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Abstract: Phenotypic health effects, both positive and negative, have been well studied in asso-
ciation with the consumption of alcohol in humans as well as several other mammals including
mice. Many studies have also associated these same health effects and phenotypes to specific mem-
bers of gut microbiome communities. Here we utilized a chronic plus binge ethanol feed model
(Gao-binge model) to explore microbiome community changes across three independent experiments
performed in mice. We found significant and reproducible differences in microbiome community
assemblies between ethanol-treated mice and control mice on the same diet absent of ethanol. We also
identified significant differences in gut microbiota occurring temporally with ethanol treatment. Peak
shift in communities was observed 4 days after the start of daily alcohol consumption. We quantita-
tively identified many of the bacterial genera indicative of these ethanol-induced shifts including
20 significant genera when comparing ethanol treatments with controls and 14 significant genera
based on temporal investigation. Including overlap of treatment with temporal shifts, we identified
25 specific genera of interest in ethanol treatment microbiome shifts. Shifts coincide with observed
presentation of fatty deposits in the liver tissue, i.e., Alcoholic Liver Disease-associated phenotype.
The evidence presented herein, derived from three independent experiments, points to the existence
of a common, reproducible, and characterizable “mouse ethanol gut microbiome”.

Keywords: gut microbiome; microbial ecology; indicator species; bacterial communities; mouse
model; alcohol effects; Alcoholic Liver Disease; microbiome; ethanol-induced liver disease; leaky gut

1. Introduction

Alcoholic Liver Disease (ALD) remains one of the most important diseases in the US.
Overall, ALD affects 5 to 7 million US adults of which approximately 1.4 million adults
receive treatment and close to 88,000 people die each year of alcohol-related causes [1].
Due to a lack of effective therapies for treatment [2], ALD remains a major health problem
worldwide. Recent scientific studies have suggested that ethanol-associated alterations in
the gut microbiome are an important pathogenic factor contributing to the development
of ALD. The mechanistic causes and effects of gut dysbiosis remain an important area of
investigation [3]. Numerous human and animal studies have shown that alcohol affects the
gut–liver axis at multiple interconnected levels, including alterations in the gut microbiome
and decreases in intestinal epithelial barrier function leading to an increase in systemic
exposure of gut bacteria and bacterial toxin culminating in the development of ALD [4–6].
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In human subjects exhibiting alcohol-related gut microbe dysbiosis, the observed
increase in specific bacterial populations has been associated with gut leakiness. Intestinal
dysbiosis in heavy alcohol drinkers involves, in particular, the enrichment of Enterobac-
teriaceae and decline of Bacteroidetes and Lactobacillus [7]. Similarly, mouse models
of ALD have also demonstrated a decline in the abundance of both Bacteroidetes and
Firmicutes along with a proportional increase in Gram-negative Proteobacteria and Gram-
positive Actinobacteria [8]. A number of specific genera level taxa have been correlated to
both alcohol-related microbiome shifts and ALD phenotypes. Interestingly, endogenous
populations of documented ALD preventative bacterial genera such as Lactobacillus and
Bifidobacterium have also been shown to be depleted in alcohol-fed mice models [7].

The important role of gut microbiota in ALD pathogenesis suggests the need for
continued development of novel and innovative approaches to help explain the disparate
observations across various animal model systems and human studies. A comprehensive
understanding of how the microbial community affects ALD development is necessary to
develop therapeutic strategies to target the gut microbiome in order to treat ALD.

Here we look at gut microbiome shifts in a mouse model of ALD, consisting of chronic
ethanol feeding plus binge (Gao-binge model) across three independent experiments,
in order to explore treatment-based and temporal effects related to alcohol consumption
and ALD. This study design allows us to account for potential spurious experiment-related
microbiome differences and focus on microbiome changes associated specifically with
ethanol treatment and related temporal shifts.

