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ABSTRACT
Aims/Introduction: Controlling postprandial glucose levels in patients with type 1 dia-
betes is challenging even under the adequate treatment of insulin injection. Recent stud-
ies showed that dysregulated glucagon secretion exacerbates hyperglycemia in type 2
diabetes patients, but little is known in type 1 diabetes patients. We investigated whether
the glucagon response to a meal ingestion could influence the postprandial glucose
excursion in patients with type 1 diabetes.
Materials and Methods: We enrolled 34 patients with type 1 diabetes and 23
patients with type 2 diabetes as controls. All patients underwent a liquid mixed meal tol-
erance test. We measured levels of plasma glucose, C-peptide and glucagon at fasting
(0 min), and 30, 60 and 120 min after meal ingestion. All type 1 diabetes patients received
their usual basal insulin and two-thirds of the necessary dose of the premeal bolus insulin.
Results: The levels of plasma glucagon were elevated and peaked 30 min after the
mixed meal ingestion in both type 1 diabetes and type 2 diabetes patients. The glucagon
increments from fasting to each time point (30, 60 and 120 min) in type 1 diabetes
patients were comparable to those in type 2 diabetes patients. Among the type 1 dia-
betes patients, the glucagon response showed no differences between the subgroups
based on diabetes duration (<5 vs ≥5 years) and fasting C-peptide levels (<0.10 vs
≥0.10 nmol/L). The changes in plasma glucose from fasting to 30 min were positively cor-
related with those in glucagon, but not C-peptide, irrespective of diabetes duration and
fasting C-peptide levels in patients with type 1 diabetes.
Conclusions: The dysregulated glucagon likely contributes to postprandial hyper-
glycemia independent of the residual b-cell functions during the progression of type 1
diabetes.

INTRODUCTION
Type 1 diabetes is a chronic, autoimmune disease characterized
by an absolute deficiency of insulin production from b-cells of
the Langerhans islets1. The residual capacity of b-cells to secrete

insulin declines over time in type 1 diabetes patients, leading to
fluctuating postprandial glucose levels2. A continuous glucose
monitoring system showed that not only carbohydrates with a
high glycemic index, but also dietary fat and protein can signifi-
cantly affect postprandial glucose excursions3. It has been advo-
cated that diabetes is caused not only by insulin action
deficiency, but also by inappropriate glucagon secretion4,5. InReceived 27 October 2020; revised 1 December 2020; accepted 14 December 2020
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healthy individuals, glucagon secretion is suppressed in
response to glucose ingestion to lower the plasma blood glucose
levels through enhanced glucose uptake in hepatocytes and adi-
pocytes, and this suppresses hepatic gluconeogenesis6. In con-
trast, it was reported that paradoxical hyperglucagonemia after
a glucose load exacerbates hyperglycemia in patients with
type 2 diabetes7–10 and those with gestational diabetes11. This
abnormal glucagon secretion in response to an oral glucose
challenge was also observed in patients with type 1 diabetes
irrespective of the condition of ambient glycemia12, suggesting
that glucagon plays a pivotal role in exacerbating hyperglycemia
in response to an oral glucose challenge in patients with any
type of diabetes.
Glucagon plays an essential role in the homeostatic regula-

tion of amino acids5,13,14, and an intake of amino acids (pro-
teins) resulted in a strong stimulation of pancreatic a-cells to
secrete glucagon15. As protein-derived calories account for
approximately 15% of the total caloric intake in the modern
diet16, a mixed meal tolerance test (MMTT)17 is suitable rather
than an oral glucose tolerance test when evaluating the influ-
ence of glucagon abnormality on glycemic control in the daily
lives of diabetes patients. The levels of plasma glucagon rose
after the ingestion of a mixed meal, even in healthy individu-
als18; however, the glucagon amplitude is very small, because
the stimulation of glucagon secretion by amino acids is offset
by the intrinsic mechanisms underlying the suppression of glu-
cagon through increased glucose-derived signals19.
Compared with healthy individuals, patients with type 2 dia-

