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Abstract: The demand for rapid and accurate identification of microorganisms is growing due to
considerable importance in all areas related to public health and safety. Here, we demonstrate a rapid
and label-free strategy for the identification of microorganisms by integrating terahertz-attenuated
total reflection (THz-ATR) spectroscopy with an automated recognition method based on multi-
classifier voting. Our results show that 13 standard microbial strains can be classified into three
different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and fungi) by
THz-ATR spectroscopy. To detect clinical microbial strains with better differentiation that accounts
for their greater sample heterogeneity, an automated recognition algorithm is proposed based on
multi-classifier voting. It uses three types of machine learning classifiers to identify five different
groups of clinical microbial strains. The results demonstrate that common microorganisms, once
time-consuming to distinguish by traditional microbial identification methods, can be rapidly and
accurately recognized using THz-ATR spectra in minutes. The proposed automatic recognition
method is optimized by a spectroscopic feature selection algorithm designed to identify the optimal
diagnostic indicator, and the combination of different machine learning classifiers with a voting
scheme. The total diagnostic accuracy reaches 80.77% (as high as 99.6% for Enterococcus faecalis) for
1123 isolates from clinical samples of sputum, blood, urine, and feces. This strategy demonstrates
that THz spectroscopy integrated with an automatic recognition method based on multi-classifier
voting significantly improves the accuracy of spectral analysis, thereby presenting a new method for
true label-free identification of clinical microorganisms with high efficiency.

Keywords: terahertz spectroscopy; data analysis; microbial identification

1. Introduction

The rapid and accurate identification of pathogenic microorganisms is of particular im-
portance for the prevention and treatment of important infectious diseases [1,2]. Currently,
the gold standard for microorganism identification comprises cell culture methods, fol-
lowed by biochemical assays designed to identify strains and species of microorganisms [3].
However, these biochemical assays are often limited by complicated processes, lengthy
readout times, and the need for highly trained professionals [4]. In recent years, some
rapid methods, including enzyme-linked immunosorbent assay (ELISA), polymerase chain
reaction (PCR), and mass spectrometry (MS), have been applied in clinical microbial
diagnosis [5]. Nevertheless, several unavoidable challenges exist, such as the need for costly
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reagents, cumbersome assay execution, and insufficiency of existing microbial databases [6].
Therefore, the development of a rapid and label-free identification strategy that does not
require reagents or complex procedures would greatly improve the efficiency of clinical
microbial diagnosis.

The development of modern optical technology has demonstrated the immense po-
tential of a number of optical sensing systems for microbial identification. Among these,
optical biosensors can sometimes be configured to yield rapid, label-free, multiplexed, and
cost-effective diagnoses that are relatively free of experimental variability [1]. An emerging
technology, terahertz (THz, 0.1–10 THz) spectroscopy, has the ability to probe intermolecu-
lar collective vibration modes (including vibrations defined by hydrogen bonds and van
der Waals restoring forces) to evaluate the function and conformational characteristics of
biomolecules in a label-free manner [7,8]. Given that the formation and breaking of the
hydrogen bond network of water molecules occur on the picosecond scale, solvent water
can generate strong THz absorption signals (~240 cm−1 at 1 THz) [9–11]. Consequently,
THz spectroscopy has been extensively employed to investigate the dynamics of molecular
hydration states, identification of tumor cells, differentiation of bacterial species, and delin-
eation of dehydration processes of various biological tissues via progression through their
different hydration states [12–15]. In particular, THz-attenuated total reflection (THz-ATR)
spectroscopy acquires the THz signal of a sample, which is supported on an ATR prism
using an evanescent wave that is concentrated within the range of tens of microns from the
prism surface. The signal derives from THz radiation that is launched into the prism below
its critical angle [16]. THz-ATR spectroscopy has been shown to be more sensitive than
transmission or reflection THz spectroscopy when measuring highly absorptive biological
samples [16,17]. Thus, THz-ATR spectroscopy has expected advantages (some of which
have already been demonstrated in recent studies) in a number of different applications for
the rapid and label-free detection of biological tissues, cells, and microorganisms [14,18,19].
For example, it has been used to determine the complex refractive indices of saccharide
solutions and to experimentally characterize their global hydration states. The results
indicate that the overall hydration state is closely related to the number of hydrophilic
groups and to the steric configuration of hydroxyl groups in the saccharide units [20]. In
addition to describing the hydration states of isolated biomolecules, the complex dielectric
constants of cultured human cancer cells (DLD-1, HEK293, and HeLa) have been accurately
determined by this method [21].

