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Abstract

The enigmatic life cycle and elongated body of the European eel (Anguilla anguilla L., 1758) have long motivated scientific
enquiry. Recently, eel research has gained in urgency, as the population has dwindled to the point of critical endangerment.
We have assembled a draft genome in order to facilitate advances in all provinces of eel biology. Here, we use the genome
to investigate the eel’s complement of the Hox developmental transcription factors. We show that unlike any other teleost
fish, the eel retains fully populated, duplicate Hox clusters, which originated at the teleost-specific genome duplication.
Using mRNA-sequencing and in situ hybridizations, we demonstrate that all copies are expressed in early embryos. Theories
of vertebrate evolution predict that the retention of functional, duplicate Hox genes can give rise to additional
developmental complexity, which is not immediately apparent in the adult. However, the key morphological innovation
elsewhere in the eel’s life history coincides with the evolutionary origin of its Hox repertoire.
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Introduction

The life history of the European eel (Anguilla anguilla L., 1758)

involves two distinct ocean-dwelling larval stages, a protracted

juvenile phase in European continental freshwater, and finally

sexual maturation coincident with migration to spawning grounds

in the Atlantic Ocean, presumably the Sargasso Sea (Figure 1) [1].

The complexity and geographical range of this life cycle have long

inspired evolutionary and physiological studies, especially on the

structure of the eel’s single, randomly mating (panmictic)

population [2], interspecific hybridization with the American eel

(A. rostrata, which shares the same oceanic spawning grounds [3]),

its hidden migrations [4–6], and the development of fertility [6].

Its catadromous migratory behaviour, long life, serious habitat

reduction, pollution, and overfishing may be amongst the causes of

the catastrophic collapse of the European eel population observed

over the past decades [7]. So far, Anguilla species have resisted

efforts directed at efficient and sustainable artificial breeding [8].

As knowledge on the eel’s genetic makeup is sparse, physiological

studies aimed at understanding maturation, reproduction and the

sustenance of successive larval stages have not been able to take

full advantage of gene expression profiling. In order to alleviate

this shortcoming, we have sequenced and assembled its genome.

While the draft genome will be an important tool in

reproduction research, it also offers new perspectives for

fundamental studies in eel biology, as well as a resource for the

comparative interpretation of model fish genomes (e.g. zebrafish

and medaka). Here, we investigate its repertoire of Hox genes in a

comparative genomics context.

The Hox genes encode transcription factors, which throughout

the animal kingdom are involved in the developmental patterning of

the body plan. In vertebrates, Hox genes are tightly organized into

clusters which exhibit colinearity between gene position and

temporal and spatial expression along the primary body axis: genes

at the 39 ends of clusters are expressed earlier in development, and

more anterior, than genes at the 59 ends of clusters [9]. The

organization of Hox clusters has been extensively documented for

many groups of vertebrates [10].

A. anguilla is a member of the superorder Elopomorpha [11,12], a

major teleost group of 856 species [13]. As such, elopomorphs

presumably share the inferred whole-genome duplication at the base

of the teleost lineage [14,15]. This teleost-specific genome duplication

(TSGD) event is most apparent when considering the Hox genes in

extant species [10,16,17]. In tetrapods and coelacanths, approxi-

mately forty genes are organized in four ancestral vertebrate clusters.

In theory, teleosts could have retained eight duplicate clusters.

However, whereas tetrapod Hox loci are relatively stable, teleost

genomes show dramatic gene loss, such that all species examined in

detail retain at most seven of these clusters, each with on average

about half their original gene content [9,10]. A PCR-based survey of
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the Hox clusters of the Japanese eel A. japonica found evidence for the

conservation of eight clusters and 34 genes [18].

As the Elopomorpha represent an early branch on the teleost

tree [12], the eel Hox gene complement may expose constraints on

the evolution of morphological complexity in teleost fish, and in

vertebrates in general. Furthermore, analysis of the eel’s Hox

clusters may shed light on the developmental mechanisms and

evolutionary history of its life cycle and body plan. In particular,

they may provide evidence regarding the evolutionary novelty of

the eel’s indirect development.