betes showed a larger glucagon increase in response to the
ingestion of a mixed meal9,15,20. Exaggerated postprandial
hyperglucagonemia was also observed in patients with type 1
diabetes when a bolus insulin was not administered before the
ingestion of a mixed meal 21–24. The response curve of the
effect of the glucose concentration on the glucagon release from
a-cells appears to be bell-shaped; that is, low glucose levels
stimulate glucagon release, moderately high glucose levels inhi-
bit glucagon secretion and very high glucose concentrations can
increase glucagon release from a-cells 19,25. This indicates that
‘very high’ concentrations of postprandial plasma glucose,
which is observed in some type 1 diabetes patients without
administration of premeal insulin, might increase glucagon
release. Thus, our primary aim was to determine whether post-
prandial glucagon dysregulation would be observed even under
the condition of “moderately high” glucose levels by the admin-
istration of mealtime bolus insulin.
In almost all of the related studies, glucagon values were

measured by a widely used conventional radioimmunoassay
(RIA), which uses polyclonal antibodies against only the C-ter-
minal region of the glucagon peptide. However, that assay has
problems, including the cross-reactivity of antibodies with pro-
glucagon-related peptides26. A sandwich enzyme-linked
immunosorbent assay (ELISA) was developed in 2014 and has
been used to determine the precise glucagon concentrations;
this assay’s precision is due to the use of monoclonal antibodies

against both the C- and N-terminal regions of glucagon27. The
accuracy of sandwich ELISA for glucagon measurement was
confirmed in a comparison with liquid chromatography–mass
spectrometry18.
We carried out the present study using sandwich ELISA to

investigate whether the dysregulation of a meal-stimulated glu-
cagon response affects the postprandial glucose excursion in
patients with type 1 diabetes, using a premeal bolus insulin in
a clinical setting. We also investigated whether the progression
of b-cell dysfunction influences the glucagon response to the
ingestion of a meal in patients with type 1 diabetes.

MATERIALS AND METHODS
Patients
This was a single-center, prospective cohort study carried out
at Nagasaki University Hospital (Nagasaki, Japan) from
November 2015 to November 2019. The patients were Japanese
individuals with autoimmune type 1 diabetes (i.e., type 1A dia-
betes) aged >16 years. We also recruited patients with type 2
diabetes as controls. A total of 34 patients with type 1 diabetes
and 23 patients with type 2 diabetes were enrolled.
The diagnosis of autoimmune type 1 diabetes was made by

diabetologists based on the criteria of type 1 diabetes defined
by the Japan Diabetes Society28. Patients complicated with other
diseases (including cardiovascular disease, liver disease and
renal dysfunction undergoing hemodialysis), a history of gas-
trointestinal surgery or pancreatectomy, alcohol abuse and
pregnancy were excluded. Type 2 diabetes patients treated with
glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4
inhibitors, sodium–glucose cotransporter 2 inhibitors or sul-
fonylurea were excluded from the study.

Study design
All patients achieved a good level of glycemic control by receiv-
ing intensified basal–bolus insulin therapy during hospitaliza-
tion. The patients underwent an MMTT after an overnight fast.
A can of 200-mL (200 kcal) liquid meal composed of 31 g car-
bohydrate, 7.6 g protein and 4.4 g fat (CalorieMate�; Otsuka
Pharmaceutical Co., Tokyo, Japan), which provides a caloric
ratio that is similar to the modern Japanese diet16, was given to
each patient to consume for the MMTT. We confirmed that
each patient’s blood glucose level was within 70–250 mg/dL at
the start of the MMTT to avoid the development of extreme
hyperglycemia. If a patient’s fasting glucose was not within the
target level (70–250 mg/dL), the MMTT was canceled or post-
poned.
Blood specimens were obtained before (0 min), and at 30, 60

