
lost p.i., indicating enhanced susceptibility compared with the overall
mean weight loss; for each NZO and PWK genome inherited, �4%
more of starting body weight is retained p.i., compared with the mean
treatment effect, indicating enhanced resistance.

Diallel effects explained over half of the total variance of infection
response at D4, with a treatment-response VarP for all effect groups
collectively of 57% (TReVarP[all] = 0.571; 0.418, 0.721). The variance
explained by additive effects only, which is related to the narrow-
sense heritability, was estimated as 34.8% (TReVarP[a] = 0.348;
0.190, 0.491), and also detected were potential additional contribu-
tions of epistasis (TReVarP[v] = 0.069;20.001, 0.212) and maternal
effects (TReVarP[m] = 0.020; 0.000, 0.059) (Figure 4, B and D and
Table S1 in File S7).

Evidence for additive, inbred, epistatic, and parent-of-origin effects
mounts as disease progresses: The relevance of diallel effects to in-
fection response became more marked with time (Figures S7–S10 and
Table S3 in File S7). At D1 and D2 p.i., model inclusion probabilities
gave strong support only to an overall infection response, with no
evidence of this effect being modified by sex or parentage (Figures S7
and S8 in File S7). At D3 p.i., however, we found positive to strong
evidence of additive (MIP[a] = 0.978), inbred (MIP[b] = 0.958), and
asymmetric epistatic (MIP[w] = 0.820; i.e., parent-of-origin epistatic) ef-
fects (Figure S9 in File S7). ByD4p.i., support for additive (MIP[a] = 0.998)

Figure 3 Influenza-induced weight loss in an 8 · 8 diallel cross of mice, through 4 d p.i. Mean weight change, as % D0 weight, is shown at (A) D1,
(B) D2, (C) D3, and (D) D4 p.i. with 500 pfu IAV (PR8) in male and female inbreds and F1 hybrids of CC founder strains (n = 774 for D1 and D2, n =
382 for D3, and n = 381 for D4). Results from mock-infected mice not shown. Squares with a gray “X” indicate matings that do not produce
offspring.
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Figure 4 Diallel effects on host weight IAV-infection response, before and after accounting for Mx1 haplotypes. (A) Effect estimates for additive,
maternal, inbred, and epistatic effects, including sex-specific effects, are presented as HPD intervals across 163 individual effects categories for
IAV-induced weight change at D4 p.i. (phenotype D4delta). HPDs are given for each parameter, including 95% (thin line) and 50% (thick line)
intervals, and median (white break) and mean (black vertical line). Parameters are labeled according to the methods. Symmetric epistatic,
asymmetric epistatic, and sex-specific parameters are indicated by “v:”, “w:”, and “f:”, respectively. The overall treatment effect (data not
shown), u, is 28.85% (29.92, 27.78%). (B and C) TReVarPs, a generalization of heritability for diallel effects classes, at D4 are shown for three
fixed (overall) effects, five random effects classes, and five corresponding sex-specific random effects classes (posterior median and 95% HPD
intervals) before (B) and (C) after accounting for diplotypes at the host influenza resistance locus,Mx1. (D and E) TReVarPs before and afterMx1 for
all four p.i. time points.
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and inbred (MIP[b] = 0.999) effects had become decisive (see Statistical
Models and Methods for MIP interpretation) and there was strong
support for both symmetric epistatic (MIP[v] = 0.960) and asym-
metric epistatic (MIP[w] = 0.966) effects (Figure S10 and Table S3 in
File S7).

Modeling effects consistent with Mx1 haplotype
To help distinguish diallel effects that are consistent with the subspecies
haplotype of the resistance factor Mx1 (hereafter, Mx1 effects), we in-
corporated the Mx1 subtype explicitly into the model as a genotype
covariate with three alleles, one for each subspecies branch: domesticus
(AJ, B6, 129, NOD, andWSB), castaneus (CAST), andmusculus (NZO
and PWK).