Results

Genome assembly of the European eel
We have sequenced and assembled the genome of a female

juvenile A. anguilla specimen caught in the brackish Lake Veere,

the Netherlands in December 2009. Its haploid genome size was

determined to be 1.1 Gbp. Because of the impossibility of breeding

A. anguilla, no genetic linkage information is available. We

therefore employed Illumina Genome Analyzer sequencing

technology only in the assembly of a draft genome. Based on a

de novo genome assembly, we constructed 923 Mbp of scaffolds

with a length-weighed median fragment length (N50) of 78 Kbp

(Figure S1 and Table S1). An additional 179 Mbp of initial

contigs, which are either very small or highly repetitive, were

excluded from scaffolding, but included in all further analyses.

Identification of Hox transcripts and genes
To identify A. anguilla Hox genes, we used a de novo assembled

transcriptome of a 27 hours post-fertilization (hpf) embryo of the

short-finned eel, A. australis. This species is closely related to A.

anguilla [19], yet produces viable embryos more easily [20]. We

compared Hox-like sequences from the transcriptome to the

genome assembly using Blast [21], which yielded ten genomic

scaffolds (Table S2) that were further examined for the presence of

additional genes. This resulted in the identification of 73 Hox genes

(twice as many as found in A. japonica in a previous study using PCR

fragments [18]), including three pseudogenes, organized in eight

clusters (Figure 2 and Table S3). The flanking regions of these eight

clusters contain an additional 24 predicted genes (Figure 2). No

further protein-coding genes were found within the Hox clusters.

Conserved microRNAs were discovered using Blast searches

with human and zebrafish homologues (Figure 2). miR-10 is

present posterior of Hox4 in six clusters (all except Aa and Ab).

miR-196 is found between Hox9 and Hox10 in five clusters (all

except Bb, Da and Db). This arrangement is consistent with that

found in other vertebrates [22,23].

Hox cluster identity
We based preliminary identification of clusters on homology

between A. anguilla and Danio rerio protein sequences and

comparisons with all sequences in the NCBI non-redundant

protein database (Table S3). Whereas the two A. anguilla HoxA

clusters can easily be matched to their corresponding HoxAa and

HoxAb orthologues in D. rerio, each of the two HoxB and HoxC

clusters of A. anguilla most closely resembles D. rerio HoxBa and

HoxCa, respectively. Both A. anguilla HoxD clusters predictably

match D. rerio HoxDa only, since the zebrafish HoxDb cluster has

lost all protein-coding genes [24].

To more precisely assign the Hox genes to proper cluster

orthologues, we generated unrooted maximum likelihood phylo-

genetic trees for paralogous group 9 (Figures 3 and S2), of which A.

Figure 1. The life cycle of the European eel. After hatching, presumably in the Sargasso Sea, cylindrical larvae develop into leaf-shaped
leptocephalus larvae, which after drifting on the Gulf Stream for approximately one year metamorphose into glass eels close to the European coast.
The glass eels may stay at the coast or migrate upriver, where they stay as juveniles (elvers and yellow eel) for many years (depending on the region:
males 4–6 years, females 8–12 years). Finally, they develop into migrating silver eels; the cause and timing of silvering is not well understood. They
mature during or after migration to the spawning grounds.
doi:10.1371/journal.pone.0032231.g001

Hox Clusters in the European Eel Genome
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anguilla possesses all eight copies. These confirmed the preliminary

classification in A, B, C and D paralogous groups, but failed to

validate the identity of teleost a and b cluster duplicates (with the

exception of HoxAa and HoxAb). Likewise, phylogenetic trees

based on multi-gene alignments do not conclusively indicate either

a or b cluster membership for HoxB, HoxC and HoxD (Figure 4).

In general, there appears to be a lack of sequence divergence

between eel Hox gene duplicates, which makes classification based

on coding sequence alone inaccurate.