and 120 min after the ingestion of the meal for the measure-
ment of plasma glucose, C-peptide and glucagon. The levels of
serum C-peptide were measured by an ECLusys kit (Roche,
Basel, Switzerland) with a lower detection limit of 0.003 nmol/
L (0.01 ng/mL). Blood samples for plasma glucagon were
obtained using BD P800 tubes (BD, Franklin Lakes, NJ, USA)
and stored at -80°C. The levels of plasma glucagon were
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measured by using the sandwich ELISA kit (Mercodia, Uppsala,
Sweden)27.
During the MMTTs, the type 1 diabetes patients treated with

an insulin pump were kept on their basal rate of insulin infu-
sion. Patients treated with multiple daily injections received
their basal insulin as per usual. The type 1 diabetes patients
also received a premeal bolus insulin, which was slightly
decreased at two-thirds the necessary dose for a given 31 g of
carbohydrates to avoid hypoglycemia during the MMTT. Each
patient’s necessary dose of bolus insulin was calculated by using
his/her insulin-to-carbohydrate ratio, which was determined by
each patient’s physician. A fast-acting insulin (aspart or lispro)
was used as a bolus insulin. The type 2 diabetes patients dis-
continued all antidiabetic agents, including insulin and oral
hypoglycemic drugs, 12 h before the MMTT.
To determine whether the differences in residual b-cell func-

tions of type 1 diabetes affect the patients’ glucagon responses,
we carried out detailed analyses comparing pairs of groups of
the patients with type 1 diabetes. We divided the type 1 dia-
betes patients into two subgroups based on the duration from
the clinical onset of type 1 diabetes (<5 vs ≥5 years) and on
the fasting C-peptide levels by the median (<0.10 vs
≥0.10 nmol/L).
Clinical parameters, including physical measurements and

biochemical data, were collected from the patients’ medical
records. The study was approved by the local ethics committee
of Nagasaki University Hospital (approval no. 15083102), and
was registered with the University Hospital Medical Informa-
tion Network (UMIN) Clinical Trials Registry (registration no.
UMIN000020156). The study was carried out in accord with
the principals expressed in the Declaration of Helsinki. Written
informed consent for study participation was obtained from
each patient.

Statistical analysis
Welch’s t-test and repeated-measures analysis of variance were
used to test differences in the patients’ clinical characteristics
and the values of glucose, C-peptide and glucagon during the
MMTT between the type 1 diabetes and type 2 diabetes
groups. The differences between the two pairs of subgroups of
the patients with type 1 diabetes (diabetes duration and fasting
C-peptide) were assessed by the same analysis method as used
to compare the type 1 diabetes versus type 2 diabetes groups.
The changes in the levels of glucagon from baseline (0 min)

to each time point (30, 60 and 120 min) during the MMTT
are presented as DGlucagon 30, 60 and 120 min, as described11.
The changes in glucose and C-peptide during the MMTT are
presented as DGlucose 30, 60 and 120 min, and DC-peptide
30, 60 and 120 min, respectively. Pearson’s correlation coeffi-
cient was used to evaluate the correlations between two param-
eters among DGlucagon, DGlucose and DC-peptide at the same
time point during the MMTT. All statistical analyses were car-
ried out using JMP Pro version 14 (SAS Institute, Cary, NC,
USA). P-values <0.05 were considered significant.

RESULTS
Glucagon responses to mixed meal ingestion in type 1
diabetes patients were comparable to those in type 2
diabetes patients
The characteristics of the 57 patients (type 1 diabetes, n = 34;
type 2 diabetes, n = 23) are summarized in Table 1. Among
the 34 patients with type 1 diabetes, nine patients showed
undetectable levels of fasting C-peptide (<0.003 nmol/L). Five
type 1 diabetes patients were treated with a continuous subcu-
taneous insulin infusion, and the others were treated with
multiple daily injections of insulin. The mean dosage of bolus
insulin administered for the meal test in the patients with
type 1 diabetes was 2.4 – 1.4 units, which was calculated
using the patients’ insulin-to-carbohydrate ratio, as described
in the Materials and Methods section. The mean duration of
diabetes in the type 1 diabetes group was 8.1 – 9.1 years. The
bodyweight and body mass index were lower in the type 1
diabetes group compared with the type 2 diabetes group.
There were no significant between-group differences in the sex
ratio, age, height or levels of glycated hemoglobin and creati-
nine.
Compared with the type 2 diabetes patients, the patients with