Mx1 effects are increasingly evident with disease progression and
explain �40% of the diallel effects at D4 p.i.: In keeping with the
increased support seen for diallel effects over time, evidence for a
nonzero Mx1 effect increases from positive evidence of exclusion on
D1 (MIP = 0.035), to no evidence for inclusion or exclusion on D2
(MIP = 0.552), to decisive evidence for inclusion on D3 (MIP = 1.000)
and D4 (MIP = 1.000) (Figures S11–S14 in File S7); a comparable level
of support for inclusion in the model was seen only for effects of overall
treatment and batch. After controlling forMx1, the variance explained
by diallel effects at D4 was substantially reduced, from 57 to 33.8%
(TReVarP[alljMx1] = 0.338; 0.174, 0.537) (Figure 4, C and E and Table
S2 in File S7). This was consistent with Mx1 accounting for �40% of
the variance explained by the diallel, including most of the additive
effects (mathematically theMx1 termmodels effects that compete with
a subset of the additive and dominance diallel effects).

Evidence for distinct additive and nonadditive effects of Mx1
functional groups: After controlling for other diallel effects, the
predicted weight loss over the course of 4 d varies in a manner
consistent with Mx1 allele combination (Figure 5A). We observed
that, as expected, domesticus · domesticus crosses were predicted to
have much more overall post-IAV-infection weight loss at D3 and
D4 compared with all other crosses. Notably, the most protected
group appeared to be the domesticus · musculus haplotype, at both
D3 and D4 p.i., although the HPD intervals overlap with other
Mx1-functional groups. The rank order of effects changes from D3
to D4 due to the dramatic slowing of weight loss in the musculus ·
musculus crosses from D3 to D4 compared with D2 to D3.

Although we did not observe any strain- or pairwise-specific non-
additive effects in thediallel prior to inclusionof theMx1 randomeffect,we
did observe a pattern of dominance in crosses between musculus and
domesticus, even as there was a pattern of additivity in the crosses between
castaneus and domesticus (Figure 5B). Whereas it might be expected that
host alleles from Mx1-null strains should act in a recessive manner, this
appears not to be the case for this phenotype and time point in crosses of
castaneuswith domesticus, such that the functionalMx1 allele fromCAST
appears to operate in an additive manner. This further supports the pre-
vious observation that the CAST Mx1 alleles differ from the musculus
Mx1 alleles in their protective host response to IAV (Ferris et al. 2013).

Dominance and additivity of Mx1 alleles against the functional
null: musculus is dominant, castaneus acts additively: To better
characterize how theMx1 effects on infection response exhibit aspects of
genetic dominance vs. genetic additivity, we estimated for each functional
Mx1 allele a dominance index, after Kacser and Burns (1981). This
measures the distance between the expected phenotype of a homozygous
functional allele, in our casemusculus or castaneus, and the heterozygote
formed with a null allele, in our case domesticus. On this scale, 0 denotes
the functional allele being dominant to the null, 1 denotes it being re-
cessive, and 0.5 indicates pure additivity (see x-axis scale in Figure 6, A
and B, and more details in Statistical Models and Methods).

The dominance indices of the two functionalMx1 alleles,musculus
and castaneus, were sharply different (Figure 6, A and B, and Table
S8 in File S7). We found that musculus against domesticus was20.278
[= posterior mode of Dðmus;  domÞ; 80% HPD interval 22.547, 0.329] at
D3 and 0.068 at D4 (20.568, 0.380), a clear signal ofmusculus exerting
classical dominance over the functional null. In contrast, the dominance
index of castaneus against domesticus was 0.421 (20.534, 0.907) and
0.491 (20.028, 0.836) for D3 and D4, consistent with castaneus and
the functional null being codominant (i.e., having an additive rela-
tionship). The difference of the two dominance indices, whose pos-
terior distribution is shown in Figure 6 for each time point, quantifies
the distinction between musculus and castaneus more directly, put-
ting the probability that musculus is more dominant than castaneus
(i.e., P½Dðmus;  domÞ .Dðcast;  domÞ�) at 83.6% for D3 and 86.6% for D4.

Mx1 effects show consistent pattern in related MPPs
for pre-CC and CC-RIX
We examined effects associated with the Mx1 locus in two related
recombinant CC populations, the pre-CC of Ferris et al. (2013) and a