2. Methods
2.1. Experimental Design

Eight to 12-week-old male C57BL/6N mice were divided into two groups (control and
ethanol treatment) and were fed a nutritionally adequate liquid control diet (Lieber DiCarli
Control Diet, Bioserv, Frenchtown, NJ, USA) [9] for 3 consecutive days to establish a similar
baseline gut microbiome. Fecal samples were collected during this acclimation period
(day 0). This was followed by feeding with Lieber DiCarli Diet containing 5% ethanol for
10 days in ethanol group mice while control mice were pair-fed with Lieber DiCarli diet
without ethanol for the same 10 days (days 1–10). Mice were kept in individual cages with
individual feeders and three independent experiments named ALD1, ALD2, and ALD3
were performed at different times. A total of 26 mice (13 control and 13 ethanol-treated)
were included in this study. ALD1 consisted of 6 mice (3 control and 3 ethanol-treated)
while ALD2 and ALD3 each consisted of 10 mice (5 control and 5 ethanol-treated). In each
experiment, the age of the mice and experimental conditions were the same. The control
and ethanol diets were prepared fresh each day and delivered in individual, autoclaved
feeders. Fecal samples were collected from individual mice cages each day and stored at
−20 ◦C for DNA extraction. A new, clean cage was interchanged for the following day’s
fecal sample collection. On the 11th day of ethanol feeding, mice in the ethanol group
received a gavage of a single dose of ethanol (5 g/kg body weight), while mice in the
control group received a gavage of isocaloric dextrin maltose. After the 11th day, mice were
sacrificed for liver histopathology. Due to insufficient fecal material for DNA extraction
after day 11 gavage, related samples were not analyzed for associated microbiome changes.
A schematic summary of the study can be viewed in Supplementary Figure S1.

2.2. Ethics

Mouse studies were approved by the Pennsylvania State University, College of
Medicine, Hershey, PA, USA, Institutional Animal Care and Use Committee (IACUC
protocol-Role of intestinal permeability in Alcoholic Liver disease-ALD-PROTO201900704).

2.3. DNA Extraction and Sequencing

Fecal DNA was isolated using the Qiagen pro DNA kit according to the manufac-
turer’s instructions modified to increase bead-beating time to 15 min. 16S amplicon DNA
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was sequenced at Los Alamos National Laboratory (Los Alamos, NM, USA). Degenerate
primers amplifying the V3-V4 region of bacterial rRNA genes were used (F341-806R pair).
PCR amplification was performed in two rounds, the first to create an amplicon library
using KAPA HiFi HotStart Ready Mix (KAPA Biosystems, Inc., Cape Town, South Africa)
and the second to add Nextera XT v2 indexes (Illumina, San Diego, CA, USA) as described
in previous work [8]. Detailed PCR information is available in the supplemental methods.
Clean-up and quality control were performed on amplicon libraries as detailed in the sup-
plemental methods. Sequencing was performed on an Illumina MiSeq platform sequencer.

2.4. Sequence Data Processing

QIIME2 version 2019.10 was applied to demultiplexed sequencing data using the
DADA2 plug-in to denoise the data [10,11]. The pipeline included quality trimming,
denoising, read joining, amplicon sequence variant (ASV) determination, chimera removal,
and taxonomic classification of ASVs using a pre-trained Greengenes 13_8 99% 16S rRNA
Naive Bayes classifier [12]. Further details of pipeline parameters and steps are available
in the supplemental methods. Samples with fewer than 1000 reads in rarefaction were
discarded. Operational taxonomic units (OTUs) were constructed from ASVs classified to
the same genera taxonomic level.