Our previous study demonstrated that fresh microbial samples lack distinct character-
istic peaks, but present hydration-state-induced, distinguishable THz spectral profiles [22].
Based on this mechanism, a THz imaging study of single bacterial colonies showed that
different bacterial species could be identified in a rapid and label-free manner [14]. How-
ever, the differences among the various hydration states alone could not be used for clinical
microbial identification due to the strong heterogeneity seen in clinical strains that were
isolated from different sample types and patient sources. Moreover, the presence of the
spectral signatures of many mixed biological components in the samples complicates the
THz spectra. This implies that the measured spectral signals need to be analyzed and
interpreted to enable target identification. This effort requires developing an effective
extraction and classification method with which to view the characteristic parameters of
THz spectra to rapidly and accurately identify microbial species.

A previous study demonstrated that the use of principal component analysis (PCA)
and random forest (RF) classifiers was helpful in the analysis of THz-ATR spectra for
extracting features of human colorectal cancer cell lines [23]. The results indicate that the
absorption coefficient is the most sensitive parameter for cancer cell discrimination [23].
In addition, the literature reveals that THz-ATR spectroscopy, integrated with PCA and
quadratic discriminant analysis (QDA), can be used to identify DNA oligonucleotides
with single-base mutations [24]. The reported work shows that various machine learning
classifiers have diverse abilities for identifying different structures; however, THz-ATR
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spectroscopy integrated with an efficient classifier for clinical microbial recognition has not
been reported to date.

Here, we propose an approach based on THz-ATR spectroscopic analytical technology
integrated with an automated recognition method. Recognition is based on multi-classifier
voting which we find to be useful for clinical microbial identification. The classifiers
themselves each emphasize different inherent physical properties of the microorganisms.
The THz-ATR spectra of five standard strains were obtained using a THz-ATR platform and
automated recognition software. To improve the accuracy and efficiency of the recognition
method, the diagnostic indicators of machine learning classifiers were optimized via feature
selection based on the refractive index and absorption coefficient properties. Then, an
automatic recognition operation based on multi-classifier voting was executed using these
classifiers. THz-ATR spectra of the clinical samples of five common microorganisms
(including 1123 isolates from clinical samples of sputum, blood, urine, and feces) were
analyzed. The diagnostic performance of the automated recognition method with multi-
classifier voting was compared with the results obtained using single classifiers. The results
demonstrate that the proposed detection platform, combining THz-ATR spectroscopy and
the automated recognition method based on multi-classifier voting, successfully identified
five common clinical microorganisms, with a diagnostic accuracy of 80.77%.

2. Materials and Methods
2.1. Sample Preparation

Thirteen standard microbial strains, Staphylococcus epidermidis ATCC 12228, Enterococ-
cus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC
29213, Streptococcus pneumoniae ATCC 49619, Escherichia coli ATCC 25922, Pseudomonas
aeruginosa ATCC 27853, Bacillus cereus ATCC 11778, Bacillus thuringiensis ATCC 29730, Bacil-
lus subtilis ATCC 6633, Candida albicans ATCC 10231, Candida tropicalis ATCC 13803, and
Candida glabrata ATCC 15126, were purchased from the National Institute for the Control of
Pharmaceutical and Biological Products (Beijing, China). A total of 1123 isolates of clinical
microbial strains covering 5 species, including E. coli, P. aeruginosa, C. albicans, C. tropicalis,
and E. faecalis, were isolated from clinical samples of sputum, blood, urine, and feces in
the Clinical Microbiology Laboratory, Southwest Hospital of Army Medical University
(Chongqing, China). A silicon (Si) container, the composition of which is the same as the Si
prism, was fabricated as a sample cell for the THz-ATR spectrometer to measure a larger
number of samples on a single prism and avoid the alignment errors caused by the need
for Si prism replacement between samples. Resuscitated bacteria were inoculated on blood
agar plates (CNA, Pang Tong, Chongqing, China) and cultured overnight at 37 ◦C. Bacterial
colonies were then peeled from the plates and loaded into the Si container for measurement.