Figure 5 Time course of subspecies-specific
Mx1 haplotype effects on IAV-induced weight
change in the diallel. (A) Predictive means of
Mx1 diplotype effects across 4 d p.i., modeled
simultaneously with other diallel effects and
covariates. (B) HPD intervals of Mx1 diplotype
effects on weight change on D4 p.i. Increased
resistance is indicated by values further to the
right. Dashed lines highlight the mode of inter-
action between Mx1 haplotypes: the green line
shows the additive effect of crossing castaneus
with domesticus, the blue line shows the domi-
nant effect of crossing musculus with domesti-
cus, and the orange line shows the negligible
effect of castaneus crossed with musculus.
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set of CC-RIX lines first described here, and observed that the pattern
of locus-specific strain haplotype effects was strikingly similar to that
observed in our diallel (Figure 7). This suggests that the pattern of
genome-wide additive effects in the diallel is largely driven by the effect
of Mx1 haplotypes in the founder strains. This similarity in pattern is
consistent, even though the virus isolate and the peak weight loss time
point differed in the CC-RIX population (CA04 human pandemic
strain, D7 p.i.) compared with the diallel and pre-CC (PR8 mouse-
adapted strain, D4 p.i.) (Table S4 in File S7). In all three populations,
NZO and PWK alleles provide the most resistance to IAV-induced
weight loss, and CAST alleles are slightly less protective. In the pre-
CC, effects of AJ, B6, 129, NOD, and WSB haplotypes are all approx-
imately the same, and clearly separated from the additive effects of
strains with functional Mx1. In the diallel and in the CC-RIX (at
Mx1), however, AJ and WSB haplotypes are on average more suscep-
tible than the B6 haplotype, and there is less separation between addi-
tive effects of CAST and those from Mx1-null strains. The proportion
of variance in weight loss explained byMx1 was estimated as 0.5 (95%
HPD interval: 0.43, 0.54) and 0.54 (0.42, 0.63) for pre-CC and CC-RIX
mice, respectively (Figures S16 and S17 in File S7). Note that an
in-depth analysis of dominance indices for the Mx1 locus was not
possible in these populations because of the relatively sparse coverage
of heterozygote diplotype states in the pre-CC and homozygous func-
tional diplotype states in the CC.

DISCUSSION
We describe a general approach for investigating heritable effects on
host susceptibility to virus-induced disease, in our case pathogenesis
inducedby IAV,using a diallel crossof the eightCC founder strains. The

results from this diallel are informative not only inmore clearly defining
the genetic architecture of the host influenza response, but also pro-
spectively: they anticipate sources of heritable variation likely to be
present in the CC, theDO, and other derived experimental populations,
and therefore provide a ready basis for the rational design of future
studies. As an illustration of this, we demonstrate concordant effects of
viral resistance locusMx1 across the CC founder diallel, pre-CC, and a
set of CC-RIX lines.

With regard specifically to IAV pathogenesis, our study sought to
better understand host genetic effects on this outcome in terms of their
(1) time-dependence, (2) consistency across relatedpopulations, and (3)
conditionality—for example, dependence on interactions between al-
leles at the same locus (dominance, at Mx1) or at different loci (epis-
tasis). Regarding time-dependence (1), we found that whereas the effect
of being female rather than male is evident from D1, the effects of
genetics appear later, becoming evident only on D3 and then increasing
through D4 p.i. Regarding consistency (2), we found that the effects of
theMx1 alleles seen previously in the CC founders remain stable across
inbred, F1, and recombinant populations. Regarding conditionality (3),
we found something unexpected: evidence that the twoMx1 functional
classes, castaneus (CAST) andmusculus (NZO and PWK), which were
previously characterized as being functional alleles, in fact behave dif-
ferently when present in the heterozygous state with susceptible Mx1
alleles from domesticus (AJ, B6, 129, NOD, and WSB). Specifically, the
protection conferred by the presence of a musculus Mx1 allele is the
same regardless of whether it is in the homozygote state or paired as a
heterozygote with the null domesticus allele; themusculus allele is there-
fore dominant to domesticus. But for the CAST allele, when paired in
the same way with domesticus, its protection is weakened to an extent
consistent with CAST and domesticus being codominant, that is, having
an additive relationship.

Level of resistance to IAV among different inbred mice
is conditional on IAV subtype and strain
Differences in Mx1 function have been identified between a variety of
inbred mouse strains, including the CC founders (Ferris et al. 2013;
Xiong et al. 2014; Leist et al. 2016). Our results were largely consistent
with those studies.