2.5. Data Analysis

Data analysis was performed using R data analysis software version 4.0.2 [13]. Figures
were generated using the ggplot2 package version 3.3.2 in R [14]. MANOVA-type analysis
was performed using the vegan package version 2.5.6 in R [15]. All MANOVA-type analysis
was performed using relative abundance and 1000 permutations. Non-metric multidi-
mensional scaling (NMDS) was performed on relative abundance data with Bray–Curtis
distances using the vegan package in R. Temporal generalized additive models (GAMs)
were built using ordisurf from the vegan package in R. Diversity (Shannon and Simpson
indices) and beta dispersion (Bray–Curtis distance) testing (Kruskal–Wallis and Tukey
HSD respectively) were performed using the vegan package in R. Point-biserial coefficient
analysis (PBCA) was performed on treatments and temporal data using the indicspecies
package version 1.7.9 in R [16]. All PBCA was performed using relative abundance with
1000 permutations. Heatmap figures for temporal PBCA and mean abundance differences
were made using the pheatmap package version 1.0.12 in R [17]. Peak shift temporally in
ethanol treatments was assessed with a bootstrap value of 500 using the TITAN2 package
version 2.4 in R [18]. TITAN2 was designed to identify environmental thresholds by using
indicator species scores to integrate occurrence, abundance, and directionality of taxa
responses [18]. Here, we have adapted TITAN2 to a temporal exploration by using days
post-treatment or “time” as our ecological gradient. Cluster analysis was performed using
the complete linkage method of hclust through vegan on a Bray–Curtis distance matrix
and cutting the tree into a priori best fit groups of k groupings all within the vegan package
in R. k cluster ranges were tested using PARMANOVA and ANOSIM via vegan in R in
order to maximize significant test statistics and find optimal k.

3. Results
3.1. S Amplicon Sequencing Summary

16S amplicon sequencing and processing of 286 samples representing days 0 through
10 of treatment across three independent experiments (ALD1 = 66, ALD2 = 110, ALD3 = 110)
resulted in 8,806,863 paired end Illumina reads of which 5,646,371 passed strict filtering and
quality control methods for an average of 19,743 reads per sample. Two samples, including
one day 9 control from ALD3 and one ethanol treatment sample for day 8 from ALD1
were removed due to having fewer than 1000 rarified reads. The 26 samples from day 0
were analyzed to test starting community similarity. Fecal samples from day 0 showed
no significant difference in PERMANOVA or ANOSIM tests between control and ethanol
groups. 258 samples were used for treatment day 1–10 from the experiments (ALD1 = 59,
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ALD2 = 100, ALD3 = 99) for community analysis. In total, 1145 unique bacterial amplicon
sequence variants (ASVs) were classified across these samples.

3.2. Ethanol Treatment vs. Controls

Ethanol group bacterial communities and those of controls were significantly different
from each other using both PERMANOVA (F = 20.2, p < 0.001) and ANOSIM (R = 0.17,
p < 0.001) tests. Differences between experimental groups and between experiments were
visualized in NMDS ordination (Figure 1). Across experiments, a significant decrease in
mean Shannon (χ2 = 8.3, p = 0.004) and Simpson (χ2 = 18.9, p < 0.001) alpha diversity
scores were observed for samples in the ethanol group (Figure S2). We also observed
a significant decrease in beta dispersion (diff = −0.02, p = 0.02) in the ethanol group
across the 3 experiments (Figure S3). PBCA identified 315 significant ASVs (control = 150,
ethanol = 165) which was representative of approximately a third of total ASVs. PBCA
identified 20 significant genera OTUs (control = 11, ethanol = 9) that are shown in Table 1
and include genera shown in Figure 2 as well as in detailed mean relative abundance plots
(Figures S9–S34).

3.3. Temporal Community Shifts

A temporal GAM model on the NMDS ordination significantly explains 16.1% of
deviance (Adj, r2 = 0.15, p < 0.001) and is shown in Figure 1. However, while a temporal
GAM model on only control samples explains negligible deviance (<0.001%), when applied
to only ethanol samples, the temporal model explains 40.2% of deviance (Adj. r2 = 0.37,
p < 0.001). PBCA on controls temporally identified 8 significant genera OTUs (Figure 3).
PBCA on ethanol treatments identified 6 significant genera OTUs (Figure 3). The strength
of abundance difference for these genera is shown in Figure 2 and detailed mean relative
abundance plots are shown in Supplemental Figures S9–S34. TITAN2 analysis shows peak
community shift occurring around day 4 (Figure S4). Importantly, the 8 significant taxa
identified by TITAN2 fully overlap those found by PBCA (Figure S4).
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Table 1. PBCA identified significant bacterial genera for control and ethanol treatments. AF12 is a
genus in the Rikenellaceae family and rc4-4 is a genus in the Peptococcaceae family.