2.2. Set-Up of THz-ATR

The THz spectra of the bacterial samples were measured by a commercial THz time-
domain spectroscopy (TDS) system (TAS 7500SP, Advantest Co., Tokyo, Japan) in ATR
mode with a frequency range of 0.1–5.0 THz and a spectral resolution of 7.6 GHz, as
shown in Figure 1A. Each sample was loaded into a Si container, which was fabricated as a
circular sample well with a diameter of 7 mm and a depth of 100 µm to ensure uniformity
of the sample thickness, as shown in Figure 1B. To carry out this measurement, the Si
container was attached to the prism to enable the capture of information exclusively from
the sample mass that was close to the prism surface. In contrast with transmission or
reflection mode spectroscopy, the incident THz pulse is completely internally reflected off
the surfaces of the ATR prism, and an evanescent field is created in the sample close to
the sample–prism interface. Based on our previous studies, the penetration depth of the
evanescent waves (approximately tens of micrometers around 0.1–5.0 THz) is much smaller
than the thickness of the examined sample (approximately 100 µm); thus, we can use the
“prism–sample” (inset) model to obtain the THz absorption coefficient of the bacterial
samples [25,26]. Fresnel’s reflection coefficient (̃r12) of the prism–bacteria interface can be
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obtained by calculating the reflectance (R̃) and phase spectrum (ϕ̃) of the THz time-domain
spectrum after Fourier transform, as shown in Equations (1) and (2):

R̃ =

∣∣∣∣ r̃12

rREF

∣∣∣∣2 (1)

ϕ̃ = Arg
[

r̃12

rREF

]
(2)

where rREF is the reflection coefficient of the prism–air interface (reference signal). r̃12 can
also be calculated as a function of the incident angle (θ) of the THz wave, and of the
(complex) refractive index of the ATR prism (ε1) and sample (ε̃2). The complex permittivity
of the examined sample is obtained after determination of these parameters, as shown
in Equation (3):

r̃12 =

√
ε1

√
1−

(
ε1
ε̃2

)
sin2 θ −

√
ε̃2 cos θ

√
ε1

√
1−

(
ε1
ε̃2

)
sin2 θ +

√
ε̃2 cos θ

(3)
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Figure 1. Identification of clinical microbes based on their THz-ATR spectra. (A) Schematic illustration
of the THz-ATR spectrometer with a sample cell made of Si. (Inset) Diagram of the THz-ATR
spectrometer with a “prism–sample” model. (B) Schematic showing sample loading.

The relationship between the extinction coefficient (κ) and refractive index (n) of the
examined sample and the imaginary part (ε′′) and real part (ε′) of the complex permittivity
(ε̃) of the examined sample can be obtained as shown in Equations (4) and (5):

ε′ = n2 − κ2 (4)
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ε′′ = 2nκ (5)

Additionally, the absorption coefficient (α) of the examined sample can be deduced
from the extinction coefficient, the angular frequency (ω), and the speed of light (c), as
shown in Equation (6):

α =
2ωκ

c
(6)

In this case, the THz-ATR spectrum originating from the bare sample cell was taken
as the reference signal, and the THz-ATR spectrum of the loaded sample produced the
measured signal. The container was rinsed with absolute ethanol and ultrapure water and
dried with N2 after each measurement. To increase reliability, each sample was measured
six times, and then the averaged spectra for every sample were used for further analysis.
The experiments were performed at room temperature (26 ± 0.5 ◦C) and an appropriate
humidity (<5%). The total test time after cell culture was less than 3 min, including 1 min
for sample loading, 1 min for spectral acquisition, and 1 s for data analysis.