Notably, in their examination of the CC founders with H3N2 in-
fection, Leist et al. (2016) identified AJ and WSB strains as being most
susceptible, and NZO and PWK as being most resistant, which agrees
with our diallel additive effects. However, in contrast with our results
showing partial protection against H1N1 IAV with CASTMx1, which is
consistent with our prior findings in the pre-CC (Ferris et al. 2013); they
found CAST mice, grouping with AJ andWSB, to be highly susceptible.
This difference could arise for at least two reasons. First, across the in-
fluenza field, even in identical RI panels (Boon et al. 2009; Nedelko et al.
2012), host genetic effects appear to be IAV subtype specific. Second, the
effectiveness of Mx1’s antiviral activities can vary depending on IAV
subtypes (Riegger et al. 2015; Dittmann et al. 2008; Zimmermann
et al. 2011; Mänz et al. 2013; Verhelst et al. 2012). Differentiating these
two possibilities, however, is beyond the scope of this work.

Although the molecular differences in CAST Mx1 that produce a
deficient response in comparison with musculus Mx1 have not been
defined, some work has been done in inbred mice to better understand
CAST (strain)-specific antiviral responses. To interpret what they saw
as a unique antiviral deficiency of CAST mice, transcriptomic experi-
ments by Leist et al. (2016) suggested enhanced susceptibility is due to
leukocyte recruitment deficiency (relative to NZO and PWK) in the
lung. In the CC founder study of Xiong et al. (2014), several transcrip-
tomic differences separated the CAST response to PR8 from the that of

Figure 6 Posterior density of the dominance index on (A) D3 and (B)
D4. (C) Posterior density of the dominance difference index, i.e., the
difference between the dominance indices of castaneus andmusculus,
across all 4 d.
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the other strains, including differential splicing of Irak1 and lack of Ifng
expression at D4 p.i., which was consistent with Ifng deficiency ob-
served by Earl et al. (2012) leading to lethal monkeypox infection of
CAST mice. Because these studies were completed in inbred CAST
mice, the role of CAST Mx1 is confounded with the genome-wide
differences between CAST and the other CC founders.

Thus, there are several challenges to understanding the unique IAV-
resistance profile of CASTMx1 based on existing studies: (1) studies in
inbred lines are unable to probe the overall orMx1-specific dominance
architecture due to a lack of heterozygosity, and (2) studies in non-
recombinant lines that identify a unique phenotype in CAST compared
with other founders are unable to separate the effect of CASTMx1 from
effects arising from the rest of the CAST genome. Our study in part
circumvents these shortcomings by (1) additionally examining F1 hy-
brids; and (2) exploring the emerging phenotypes from an ongoing
IAV-infection screen using CC-RIX, themselves F1s of RI strains.

Complex additive effects patterns mask strong signals
of dominance
In our initial analysis, we found that most of the phenotypic variation
explained in infection response is driven by additive genetics with no
particular signal of dominance. However, when we explicitly modeled
Mx1 status, using a term that competes with a subset of the additive and
dominance diallel effects, we found that theMx1 functional classes act
in a manner consistent with a strong dominance pattern for musculus
Mx1 (Figure 5). It seems striking that such a pattern of dominance
could be underlying an apparently heavily additive effect signal.

Identifying dominance requires a good basis for comparing inbreds
with hybrids. However, since the diallel is mainly composed of F1
hybridswith relatively few (8 vs. 54) inbreds, this basis for comparison is
often weak. The BayesDiallel model handles this by considering the
hybrid state as the baseline and treats the inbred state as the exception
(a deviation) relevant to a minority of categories, as discussed further in
Lenarcic et al. (2012). Inferred dominance effects are therefore vague
because the data that informs them is sparse, and low estimates of
dominance variance comes from absence of information rather than
from information about the absence of an effect. Nonetheless, greater
precision was available when considering dominance of substrain-
specific Mx1 because dominance information was pooled across
multiple strains and strain pairs.

The fact that the proportion of estimated additive vs. nonadditive
variance is influenced by model parameterization motivates careful

consideration of both study design and analysis. AsHuang andMackay
(2016) have recently described, model parameterizations can have crit-
ical effects on the detection of nonadditivity, with the same data
strongly supporting evidence for mostly additive or mostly nonadditive
effects, depending on the model. Related issues have been described at
the locus level by Sabourin et al. (2015), who showed that when apply-
ing penalized regression to multi-SNP fine-mapping in GWAS, geno-
type parameterization interacts with how priors/penalties are assigned
and can make biallelic dominance hard to identify in some cases. Yet
even when dominance is not of interest per se, failure to accommodate
it can disrupt estimation of additivity: in the pre-CC QTL mapping
study of Phillippi et al. (2014), dominance signals arising from residual
heterozygosity disrupted detection of an additiveQTL for basal levels of
CD23 (encoded by Fcer2); this was resolved by treating heterozygote
diplotypes, whose occurrence was too sparse to be modeled, as inher-
ently noisier via downweighting.