type 1 diabetes showed higher glucose levels and lower C-pep-
tide levels at all of the time points during the MMTT. As the
patients with type 1 diabetes were treated with premeal bolus
insulin, the incremental glucose levels from baseline to each
time points were comparable between type 1 diabetes and
type 2 diabetes. The concentrations of plasma glucagon were
elevated, and peaked at 30 min after the ingestion of the
mixed-meal in both the type 1 diabetes and type 2 diabetes
patients. There were no significant differences in the glucagon
levels except at 30 min between the type 1 diabetes and type 2
diabetes patients. To avoid the influence of the volatility in the
fasting levels of plasma glucagon, we evaluated the patients’ glu-
cagon responses by using the change in the levels from baseline
(0 min) to each time point (30, 60 and 120 min) during the
MMTT, defined as DGlucagon. There were no significant dif-
ferences in DGlucagon 30, 60 or 120 min between the type 1
diabetes and type 2 diabetes patients (Table 1).

Comparison of glucagon responses between type 1 diabetes
patients divided by diabetes duration and residual C-peptide
levels
We compared the responses to the mixed meal ingestions in
the type 1 diabetes patients according to their duration from
the clinical onset of type 1 diabetes; <5 (n = 16) or ≥5 years
(n = 18), as shown in the upper panel of Table 2. The group
with longer diabetes durations (≥5 years) showed higher body
mass index and creatinine levels compared with the group
with the shorter duration (<5 years). The patients with longer
diabetes durations (≥5 years) required a higher dose of insulin
compared with the other group. In the results of the MMTTs,
the levels of plasma glucose and DGlucose at all of the time
points showed no significant differences between these groups
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(Figure 1a,b). The levels of serum C-peptide at 30, 60 and
120 min, and the values of DC-peptide at 60 and 120 min
were significantly lower in the longer-duration group than the
shorter-duration group (Figure 1c,d). The levels of plasma

glucagon and DGlucagon were comparable between the groups
at all time points (Figure 1e,f).
We also divided the type 1 diabetes patients into two

groups based on their fasting C-peptide levels by the median;

Table 1 | Comparisons of clinical characteristics and results of the mixed meal tolerance test between type 1 diabetes and type 2 diabetes
patients

T1D (n = 34) T2D (n = 23) P-value

Male/female (n) 16/18 16/7 0.11
Age (years) 49 – 16 56 – 17 0.12
Duration of diabetes (years) 8.1 – 9.1 NA NA
Height (cm) 162 – 3 166 – 10 0.19
Weight (kg) 59 – 13 72 – 16 0.003
Body mass index (kg/m2) 22.5 – 4.5 26.2 – 4.5 0.004
HbA1c, NGSP (%) 9.5 – 2.5 10.4 – 2.2 0.14
HbA1c, IFCC (mmol/mol) 80.2 – 27.3 90.4 – 24.2 0.14
Creatinine (µmol/L) 70.9 – 44.6 57.1 – 15.7 0.10
Dairy dose of insulin (unit/day)
Total insulin 34.7 – 18.5 NA NA
Basal insulin 10.1 – 7.4 NA NA
Bolus insulin 24.7 – 13.4 NA NA