2.3. Statistical Analysis

The automatic recognition procedure was performed by multi-classifier voting based
on three types of classifiers: a k-nearest neighbor (kNN) classifier, a support vector machine
(SVM) classifier, and a random forest (RF) classifier. The kNN algorithm is a nonparametric
classification method based on a calibration data set [27]. In kNN classification, the result
of THz-ATR spectroscopy is classified as belonging to the majority class of the k nearest
neighbors in the feature space. This method is appropriate for pattern recognition with
a large sample size. The SVM algorithm is a machine learning approach based on the
structural risk minimization principle [28]. An SVM classifier is realized by mapping
the spectral feature results to a high-dimensional space to facilitate separation in the
feature space based on the maximum interval hyperplane. This method is appropriate
for nonlinear and high-dimensional feature pattern recognition with a small sample size.
RF is an integrated learning method for classification and regression that constructs many
decision trees and outputs the pattern of classes (classification) or average prediction
(regression) of the individual trees [29]. This method is appropriate for large sample sizes
and unmarked pattern recognition features [30].

The results of the classification descriptions for the proposed automatic recognition
method were analyzed by evaluating the accuracy, receiver operating characteristic curve
(ROC), and the area under the curve (AUC) that each working classification produced. The
ROC curve and AUC scores were used to evaluate the capability of the recognition method
to generalize the empirical data. The ROC curve is defined as the true positive rate (TPR)
against a given false positive rate (FPR). The AUC score is defined as the area under the
ROC curve.

3. Results and Discussion
3.1. THz-ATR Absorption Spectra of Standard Strains

Figure 2A shows that 387 THz absorption spectra curves of 13 species of standard
strains exhibit overlapping spectra that increase monotonically with frequency, especially in
the lower-frequency band from 0.1 to 1.0 THz. As shown in Figure 2B, there was persistently
no significant difference in the THz-ATR absorption spectra among the groups after the
13 standard bacteria were classified. The category classes were: Gram-positive bacteria
(including S. epidermidis, E. faecalis, S. aureus, S. pneumoniae, B. cereus, B. thuringiensis, and
B. subtilis), Gram-negative bacteria (including E. coli and P. aeruginosa), and fungi (including
C. albicans, C. tropicalis, and C. glabrata). As expected, although a few bacterial species
can be identified by the variation in hydration state that was associated with the THz
absorption coefficients, it is difficult to accurately identify microorganisms solely by their
THz absorption due to the possibility of potentially similar hydration states as the number
of sampled species increases [23].
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Figure 2. (A) A total of 387 THz absorption spectra curves of 13 species of standard microbial
strains. (B) THz absorption spectra of eight Gram-positive bacterial strains (red), two Gram-negative
bacterial strains (green), and three fungi (black). (C) PCA of THz spectra for Gram-positive bacterial
strains (red), Gram-negative bacterial strains (green), and fungi (black). (D) Least-squares analysis
representation of THz spectra for Gram-positive bacterial strains (red), Gram-negative bacterial
strains (green), and fungi (black).

We used the common PCA method and the least-squares analysis method to resolve
the THz spectra and distinguish these three groups of microorganisms. PCA is a common
unsupervised classification method that is often used for spectral data analysis to reduce the
dimension or number of variables in a multi-dimensional data set [31]. The least-squares
analysis method is a supervised learning method that analyzes the different relationships
between one dependent variable and several independent variables; it is often applied
to characterize relationships in bioinformatics and chemistry [32]. The PCA results are
shown in Figure 2C. Significant differences were observed between the Gram-negative
bacteria and fungi; however, the distribution of Gram-positive bacteria overlaps with
those of the other two groups. Although a small number of samples overlap, the three
different groups of microorganisms can be preliminarily differentiated by the least-squares
method, as shown in Figure 2D. This suggests that other data processing methods might
contribute to differentiating similar hydration-state-induced THz absorption spectra of
multiple microbial species.