Final orthologous relationships could only be established on the

basis of conserved local synteny between Hox clusters and flanking

genes (Figure 5). In addition to both HoxA clusters, eel HoxBa and

HoxBb appear orthologous with their respective teleost equiva-

lents. This identification is further supported by the absence of

miR-196 from both D. rerio and A. anguilla HoxBb clusters. The

affinities of HoxC and HoxD duplicates remain difficult to resolve

because of conserved synteny around a and b cluster duplicates,

and extensive cluster reduction and deletion in other teleosts

(Figure 5c, d).

Hox gene expression
In order to confirm the transcriptional activity of the Hox genes,

we determined relative expression levels by aligning transcriptomic

reads of the 27 hpf embryo against the Hox protein-coding regions

(Figure 6a). Transcriptome reads mapped unambiguously to 71

out of 73 Hox genes, including one pseudogene (yHoxD3b),

suggesting that all A. anguilla Hox protein-coding genes are

functional. The relative expression levels vary over five orders of

magnitude with the lowest expression observed for the posterior

paralogous groups 12 and 13, and the highest expression for

paralogous groups 7–9, but with particularly high expression levels

for HoxB1a, HoxB1b, HoxB4b and HoxD1a.

Full mRNA-seq read alignment to the entire Hox clusters

indicated that transcriptional activity is not restricted to protein

coding regions (Figure S3). In fact, intergenic expression

sometimes exceeds intragenic levels, supporting the observation

that complete Hox clusters function as meta-genes [9,25].

At 27 hpf, expression of posterior Hox genes is very low

(Figure 6a). We therefore confirmed transcriptional activity of

posterior Hox paralogues by whole mount in situ hybridizations

(Figure 4b). HoxB9a is expressed at 26 and 48 hpf, with an anterior

expression boundary coinciding with somite number 5/6.

Expression of HoxD12b and HoxC13a is not yet detectable at 48

hpf, but clearly visible at 96 hpf with anterior expression

boundaries located at somite numbers 65/70 and 90/95 for

HoxD12b and HoxC13a, respectively. For these Hox genes,

expression in the eel embryo appears to conform to the expected

spatio-temporal pattern (colinearity between cluster organization

Figure 2. Genomic organization of the Hox gene clusters of the European eel. Scaffolds are indicated by black lines and asterisks represent
two gaps between scaffolds. Hox genes are indicated by colored arrows that are numbered according to their paralogous groups. Three
pseudogenes are indicated by the symbol y. Neighboring genes are indicated by grey arrows. Conserved microRNA genes are indicated by triangles:
miR-196 (closed triangles) and miR-10 (open triangles).
doi:10.1371/journal.pone.0032231.g002

Hox Clusters in the European Eel Genome
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and developmental timing and localization), with expression of

Hox12 and Hox13 paralogues appearing later in development,

and more posterior than Hox9.

The evolution of Hox cluster organization
The early branching of the Elopomorpha from the main teleost

trunk allows a new reconstruction of ancestral Hox cluster

architectures (Figure 7), which are strongly constrained by the limited

organizational divergence between eel HoxB, C and D duplicates.

Since teleost fish are believed to have experienced the TSGD

event early in their evolutionary history [14,15], their genomes

should in theory possess up to eight cluster duplicates. However,

all teleosts examined in detail retain at most seven clusters of

protein-coding genes [9]: a HoxC duplicate was lost in the lineage

leading to medaka and pufferfish, a HoxD duplicate in the lineage

represented by zebrafish. The high number of clusters in salmon is

the result of relatively recent further duplications [26].

The main teleost lineages diverged briefly after the TSGD [16].

The reconstruction in Figure 7 demonstrates that nearly all post-

duplication gene loss events in the eel’s ancestry occurred within

this interval, followed by millions of years of stasis. Only the

HoxAb cluster appears to have accumulated major changes in pre-

branching, post-genome duplication teleosts. Alternative hypoth-

eses, in which a whole-genome duplication is not shared between

elopomorphs and advanced teleosts, or in which the genome

duplication is followed by successive deletion and duplication of

specific clusters in the eel, are less parsimonious and not consistent

with local conservation of synteny (Figure 5).