Antiviral genes are expected to be dominant, but CAST
Mx1 exhibits additivity
The degree of genetic dominance of host resistance factors to viral
infection in humans and mice has not been thoroughly explored. In
general, in the context of biochemical and immunological studies one
might expect, just as with musculus Mx1 combined with domesticus
Mx1, that genes encoding strong-acting antivirals when combined with
a null mut would be mostly dominant. In quantitative genetics, how-
ever, it is more often expected that genetic contributions will be mostly
additive. In this study, at the Mx1 locus, we observe both.

In genetic crosses of functional and null mice, major host determi-
nants of pathogenesis are normally expected to be classified as either
recessive or dominant: recessive when null results in loss of function
for a host factor required for disease susceptibility, dominant when null
results in lossof function forahostgenerequired forvirus resistance.The
recessive case is especially true of passive immunity gained by knockout
of host genes critical to viral entry and life cycle, and has been
demonstrated in a variety of studies on crop resistance (Fraser 1990;
Kang et al. 2005; Truniger and Aranda 2009; Hashimoto et al. 2016)
and explored in studies of the effects of CCR5 deficiency (CCR5-D32
deletion) in resistance to HIV infection and pathogenesis in humans
(Liu et al. 1996; Samson et al. 1996; Hütter et al. 2009), however the
degree of protection in the CCR5-D32 heterozygous individuals is not
fully understood (Marmor et al. 2001; Trecarichi et al. 2006). The
dominant case could be considered for a viral sensor, where a single

Figure 7 Additive CC-strain haplotype effects
on IAV-induced weight loss across three
CC-related populations. (A) Additive ef-
fects from the CC founder diallel of mice
infected with IAV (PR8) or mock (nflu=393,
nmock=131) at D4 p.i. (from Figure 1). (B) Ad-
ditive strain haplotype effects at the Mx1 locus
for female pre-CC mice (n = 155) infected with
IAV (PR8) at D4 p.i. (C) Additive strain haplotype
effects at Mx1 for female CC-RIX mice (n =
1402) infected with IAV (CA04) at D7 p.i. Esti-
mates are shown as HPD intervals as described
in Figure 1, with blue lines connecting posterior
means. Parameter scales are given as additional
IAV-induced weight loss per dose of strain in %
of (A) D0, and (B and C) normalized effect size.
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inherited functional copy still provides sufficient sensitivity for viral
detection and control, resembling that of an individual inheriting
two copies, one from each parent. This type of dominance is best
explained by the model proposed by Kacser and Burns (1981), a
metabolic–enzymatic model for the architecture of dominance at
specific loci, and has been explored further in studies of viral re-
sistance in plants, such as in Fraser and Loon (1986) and Fraser
(1992). The Kacser–Burns model also provides a mechanism that
could in some cases give rise to additivity.

Kacser and Burns (1981) predicted that, biochemically, for most
enzymes, if there is a 50% reduction in enzyme activity in the hetero-
zygote of a null · functional cross, then in most cases the resulting
phenotype will resemble that in the homozygous functional individual
and the null allele would likely be characterized as operating in a “re-
cessive” manner. According to their model, the phenotype (or “flux”)
resulting from a given enzymatic pathway with multiple enzymes
joined by “kinetic linking” is a summation of the change in flux due
to each specific enzyme activity (“selectivity coefficient”). This means
that even a dramatic change in activity for any one enzyme in a phys-
iological system results in barely discernible changes in the system
overall, as long as some functional enzyme from the locus of interest
is produced.

However, the authors alsodescribe two caseswhere systemicfluxcan
be partially reduced in the heterozygote: (1) in pathwayswhere there are
exceptionally few enzymes involved in the system (this case is unlikely
for an IFN-responsive antiviral pathway such as Mx1); and (2) in
pathways where the selectivity coefficient (functional activity) of the
enzyme is very low, a case termed heterozygote “indeterminacy,”which
we henceforth equate to additivity. As further explored by Keightley
(1996), dominancemay be incomplete when less active allelic members
of a series are involved in a cross with null muts, resulting in a more
additive relationship; this seems most likely to explain our observation
of CAST Mx1 effects, and the lower antiviral activity of CAST Mx1
observed in Nürnberger et al. (2016), discussed below, appears to sup-
port this.