3.2. THz-ATR Absorption Spectra of Clinical Strains

Taking into account the diversity of patient sources and the likelihood that the geno-
types and phenotypes of the same microbe from different sample sources may be slightly
different, clinical microbial strains should exhibit greater general heterogeneity than stan-
dard microbial strains. To investigate the potential of THz-ATR spectroscopy for the
diagnosis of clinical strains, we recorded the THz-ATR absorption spectra of 1123 clinical
strains belonging to the aforementioned three classes of bacteria and two classes of fungi.
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As shown in Figure 3A, it is difficult to distinguish these five clinical microbial strains based
on their absorption coefficients alone. As shown in Figure 3B, the overall THz absorption
spectra of the two species of Gram-negative bacteria (E. coli and P. aeruginosa) appear to be
slightly more distinguishable than the spectra of some fungi (C. albicans and C. tropicalis),
whereas the set of absorption coefficients of the Gram-positive bacterium (E. faecalis) over-
laps with those of the other two groups. We further analyzed the THz absorption of five
species of clinical strains by the PCA and least-squares methods, as shown in Figure 3C,D.
These results show that neither PCA nor the least-squares method effectively distinguishes
the five clinical strains, suggesting that it is necessary to apply another learning algorithm
to analyze the sets of THz spectra from multiple clinical strains.
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Figure 3. (A) A total of 1123 THz absorption spectra curves of 5 species of clinical strains, specifically
E. faecalis (black), E. coli (red), P. aeruginosa (blue), C. albicans (green), and C. tropicalis (purple). (B) THz
absorption spectra of one Gram-positive bacterial strain (black), two Gram-negative bacterial strains
(red), and two fungi (blue). (C) PCA representation of the THz spectra for the above five clinical
strains. (D) Least-squares analysis representation of the THz spectra for the above five clinical strains.

3.3. Automated Recognition of Clinical Strains

An automated recognition method, based on multi-classifier voting, was developed
using the classifiers kNN, SVM, and RF, as shown in Figure 4A. THz-ATR spectra were
used as the diagnostic indicator of the classifiers. Spectroscopic features (frequency range
of 0.1–5.0 THz) of the five standard strains, including the refractive index and absorption
coefficient, were chosen to comprise the training set, respectively, and used to construct
the automated recognition algorithm. Then, six groups of results were used in the voting
of the multi-classifier predictive model. To improve predictive accuracy and efficiency,
an algorithm was written that executes spectroscopic feature selection for the diagnostic
indicator of each classifier. Here, the ReliefF algorithm is used in the feature selection for
dimensionality reduction instead of PCA, which is preferred in supervised identification
applications. Spectroscopic features for the refractive index and absorption coefficients
were ranked by a weighing factor that was calculated by the ReliefF algorithm, where a
specific refractive index and absorption coefficients were selected according to the criterion
of achieving minimal error until maximal achievable accuracy was obtained [33]. That
is, the two data sets for each classifier were ranked by the weighting factor, and different
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elements from each data set were chosen as diagnostic indicators of each classifier grouping
according to the particular value of the corresponding weighing factor that achieves the
highest diagnostic accuracy [33]. The ultimate result was obtained by voting of the results
from these six groups of results.
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The measured THz-ATR spectra of the 1123 clinical samples (including 253 for E. faecalis,
222 for E. coli, 227 for P. aeruginosa, 208 for C. albicans, and 213 for C. tropicalis, Table 1)
were used as a validation set to evaluate the discrimination performance of the automated
method. The results of traditional microbial culture identification methods were employed
as the gold standard basis set.

Table 1. Classification results obtained by the multi-classifier voting scheme.

E. faecalis E. coli P. aeruginosa C. albicans C. tropicalis Total

Standard strains
for modeling 25 29 27 26 30 137

Clinical strains
for identification 253 222 227 208 213 1123

Correctly
identified strains 252 177 166 165 147 907

E. faecalis: Enterococcus faecalis; E. coli: Escherichia coli; P. aeruginosa: Pseudomonas aeruginosa; C. albicans: Candida
albicans; C. tropicalis: Candida tropicalis.