Insulin-to-carbohydrate ratio (unit/g) 1.2 – 0.7 NA NA
Bolus insulin used in the MMTT (units) 2.4 – 1.4 Not used NA
Results of the MMTT
Glucose (mmol/L)
0 min 7.9 – 2.4 6.4 – 0.9 0.022
30 min 11.8 – 3.1 10.1 – 1.9 0.011
60 min 13.8 – 3.0 11.7 – 1.8 0.002
120 min 12.3 – 3.0 10.3 – 1.9 0.003
C-peptide (nmol/L)
0 min 0.155 – 0.182 0.566 – 0.307 <0.001
30 min 0.232 – 0.277 1.019 – 0.524 <0.001
60 min 0.305 – 0.381 1.245 – 0.491 <0.001
120 min 0.348 – 0.425 1.415 – 0.610 <0.001
Glucagon (ng/L)
0 min 20.0 – 13.5 28.8 – 14.2 0.19
30 min 48.2 – 31.9 64.6 – 45.1 0.015
60 min 32.9 – 22.0 45.0 – 29.0 0.070
120 min 20.9 – 12.7 32.3 – 15.8 0.090
DGlucose (mmol/L)
30 min 3.9 – 1.5 3.7 – 1.8 0.72
60 min 5.9 – 1.6 5.3 – 1.6 0.17
120 min 4.4 – 2.2 3.9 – 1.6 0.36
DC-peptide (nmol/L)
30 min 0.077 – 0.108 0.453 – 0.373 <0.001
60 min 0.151 – 0.214 0.679 – 0.277 <0.001
120 min 0.194 – 0.260 0.849 – 0.423 <0.001
DGlucagon (ng/L)
30 min 28.2 – 26.5 35.8 – 41.8 0.44
60 min 12.9 – 14.3 16.2 – 27.0 0.59
120 min 0.9 – 7.6 3.5 – 11.0 0.34

DGlucose, DC-peptide and DGlucagon 30, 60 and 120 min indicate changes in the levels of plasma glucose, C-peptide and glucagon from fasting
(0 min) to 30, 60 and 120 min, respectively. IFCC, International Federation of Clinical Chemistry and Laboratory Medicine; MMTT, mixed-meal toler-
ance test; NA, not applicable; NGSP, National Glycohemoglobin Standardization Program; T1D, type 1 diabetes; T2D, type 2 diabetes.
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that is, <0.10 nmol/L (n = 17) or ≥0.10 nmol/L (n = 17), as
shown in the lower panel of Table 2. The patients with
decreased fasting C-peptide levels (<0.10 nmol/L) required a
higher dose of insulin than those with preserved C-peptide
levels (≥0.10 nmol/L). No other clinical characteristics were
significantly different between these groups. The levels of
glucose and DGlucose at 120 min during the MMTT were
significantly higher in the decreased C-peptide group com-
pared with the preserved C-peptide group (Figure 2a,b).
There were significant differences in the values of C-peptide
and DC-peptide at all time points between the groups (Fig-
ure 2c,d). The values of both glucagon and DGlucagon dur-
ing the MMTT were comparable between these groups
(Figure 2e,f).

Association between the hormonal responses and the glucose
increase during the MMTT in type 1 diabetes patients
To assess the effects of glucagon/insulin secretions on the glu-
cose excursions in patients with type 1 diabetes, we determined
the correlations of DGlucagon (or DC-peptide) with DGlucose
during the MMTT (Figure 3). In the changes at 30 min from
baseline, the DGlucose 30 min values were positively correlated
with those of DGlucagon 30 min (r = 0.54, P < 0.001; Fig-
ure 3a), but not with those of DC-peptide 30 min (Figure 3b).
No significant correlation was observed between DGlucagon
30 min and DC-peptide 30 min (Figure 3c). Additionally, we
found no correlation between DGlucose 30 min and the dosage
of premeal bolus insulin administered in the MMTT (r = -
0.15, P = 0.41). In the changes at 60 and 120 min after the

Table 2 | Comparisons of clinical characteristics of the patients with type 1 diabetes stratified by diabetes duration or fasting C-peptide levels