Control rpb p Value Ethanol RX rpb p Value

g__Pseudomonas 0.457 0.005 g__Clostridium 0.407 0.005

g__Bacteroides 0.426 0.005 g__Adlercreutzia 0.385 0.005

g__Anaerotruncus 0.263 0.005 g__AF12 0.293 0.005

g__Enterobacter 0.222 0.005 g__Bilophila 0.290 0.005

g__Turicibacter 0.206 0.005 g__Helicobacter 0.174 0.02

g__rc4-4 0.166 0.005 g__Prevotella 0.163 0.01

g__Anaeroplasma 0.152 0.03 g__Enterococcus 0.154 0.005

g__Blautia 0.150 0.005 g__Desulfovibrio 0.149 0.015

g__Acinetobacter 0.148 0.005 g__Parabacteroides 0.139 0.02

g__Sutterella 0.125 0.04

g__Leuconostoc 0.096 0.005
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3.4. Histopathology of Liver

The alcohol feed/binge caused macrovascular steatosis of hepatocytes and inflamma-
tory infiltration consistent with alcoholic steatohepatitis in the ethanol group compared to
controls by day 11 of the study (Figure 4).
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Figure 4. Images of day 11 mouse livers at 400× with H&E stain. Black arrows point to signs of macrovascular steatosis (fat
deposits), visible as large white ovals in the ethanol treatment.

3.5. Cluster Analysis

We tested a range of 2 to 10 k clusters for optimal a priori clustering. Three, 4, and 5
groups were selected as the optimal group numbers in the range based on PERMANOVA
and ANOSIM statistics (Figure S4). k = 3 groupings was observed to be representative of the
3 experiments ALD1, ALD2, and ALD3 (Figure S5). k = 4 groupings demonstrated ALD1
ethanol treatments emerging as the 4th group (Figure S6). k = 5 groupings demonstrated
ALD2 ethanol treatments (with some control samples) emerging as the 5th grouping
(Figure S7).

4. Discussion

This study allows us to identify three of the primary factors affecting community
composition/assemblage in our data sets, namely experiment, treatment, and time. From
our cluster analysis, NMDS visualization, and significant but lower ANOSIM statistic in
comparing treatments, we find that communities in experiments are significantly different
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and variable despite the near identical treatment regimes. By combining samples from
the three experiments and focusing on treatment and temporal effects, we increase our
confidence in our findings being specific to ethanol treatment and not due to any unique
experimental artifact, while also reducing our potential false positive rate.

In addition to a significant difference in community structure between control and
ethanol group communities, we also see a decrease in community alpha and beta diver-
sities. While per-individual microbial diversity decrease has previously been reported,
other studies have actually shown an increase in alpha diversity [19–24]. It may well be
that a shift is expected to happen but that the direction of the shift is dependent on the
pre-treatment community or experimental design effects. Previous studies have pointed to
microbiome colonization changes induced by ethanol treatment [25]. Decreases in alpha
diversity have generally been associated with dysbiosis and disease phenotypes in both
humans and mice.

Beta diversity changes have also been well documented [19–24]. A decrease in beta
dispersion in our study, paired with the temporal GAM model explaining deviance primar-
ily in ethanol-treated samples suggests that ethanol-treated microbiomes are converging
towards a more similar microbiome, even across multiple experiments. It is possible that
this effect is due to impacts on microbial colonization with the mice in our three indepen-
dent experiments being fed the same diet under the same conditions. Increases seen in
beta dispersion in previous studies may be artifactual of conditions within any single ex-
periment. It will be prudent to continue to explore ethanol-induced diversity shifts across
a large number of studies and experiments to explore if all ethanol-induced microbial
communities in mice shift towards some common taxonomic composition. Important taxa
certainly appear largely conserved across studies as outlined below.