Recent work exploring CAST Mx1 antiviral deficiency
Important insights into why CAST Mx1 might be additive come from
recent functional studies. Nürnberger et al. (2016) engineered B6 mice
expressing either the CAST-derived or A2G-derived MX1 proteins.
A2G encodes an MX1 protein sequence similar to the NZO and
PWK musculus class described in this study. CAST MX1 differs from
A2G andmusculus, with corresponding amino acid changes G83R and
A222V in theG domain, which is important for enzymatic and antiviral
function. Nürnberger et al. (2016) clearly show that CAST provides
intermediate protection from IAV in their case using H7N7 (SC35M)
and H5N1 (R65) viruses, and suggest that sequence changes in the
CAST Mx1 allele result in reduced enzyme stability, metabolic insta-
bility, and possibly in altered dimerization of MX1 monomers and/or
changes in MX1 GTPase antiviral activity. It is unknown whether the
differences they observed would lead to changes in the dominance of
CAST andA2GMx1, althoughwemight expect this to be the case given
our mouse infection results. We have verified that the same variants,
G83R and A222V, differentiate CAST coding sequence from NZO and
PWK, as in Srivastava et al. (2009) and using http://isvdb.unc.edu
(Oreper et al. 2017), and that these are the only nonsynonymous var-
iants on coding transcripts ofMx1 that differentiate CAST from NZO
and PWK. Although we see substantial protection from weight loss in
CAST mice, we see a deficiency in the antiviral effects (as measured by
RNA-seq viral reads in infected lungs) of CASTMx1 on D2 and D4 p.i.

[data not shown, via RNA-seq reads from Xiong et al. (2014) and
transcript analysis in Ferris et al. (2013)]. Our work motivates further
functional studies of the MX1 protein using Mx1 transgenic mice.

Mx1-independent effects and their follow-up: new
studies should leverage CAST Mx1 additivity
A substantial proportion of heritable variance in the diallel was Mx1
independent (VarP[alljMx1] = 33.81, Table S2 in File S7). This was
broadly driven by additive genetics and both symmetric and asymmet-
ric epistasis (i.e., differing by parent-of-origin) (Figure 4, C and E).
Relatedly, in our analysis of theMx1 locus in the CC-RIX, we estimated
Mx1-independent effects attributable to overall genome similarity to
account for 21% of phenotypic variance. Both observations suggest the
presence of additional QTL that could be drawn out given a suitable
follow-up design.

Consider the design of a second CC-RIX. Here our knowledge of
differences in Mx1 dominance becomes a valuable guide: prioritizing
CC F1s with one copy ofmusculus Mx1 would reduce power because it
would cause Mx1-independent drivers to be masked; however, priori-
tizing CC F1s with one or fewer copies of castaneus Mx1 would leave
theMx1-independent effects exposed and QTL underlying them more
easily detected.

The inclusion of mice with a single functional Mx1 in a mapping
population provides a basis for mapping loci that modify the effect of
Mx1, as well as mapping Mx1-independent loci controlling disease.
Shin et al. (2015) showed that even the protectiveness of Mx1 from
the A2G inbred strain is conditional and depends on host genetic
background. Thus, CC-RIX designs that incorporate heterozygous clas-
ses of domesticus Mx1 crossed with either CASTMx1 ormusculus Mx1
can be of substantial benefit for mapping novel loci affecting infection
outcomes, and at least 40% of the F1 crosses in our CC-RIX study
incorporate lines which have one single copy (CAST or musculus) of
Mx1.

Practical use of the diallel in quantitative genetics
Diallels have a long history in quantitative genetics (Schmidt 1919; and
references in, e.g., Christie and Shattuck 1992; Verhoeven et al. 2006;
Lenarcic et al. 2012). They have most commonly been used as a way to
assess the relative potency of different genomeswith respect to a studied
trait, yielding, for example, estimates of generalized combining ability
for each strain and estimates of specific combining ability for each F1.
More ambitiously, they have been used to obtain an overall picture of
a trait’s genetic architecture. In many respects, this picture is clearly
incomplete: even within the limited genetic space spanned by the foun-
ders, the diallel shows only the effects of swapping intact haploid ge-
nomes, with no ability to see the effects of recombination. But in other
respects it is comprehensive: in considering every F1 combination, one
can observe evidence for types of effects—dominance, epistasis, parent-
of-origin, epistasis by parent-of-origin, and all sex-specific versions
thereof—that would be hard or impossible to identify in other settings,
e.g., outbreeding populations derived from the same set of founders.