Diabetes duration <5 years (n = 16) ≥5 years (n = 18) P-value

Male/female (n) 7/9 9/9 0.18
Age (years) 48 – 16 56 – 17 0.61
Duration from T1D onset (years) 1.1 – 1.4 14.2 – 8.6 <0.001
Height (cm) 164 – 9 160 – 11 0.31
Weight (kg) 55 – 12 63 – 14 0.10
Body mass index (kg/m2) 20.5 – 3.4 24.3 – 4.6 0.009
HbA1c, NGSP (%) 10.2 – 2.9 8.8 – 1.9 0.11
HbA1c, IFCC (mmol/mol) 88.4 – 32.0 72.9 – 20.5 0.11
Creatinine (µmol/L) 54.1 – 14.3 85.8 – 56.4 0.033
Fasting C-peptide (nmol/L) 0.225 – 0.183 0.092 – 0.161 0.21
Dairy dose of insulin (unit/day)
Total insulin 23.5 – 14.5 44.7 – 15.8 <0.001
Basal insulin 6.1 – 5.5 13.6 – 7.3 0.002
Bolus insulin 17.4 – 12.2 31.1 – 11.1 0.002

Insulin-to-carbohydrate ratio (unit/g) 0.9 – 0.6 1.5 – 0.6 0.012
Bolus insulin used in the MMTT (units) 1.6 – 1.1 3.0 – 1.2 0.001

Fasting C-peptide level < 0.10 nmol/L (n = 17) ≥ 0.10 nmol/L (n = 17) P-value

Male/female (n) 8/9 10/7 0.73
Age (years) 45 – 17 52 – 15 0.23
Duration of diabetes (years) 11.1 – 9.2 5.1 – 8.2 0.054
Height (cm) 163 – 9 161 – 11 0.67
Weight (kg) 60 – 15 59 – 12 0.76
Body mass index (kg/m2) 22.5 – 4.5 22.6 – 4.6 0.94
HbA1c, NGSP (%) 9.1 – 1.8 9.9 – 3.1 0.32
HbA1c, IFCC (mmol/mol) 75.4 – 19.3 84.9 – 33.3 0.32
Creatinine, µmol/L 76.9 – 51.8 64.8 – 36.7 0.44
Fasting C-peptide (nmol/L) 0.023 – 0.036 0.286 – 0.174 <0.001
Dairy dose of insulin (unit/day)
Total insulin 43.4 – 17.9 26.1 – 14.9 0.004
Basal insulin 13.4 – 7.9 6.8 – 5.3 0.008
Bolus insulin 30.0 – 12.2 19.3 – 12.7 0.017

Insulin-to-carbohydrate ratio (unit/g) 1.4 – 0.7 1.0 – 0.6 0.047
Bolus insulin used in the MMTT (units) 2.9 – 1.4 1.8 – 1.2 0.027

IFCC, International Federation of Clinical Chemistry and Laboratory Medicine; MMTT, mixed-meal tolerance test; NGSP, National Glycohemoglobin
Standardization Program.
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meal ingestion, no significant correlations were observed
between any pair of indexes among DGlucose, DGlucagon and
DC-peptide (Figure 3d–i). These results observed in type 1 dia-
betes were similar to those in type 2 diabetes (Figure S1).
We studied the precise association between DGlucose 30 min

and DGlucagon 30 min in each group of type 1 diabetes
patients divided according to diabetes duration or residual C-
peptide levels, and significant correlations between DGlucose
30 min and DGlucagon 30 min were observed independently
of the diabetes duration (Figure 4a) and independently of the
residual C-peptide levels (Figure 4b). The significant correlation
between DGlucose 30 min and DGlucagon 30 min was pre-
served in both pairs of groups even though the patients were

divided based on the fasting C-peptide levels by the detection
limit of 0.003 nmol/L (data not shown).