The current body of literature includes studies that both account for and ignore tempo-
ral factors [19–26]. Our study suggests that temporal factors are critical to understanding
the effects of ethanol on gut microbiota. Temporal factors appear unique to ethanol con-
sumption compared with controls and a focus only on treatment-based changes may ignore
important temporal dynamics of gut microbiota shifts. Perhaps surprisingly, the initial
impact of ethanol temporally on significant taxa appears to be on Gram-positive bacteria
with some recovering and thriving while others do not recover.

In our study, we observe a fair amount of overlap in PBCA significant genera between
the treatment-based analysis and the temporal analysis. However, the information pro-
vided by each analysis is unique and does not tell us the same thing about the genera
in question. For example, Clostridium appears as a significant organism for the ethanol
group as a whole. This suggests that there is significantly more relative Clostridium in all
ethanol-treated mice. It also appears as a significant genus in both control and ethanol
temporal analyses. However, from Figure 3 and Figure S20, we see that this shift is similar
in both groups meaning that while Clostridium is likely important in the context of ethanol
consumption, it is not relevant temporally. Closer investigation of significant genera allows
us to bin identified genera into three loose classifications. These include genera that are
seen in greater relative abundance primarily in controls vs. primarily in ethanol groups,
genera that shift significantly in ethanol treatments but not in controls, and genera that
shift significantly in both control and in ethanol groups but shift antithetically.

Genera that are observed in significantly higher relative abundance in all control or
ethanol samples are presented in Table 1. The aforementioned Clostridium is an example
of a genus found in significantly higher relative abundance in all ethanol-treated mice
(Figure 2). Significant genera in controls are fairly evenly distributed between Gram-
positive and Gram-negative bacteria (G+ = 5, G− = 6). Significant genera in ethanol
treatments favor Gram-negative bacteria (G+ = 3, G− = 6). It is important to note that of
the three significant Gram-positive genera for ethanol treatments, Adlercreutzia (Table 1,
Figures 2 and 3, Figures S4 and S21) and Enterococcus (Table 1, Figure 2 and Figure S26) did
not establish larger relative abundance populations until later in the treatment time course
(~day 4 and ~day 5 respectively), again highlighting the importance of including temporal
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considerations. Adlercreutzia has been associated with fatty liver disease and obesity in
mice [27,28]. Higher levels of ethanol group Gram-negative bacteria (Prevotella, Bilophila,
Desulfovibrio, and Helicobacter) have been associated with deleterious health phenotypes
such as liver disease due to the known liver inflammation promoting effects of LPS [29–32].

Two Gram-positive genera, Lactobacillus (Figures 2 and 3, Figure S32) and Turicibacter
(Figures 2 and 3, Figures S4 and S13) shift significantly in the ethanol group but not
in controls. Both were observed in significant relative abundance on day 1, the day of
ethanol introduction, and then steeply decline, remaining negligible in relative abundance
across the remainder of the experimental time course. Lactobacillus has previously been
studied in the context of alcohol disease primarily as a mitigative probiotic or prophylactic
protective of liver disease phenotypes [33–35], consistent with our findings. Decreased
Turicibacter abundance has been associated with anxiety-like effects and social avoidance
behavior in mice as well as reduced intestinal cytokine expression and obesity and fatty
liver disease [36–39].

Three Gram-positive bacteria, Adlercreutzia (Table 1, Figures 2 and 3, Figures S4 and
S21), Allobaculum (Figures 2 and 3, Figures S4 and S30), and Bifidobacterium (Figures 2 and 3,
Figures S4 and S33) were found to shift significantly in both controls and ethanol treatments
but shift antithetically temporally. Adlercreutzia relative abundance is similar in control
and ethanol groups days 4 through 6 but then declines in the controls yet increases in
ethanol treatments. Allobaculum is abundant in controls during the first half of the time
course but then declines to negligible levels for the second half of the experiment while
being negligible in ethanol treatments for the first half of the time course and growing
to significant levels for the second half. Bifidobacterium abundance behaves similarly to
Allobacullum. These bacteria were possibly knocked out by initial treatment and then not
only recovered but thrived over the time course. Allobaculum, similar to Adlercreutzia,
has been previously associated with fatty liver disease phenotypes [36,40,41]. Similar to
Lactobacillus, Bifidobacterium has primarily been explored as a probiotic to mitigate adiposity
and inflammation associated with fatty liver disease [42,43].