A number of studies have sought to combine the features of a diallel
with those of such derived outbred crosses to obtain a picture of genetic
architecture that is in someway informedby both. These include studies
that map QTL across multiple biparental (e.g., F2) crosses derived from
a diallel or diallel-like population (e.g., Rebai and Goffinet 1993; Xu
1998; Liu and Zeng 2000; Rebaï and Goffinet 2000; Ogut et al. 2015)
and at least one theoretical study, that of Verhoeven et al. (2006),
examining the extent to which such information can be analyzed jointly
and reconciled with data from the original diallel itself.
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The goals of our study were more prospective. We use the diallel to
prioritize follow-up designs in target populations that segregate genetic
material from the same set of founders: the diallel provides evidence of
heritable features thatwouldbeexpected toexist in theCC, and that could
be examined inmore detail in a suitably designedCC-based experiment.
Of course, a comprehensive view of IAV-resistance architecture, even
within the genetic space of the CC founder genomes, would be
achievable only asymptotically through countless, diverse studies;
but in this, the diallel can be seen as a compass, identifying promising
initial directions.

Summary
Our studydemonstrates theuse of diallel crosses for identifyingdifferent
types of heritable effects that can affect host responses to IAV infection.
As such, we find reproducible effects of Mx1 alleles across first order
crosses and recombined populations (despite coordination between
protocols being inexact), confirming our previous findings that the
CASTMx1 allele exhibits an intermediate resistance phenotype against
H1N1 strains of influenza virus (Ferris et al. 2013), and also identifying
novel attributes of the CAST and musculus Mx1 alleles with respect to
additivity and dominance. Despite a body of literature on the effects of
null mutations in Mx1, the importance of allelic variation at this anti-
viral gene is just beginning to be understood. A GWAS study published
in 2011 found that Mx1 allelic variation likely plays a role in viral
disease manifestation in humans, specifically with regards toWest Nile
virus infection (Bigham et al. 2011), highlighting a need for further
study of the role of natural allelic variation inMx1 on virus infections in
future research.
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APPENDIX A: DEFINING A POTENTIAL OUTCOMES MODEL OF TREATMENT RESPONSE WITH QUARTETS

In the potential outcomes framework of Neyman (1923) and Rubin (1974), the causal effect of an applied treatment on a measured outcome
in an individual i is defined as the difference between the outcome under treatment and the outcome that would have been observed if i were instead
to have received the control. In our case, for some outcome measure y, we defined the causal effect as the infection response

Di ¼ yflui 2 ymock
i   ;

where yflui and ymock
i are “potential outcomes,” one of which is observed (the factual) and other of which is unobserved (the counterfactual).

Since it is impossible to observe both simultaneously, the causal effect Di can never be measured directly (Holland 1986). It can however be
estimated as

bDi ¼ yflui 2 ymock
i9   ;

with the accuracy of this estimate depending on how closely i9 matches i. Our desire for lack of bias in this measure motivates our treatment
assignment being randomly assigned within a group of matched individuals.

In the treatment-response diallel, we are primarily interested not in infection response for a particular mouse but rather the expectation of this
quantity for mice within a given diallel category, or more generally within a group of matched individuals q,

Dq ¼ E
�
yfluq 2 ymock

q

�
¼ E

�
yfluq

�
2E

�
ymock
q

�
; (A1)

where in our case q is defined as mice specific to a given diallel category and experimental batch. In practice it is natural to estimate this quantity as

bDq ¼ 1
nflu

X
i2q½flu�

yflui 2
1

nmock

X
i92q½mock�

ymock
i9   ; (A2)

where q½flu� and q½mock� are, respectively, the set of mice in group q assigned to flu and mock treatment groups. The variance of this estimate is

Var
�bDq

� ¼ Var
�
yfluq

�
nflu

þ
Var

�
ymock
q

�
nmock

; (A3)

and if it is considered likely, as in this study, that the infected phenotypes will be more variable than the mock, VarðyfluÞ.VarðymockÞ; then it is
most efficient experimentally to devote more individuals to the infected arm than the mock arm, i.e., nflu . nmock:

In our experimental design,we haveflu:mock in the ratio 3:1 for each group q. It is therefore natural to define the unit of observation q as a quartet,
that is, Equation A2 with nflu ¼ 3 and nmock ¼ 1: This means that each diallel category can be represented by multiple quartets, corresponding to
multiple observations of D̂q; denoted in the Statistical Models and Methods as deltaq:

We now note several assumptions and connections. Equation A1 equates unit-level with marginal causal effects and thereby assumes no
interferencebetweenunits, specifically, thatmice in the samequartet donot affect eachother’s outcomes; this is approximately true basedon thewell-
established evidence that mice do not transmitH1N1 influenza virus (Lowen et al. 2006; Edenborough et al. 2012), a findingwe have also verified by
weight-loss profiles and RNA-seq of CC founder strains cohoused with H1N1(PR8)-infected mice (Xiong et al. 2014). Last, we note that the
definition of D̂q in Equation A2 is analogous to an inverse probability-weighted causal effect estimate.

APPENDIX B: STOCHASTIC REGRESSION IMPUTATION OF MISSING QUARTET PARTNERS

The equation for the variance of bDq; namely Equation A3, implies that modeling the residual in Equation 5 as homoskedastic would require nflu
and nmock to be constant throughout; in other words, to ensure comparable precision of infection responses, all quartets should be complete.
However, in the diallel experiment, some combinations of batch and diallel category had one or more flumicemissing. In these cases, quartets were
defined to have missing values that would be filled in by imputation. The imputation scheme used here corresponds to stochastic regression
imputation (e.g., Gelman and Hill 2006), whereby the incomplete data set is repeatedly augmented to a completed data set using sampled variates
from a predictionmodel, each completed data set is subject to the BayesDiallel analysis described in StatisticalModels andMethods, and then results
across the completed data sets are aggregated.

Each imputation required two steps: since the target phenotype of a missing mouse, namely its p.i. weight loss, was considered potentially
dependent on its D0weight, we first imputedmissing values forD0 and then imputedmissing p.i. weight loss conditional onD0. In addition, at each
dayp.i., therewas onebatch/diallel categorycombinationwithonemockand four infecteds; for this case only, in eachroundof imputation,we created
a completed quartet by randomly deleting one of the four infecteds.

The two-step stochastic regression imputation was performed as follows. Define the observed diallel data for D0 and pctday½flu� as D0obs and
pctday½flu�obs ; respectively, and let �sim represent regression with BayesDiallel followed by stochastic regression imputation, that is, sampling from the
posterior predictive. For each t ¼ 1; . . . ; 1000 round of imputation, we first impute missing D0 values as

D0ðtÞmis �
sim

BayesDiallelðD0obsÞ; (B1)
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where BayesDiallel is fitted as model 1 in Table 2. These imputed values are then combined with observed D0 values to give the completed set,

D0ðtÞcomplete ¼
n
D0ðtÞmis;D0obs

o
; (B2)

which are then used to impute p.i. weight loss at all time points (D1–D4) for the missing mice as

pctday½flu�;ðtÞmis �sim BayesDiallel
�
pctday½flu�obs ;D0ðtÞcomplete

�
; (B3)

leading in each case to the completed flu p.i. weight loss data,

pctday½flu�;ðtÞcomplete ¼
n
pctday½flu�;ðtÞmis ; pctday½flu�obs

o
; (B4)

and subsequent calculation of quartet-based infection response values as

deltaday;ðtÞ ¼ Quartets
n
pctday½flu�;ðtÞcomplete ; pctday½mock�

o
: (B5)

Each of the 1000 infection response data sets is analyzed separately using BayesDiallel (model 3 in Table 2). TheMCMCs from each replicate are
aggregated and thinned (sampled across even intervals) and the aggregate results are reported according to the procedure outlined in Algorithm
1 in File S7.

Thenumberof animals imputedwere 33atD1, 33atD2, 15atD3, and16atD4, in eachcase corresponding toa small proportion (2.8–3.1%)of the
total data set. Phenotypes were not imputed for nonproductive diallel genotypes (which contain no mock or infected mice at all), i.e., jk 2{NZO ·
CAST, NZO · PWK} (Chesler et al. 2008).

Volume 8 February 2018 | Host Genetics of Influenza A Virus | 445

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300438/-/DC1/FileS7.zip