DISCUSSION
In the present study using sandwich ELISA for the measure-
ment of plasma glucagon, we evaluated hormonal responses to
a mixed meal ingestion in patients with type 1 diabetes using a
premeal bolus insulin in a clinical setting. The results of our
analyses showed an exaggerated increase in the postprandial
glucagon secretion in patients with type 1 diabetes, which was
similar to that observed in type 2 diabetes patients. The
increase in the glucagon secretion at 30 min after the meal
ingestion was positively correlated with the increase of plasma
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glucose levels in the patients with type 1 diabetes, independent
of their diabetes duration or residual C-peptide levels. The
exaggerations of postprandial hyperglucagonemia thus seem
likely to affect the early-postprandial glucose excursions in
type 1 diabetes irrespective of the progression of type 1 dia-
betes, although it should be kept in mind that the present study
was cross-sectional.
Previous studies carried out using the RIA, which uses anti-

bodies against only the C-terminal region of glucagon, showed
that patients with type 1 diabetes also had a postprandial para-
doxical increase of glucagon, although lesser in magnitude to that
seen in type 2 diabetes patients29. However, Komada et al.
recently reported that fasting glucagon levels and glucagon
responses to an intravenous arginine challenge test were compa-
rable between type 1 diabetes and type 2 diabetes patients when
determined by the RIA30. The present study showed that the
type 1 diabetes patients developed a magnitude of postprandial
hyperglucagonemia that is similar to the magnitude observed in
type 2 diabetes patients when the glucagon levels were deter-
mined by the recent developed sandwich ELISA (Table 1).
A dysregulated secretion of glucagon was reported to emerge

as early as the stage of impaired glucose tolerance (i.e., pre-dia-
betes), and the dysregulation was established at the stage of
overt diabetes in patients with type 2 diabetes7,9,10. Several

studies also showed that the magnitudes of glucagon increase
among youths with type 1 diabetes in response to the ingestion
of a mixed meal were exaggerated during the first year after
the onset of type 1 diabetes31–33. Although these studies were
carried out using the RIA for measurements of glucagon, the
finding suggested that postprandial hyperglucagonemia pro-
gresses over time in parallel with a decline in the residual
capacity of b-cells in both type 1 diabetes and type 2 diabetes
due to the lack of suppression by paracrine products including
insulin34,35, gamma-aminobutyric acid36 and zinc ions37 from
neighboring b-cells in Langerhans islets.
Thivolet et al.24 first showed the glucagon response to the

ingestion of a mixed meal by using the double-antibody sand-
wich ELISA for glucagon measurements. The glucagon response
was not affected by the presence of residual C-peptide levels in
both recent-onset and longstanding type 1 diabetes, although
they carried out the study without use of meal-time bolus insu-
lin24. We observed a dysregulation of glucagon secretion in
adults with type 1 diabetes that was not associated with their
diabetes durations or residual C-peptide levels, even in a clinical
setting using a meal-time bolus insulin (Figures 1f, 2f). The
present results reinforce the finding reported by Thivolet et al.24

that type 1 diabetes patients show postprandial hyperglucagone-
mia irrespective of their residual b-cell functions.
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Figure 3 | Correlations between pairs of parameters among DGlucose, DGlucagon and DC-peptide at (a–c) 30, (d–f) 60 and (g–i) 120 min during
the mixed meal tolerance test in the patients with type 1 diabetes (n = 34). NS, not significant.
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Unger et al.4 proposed that a paradoxical increase in glucagon
release is the driving factor underlying hyperglycemia in type 1
diabetes and type 2 diabetes patients. Here, we suggest that an
increase in glucagon exacerbated the early phase of postprandial
hyperglycemia, even in type 1 diabetes patients undergoing
intensive insulin therapy (Figure 3a). Interestingly, we observed
significant correlations between the changes in the glucagon and
glucose levels in the patients with both shorter and longer dia-
betes durations, and in those with both decreased and preserved
C-peptide secretion (Figure 4b). Thus, taken past findings
together with these results, the remaining b-cells with minimal
endogenous insulin secretion in type 1 diabetes might be insuffi-
cient to exert paracrine actions to inhibit glucagon secretion from
a-cells. The preserved b-cell function in patients with type 1 dia-
betes might not have very much impact on the body’s inability to
prevent increases in postprandial glucose levels, when an ade-
quate dose of premeal insulin is administered.
Maintaining glycemic values as close to the non-diabetic