Figure 4B shows the overall diagnostic accuracy when the above procedure was
employed. We found that the average accuracy was 80.77% across the five clinical strains
(99.60% for E. faecalis, 79.73% for E. coli, 73.13% for P. aeruginosa, 79.33% for C. albicans, and
69.01% for C. tropicalis). Park et al. analyzed some results of recently developed machine
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learning (ML)-based THz applications, and the current ML techniques were approximately
90% sensitive for diagnosing a disease according to their review [34]. Peiffer-Smadja et al.
explored 97 ML systems aiming to assist clinical microbiologists, among which, only one
ML system was reported to be used in clinical practice [35]. This ML system aimed to
screen urine samples, the analysis results from 212,554 urine reports showed the potential
for using machine learning algorithms, and the classification sensitivity was >95% [36].
The average accuracy of our automatic identification method is no higher than that in the
aforementioned reports. We hypothesize that this is related to the fact that clinical strains
have greater sample heterogeneity than standard strains. The measured samples were
isolated from clinical samples of different sources, including sputum, blood, urine, and
feces in our laboratory, the genotype and phenotype of the same microbe from different
sample sources may be slightly different.

3.4. Optimizing the Classification Scheme of the Automated Recognition Method

Based on an inspection of the microbial identification results, we tried to reduce the
dimensionality of the THz-ATR data set using different parameters that characterize the
spectral features (including the absorption coefficient and refractive index) and to subse-
quently probe the accuracy of the diagnosis using each of the classifiers. The corresponding
accuracies for species recognition, based on the kNN, SVM, and RF classifiers, are shown
in Figure 5A,B, as a function of the number of selected feature frequencies. As shown in
Table 2, the diagnostic accuracy of the classifier with the refractive index as the characteristic
feature indicator is greater than that of the absorption coefficient feature indicator. This
inspired us to consider additional indicators as comprehensive parameters of the THz-ATR
spectrum that might improve the diagnostic accuracy. We turned our attention to addi-
tional parameters such as the dielectric loss, the imaginary and real parts of the complex
permittivity, and the power, which could conceivably lead to the discovery of diagnostic
indicators for the corresponding classifier [22]. To achieve the maximum contribution to
the multi-classifier algorithm and the highest diagnostic accuracy, each classifier algorithm
selected the optimal number of extracted characteristics (details in Table 2). The ROC
diagnostic curve plots the variation in the true positive vs. false positive rates using each
of the machine learning classifiers, as shown in Figure 5C. Among these, the RF classi-
fiers achieved the highest accuracy with an appropriate use criteria (AUC) score of 0.7593.
However, the total classification accuracy of the proposed automated recognition method
was found to be significantly better when based on the combined multi-classifier voting
scheme than on a single classifier scheme (AUC 0.8664 vs. 0.7593). The use of all classifiers
rather than a single classifier reduced the misdiagnosis and missed diagnosis rates for
identifying clinical samples as determined by higher AUC scores. Therefore, we conclude
that automated identification of these five clinical strains from their THz-ATR spectra can
be significantly improved by establishing a multi-classifier voting scheme and screening
for the best characteristic parameters that highlight differences in the sample populations.
Our future work will also use other classifiers (such as artificial neural networks, Bayesian
learning, and decision trees), to test whether they contribute positively or negatively to
improving accuracy in identifying clinical microorganisms.

Table 2. Classification accuracy of the three types of classifiers for the five clinical strains.

Classifier Parameter Accuracy (%) Number of Extracted Characteristics

kNN RI 56.1% 266
kNN Absorption 40.5% 7
SVM RI 46.6% 610
SVM Absorption 39.4% 654
RF RI 61.5% 130
RF Absorption 58.8% 265

kNN: k-nearest neighbor; SVM: support vector machine; RF: random forest; RI: refractive index.



Biosensors 2022, 12, 378 10 of 12Biosensors 2022, 12, x FOR PEER REVIEW 11 of 13 
 

 
Figure 5. Diagnostic evaluation of the automated recognition method based on two characteristic 
parameters: absorption (A) and refractive index (B). (C) ROC curves and AUC scores for identifying 
clinical strains with three types of machine learning classifiers. 