Oscillospira and Dorea were only seen as significant genera in temporal shifts in controls
and trends in their relative abundance plots are difficult to discern (Figures S29 and S31
respectively). Dorea has been identified as significant in other studies [44]. The story of
these two genera is difficult to further define based on our data.

Despite not being a significant genus in our analysis, we also took a closer look at
Akkermansia as a genus of interest due to its prevalence in the literature with some studies
showing an ethanol-related increase and others showing a depletion [45–47]. In our study,
we do see an increase to a peak in relative abundance in ethanol treatments on day 3 which
then declined (Figure 3, Figure S33). This temporal variability in Akkermansia abundance
may explain why some studies have reported increases in abundance while others have
reported decreases in abundance associated with ethanol treatment.

Despite the use of different methods and approaches, our findings overlap with
bacterial genera found in other recent studies of ethanol-treated mice. Bluemel et al.
identified Bacteroides, Prevotella, Parabacteroides, Blautia, and Lactobacillus as displaying
significant changes in relative abundance [25]. While these genera are also found to be
significant in our study, the changes observed are not necessarily consistent between
the two studies. Both this study and Bleumel et al. observed a decrease in Lactobacillus
and an increase in Parabacteroides and Prevotella. However, we observed an increase and
larger population of Bacteroides in controls and a relatively stable Bacteroides population
in ethanol treatments while Bleumel et al. reported an increase in ethanol treatments.
Xu et al. identified Helicobacter, Allobaculum, Turicibacter, and Adlercreutzia as displaying
significant changes in relative abundance [36]. While we do observe a slight decrease in
Helicobacter relative abundance temporally in ethanol treatments (Figure 2 and Figure S24),
we consistently see Helicobacter being dominant in the ethanol group vs. controls as a whole
contrary to Xu et al.’s findings. Xu et al. reported an increase in Turicibacter where we saw
a significant and consistent decrease to where abundance was negligible in the ethanol
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group (Figure S3). Both Xu et al. and our study found an increase in abundance and a
targeted interest in Adlercreutzia.

Differences in findings on shift of significant genera between studies may be due to
experimental design factors. For example, Bleumel et al. looked at ileum samples while we
looked at fecal samples and our study tracked temporal dynamics while Xu et al. looked
at a 3-week snapshot. This once again highlights the need for continued study across
multiple independent experiments and studies in order to focus on treatment and temporal
trends specific to ethanol treatment while minimizing individual experimental effects.
The findings of our study across independent experiments along with commonalities in
significant genera across independent studies, accounting for differences in diversity and
abundance results, all point towards the existence of a common and characterizable “mouse
ethanol gut microbiome” that is worth further exploration.

5. Conclusions

Our collective analysis highlights the importance of using multiple experiments and
accounting for temporal factors in exploring ethanol-related changes to the mouse micro-
biome. While our results are consistent with many other studies in terms of taxa that are
significant to the shift, differences in magnitudes and directions of shift exist. These differ-
ences are likely identifiable in future studies and may include factors such as colonization
effects, variable starting microbiome communities, and differences in experimental design.
The consistency observed in taxa identification and certain taxonomic and diversity trends
across independent studies, despite variations in methods and approaches, together with
phenotypic observations all point towards overarching and common effects of alcohol on
the gut microbiome.
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clusters, Figure S8: Three alternative views in NMDS of k = 5 clusters, Figure S9-S34: Mean relative
abundance plots of significant genera in controls and ethanol treatments, Supplemental Methods:
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