range as possible is effective for preventing or delaying long-

term complications in type 1 diabetes38, but one of the greatest
challenges and unmet needs in diabetes management is a limi-
tation in effectively and consistently controlling postprandial
hyperglycemia39. The uncontrolled early postprandial hyper-
glycemia (i.e., during the hour after a meal’s ingestion) observed
in type 1 diabetes has been considered to be mainly a conse-
quence of an inadequate reaction time to a bolus insulin. In
fact, the use of rapid-acting insulin analogs results in reduced
postprandial hyperglycemia compared with human insulin40.
Nevertheless, postprandial glucose control is a persistent chal-
lenge in both type 1 diabetes and type 2 diabetes41.
Faster-acting insulin aspart (Fiasp�) and ultra-rapid insulin

lispro-aabc (Lyumjev�), which are novel formulations of rapid-
acting insulin, have been shown to have more rapid pharma-
cokinetic and pharmacodynamic profiles. They provided supe-
rior control of postprandial glycemia compared with lispro in
patients with type 1 diabetes42,43. It recently became possible to
control glucose levels precisely during the night-time and dur-
ing fasting in patients with type 1 diabetes with the use of an
artificial b-cell system (a so-called closed-loop insulin-delivery
system) in continuous subcutaneous insulin infusion44. How-
ever, both treatments still pose difficulties in controlling post-
prandial glucose excursions at a level in the non-diabetic range.
These difficulties might be caused by the dysregulated glucagon
response to meal ingestion, as shown in the present study.
Several therapeutic options, such as glucagon-like peptide-1

receptor agonists21,45–48 and an analog of amylin49,50, have been
studied to address postprandial glucose control. Both adjunct
treatments provided better control for postprandial glucose
excursions than insulin monotherapy in patients with type 1 dia-
betes. However, the clinical use of these treatments is not
approved or is limited due to a significant increase in the risk of
adverse events. The decreases in postprandial glycemia and the
amplitude of glycemic excursions that were provided by an addi-
tional treatment of glucagon-like peptide-1 or amylin in type 1
diabetes patients might be due partially to a suppression of post-
prandial hyperglucagonemia. A new therapeutic strategy to nor-
malize the aberrant glucagon response of the a-cells is thus
desired for the optimal regulation of postprandial hyperglycemia.
The present study had some limitations. It was carried out at

single center and the sample size was small. Our data of the
MMTT included some outliers when type 1 diabetes patients
were divided into subgroups, which might affect the statistical
analyses. The variability in the patients’ fasting glucose levels
could potentially affect each glucagon response during the
MMTT. It was also unclear whether the premeal bolus with
the exogenous insulin injection that we administered to the
type 1 diabetes patients affects the glucose excursion and the
glucagon response. Recent studies showed that glucagon plays a
major role in the regulation of amino acids metabolism, but we
did not include measurements of amino acids into the analyses.
We evaluated glucagon responses in patients with type 2 dia-
betes as controls, but did not determine regular glucagon
responses in healthy individuals.
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In conclusion, in patients with type 1 diabetes, the exaggerated
glucagon secretion in response to the ingestion of a mixed meal
affected the increase in the patients’ glucose levels at the early post-
prandial phase. The impact of dysregulated glucagon secretion on
glucose excursions was observed in the patients irrespective of the
residual b-cells. The regulation of postprandial glucagon secretion
might be a clue to obtaining further improvements of diurnal gly-
cemic profiles in patients with type 1 diabetes.
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Figure S1 | Correlations between pairs of parameters among DGlucose, DGlucagon and DCpeptide at (a–c) 30, (d–f) 60 and (g–1)
120 min (G–I) during the mixed meal tolerance test (MMTT) in the patients with type 2 diabetes (n = 23). N.S., not significant.
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