4. Conclusions 
In this study, we presented a novel strategy, based on THz-ATR spectroscopy that is 

integrated with an algorithm for automated data recognition to identify microbiological 
species of clinical importance. Our results demonstrate that pathogenic microorganisms 
can be characterized by their THz-ATR spectra in a label-free manner. When combined 
with the least-squares method for analyzing spectral features, 13 standard strains can be 
divided into three different groups: Gram positive bacteria, Gram negative bacteria, and 
fungi. However, considering that clinical microbial strains generally have greater hetero-
geneity than standard microbial strains, their THz-ATR absorption spectra are not differ-
entiated by common PCA and the least-squares analysis methods alone. We therefore de-
veloped an automatic recognition method based on multi-classifier voting to analyze THz 
spectra based on several intrinsic physical properties. Using traditional culture and bio-
chemical assays as the gold standard, the feasibility of this method for automated clinical 
microbial strain identification was systematically evaluated. The diagnostic accuracy and 
validity for 1123 different specimens were found to exceed 80% when using a minimum 
of three different classifier representations. The routine clinical method of bacterial iden-
tification is based on biochemical and metabolic profiling, which requires 24–48 h [37]. As 
spectral acquisition and data analysis can be completed in 1 min after bacterial culture is 
complete, our proposed strategy is advancing at least 10 h compared to the traditional 
culture-based methods, because it reduces the time consumption of biochemical assays. 
MS in clinical laboratories is also a culture-based method. Microbial identification by MS 
is performed by database matching; however, the turnaround time for the identification 
of bacterial isolates from colonies ranges between 5 and 45 min, depending on whether a 
protein extraction step is required [38]. Compared with MS, our strategy reduces the sam-
ple preparation time and simplifies the workflow. In addition, our assay utilizes the phys-
ical properties of microbial cells, and the target bacterium can be identified without any 

Figure 5. Diagnostic evaluation of the automated recognition method based on two characteristic
parameters: absorption (A) and refractive index (B). (C) ROC curves and AUC scores for identifying
clinical strains with three types of machine learning classifiers.

4. Conclusions

In this study, we presented a novel strategy, based on THz-ATR spectroscopy that is
integrated with an algorithm for automated data recognition to identify microbiological
species of clinical importance. Our results demonstrate that pathogenic microorganisms
can be characterized by their THz-ATR spectra in a label-free manner. When combined with
the least-squares method for analyzing spectral features, 13 standard strains can be divided
into three different groups: Gram positive bacteria, Gram negative bacteria, and fungi.
However, considering that clinical microbial strains generally have greater heterogeneity
than standard microbial strains, their THz-ATR absorption spectra are not differentiated
by common PCA and the least-squares analysis methods alone. We therefore developed
an automatic recognition method based on multi-classifier voting to analyze THz spectra
based on several intrinsic physical properties. Using traditional culture and biochemical
assays as the gold standard, the feasibility of this method for automated clinical microbial
strain identification was systematically evaluated. The diagnostic accuracy and validity
for 1123 different specimens were found to exceed 80% when using a minimum of three
different classifier representations. The routine clinical method of bacterial identification
is based on biochemical and metabolic profiling, which requires 24–48 h [37]. As spectral
acquisition and data analysis can be completed in 1 min after bacterial culture is complete,
our proposed strategy is advancing at least 10 h compared to the traditional culture-based
methods, because it reduces the time consumption of biochemical assays. MS in clinical
laboratories is also a culture-based method. Microbial identification by MS is performed by
database matching; however, the turnaround time for the identification of bacterial isolates
from colonies ranges between 5 and 45 min, depending on whether a protein extraction step
is required [38]. Compared with MS, our strategy reduces the sample preparation time and
simplifies the workflow. In addition, our assay utilizes the physical properties of microbial
cells, and the target bacterium can be identified without any need for pretreatment or
reagents; thus, compatibility with downstream analytical techniques can be ensured. With
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the continuous improvement and supplementation of the spectral database and classifiers,
this method has potential for many applications in the early clinical survey and diagnosis
of pathogenic and non-pathogenic microbes.
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