Discussion

Two rounds of Hox cluster duplications in chordates are

believed to be responsible for important vertebrate novelties (e.g.

brains, heads, jaws) and increases in complexity [27]. A plausible

mechanism invokes a temporary relaxation of meta-genic cluster

constraints after duplication, paving the way for innovation

Figure 3. Classification of the European eel Hox clusters. An
unrooted phylogenetic tree showing the relationships between A.
anguilla and fish Hox9 paralogues. Numbers indicate bootstrap support.
doi:10.1371/journal.pone.0032231.g003

Figure 4. Phylogeny of Hox clusters of the European eel. Unrooted phylogenetic trees based on alignments combining multiple Hox genes
per cluster. A) Cluster A relationships, based on HoxA9, HoxA11 and HoxA13 genes. B) Cluster B relationships, based on HoxB1, HoxB5 and HoxB6
genes. C) Cluster C relationships, based on HoxC6, HoxC11, HoxC12 and HoxC13 genes. D) Cluster D relationships, based on HoxD4 and HoxD9 genes.
Species included: A. anguilla, Salmo salar (Atlantic salmon), Danio rerio (zebrafish), Oryzias latipes (medaka), and Tetraodon nigroviridis (green spotted
puffer). Asterisks indicate bootstrap support .90%.
doi:10.1371/journal.pone.0032231.g004

Hox Clusters in the European Eel Genome
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[28,29]. In contrast, the TSGD-associated third duplication of

vertebrate Hox clusters theoretically endowed teleost fish not with

additional complexity within individuals, but with increased

prospects for morphological diversification between individuals

and species [9,10]. In support of this hypothesis, advanced teleosts

have extensively pruned their Hox surplus, leading to significant

diversity in cluster structure (Figure 7). In all examined

representatives (with the exception of salmon [26]), the residual

number of Hox genes is not much higher than the non-duplicated

count in tetrapods. The resulting teleost Hox cluster architectures

have been interpreted as an evolutionary choice for developmental

flexibility in a trade-off with robustness [9]. By proving that it is

possible for a vertebrate to stably preserve eight densely populated

(Figure 2) and functional (Figure 6) Hox clusters, the eel genome

presents an exception to these models, and a third alternative in

the evolution of vertebrate complexity.

For hundreds of millions of years, A. anguilla and its ancestors have

maintained the highest ontogenic potential of any vertebrate,

indicative of continuous selective pressure. However, as adults, they

do not display markedly more complex bodies than other fish or

tetrapods. The eel’s distinctive life cycle and body plan suggest three

(not mutually exclusive) explanations for this cryptic complexity.

Figure 5. Synteny around Hox clusters. Conservation of flanking genes supports the classification of A. anguilla clusters into different
orthologous subgroups. The eel clusters and up to seven flanking genes are compared with the genomic organization in zebrafish (Danio rerio) and
medaka (Oryzias latipes). Coloured box outlines indicate preserved synteny between eel and the two other species, dotted outlines denote flanking
genes found on extended eel scaffolds (see Methods). Interpretation should take into account residual synteny between a and b paralogous clusters.
Limited data is available on HoxCb (lost in O. latipes, possibly misassembled in D. rerio) and HoxDb (lost in D. rerio) clusters.
doi:10.1371/journal.pone.0032231.g005

Hox Clusters in the European Eel Genome
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Hox genes are involved in the primary patterning of the body

axis, which implies a functional role for A. anguilla’s Hox surplus in

axial elongation. Alterations in Hox genes have been associated

with elongated body plans [30,31], however the changes observed

are of a regulatory nature, and do not involve extra genes. For

example, elongation of the body axis in snakes has been linked to a

spatial relaxation in the posterior end of Hox clusters facilitated by

the insertion of transposable elements between genes [31]. In

addition, even the elongate members of the Elopomorpha (which

also includes non-elongated tarpons, bonefish and others) display

considerable diversity in the developmental mechanisms resulting

in axial lengthening [32]. Hence, the eel’s adult body plan cannot

explain the preservation of primitive Hox clusters between the

TSGD (226–316 million years ago [33]) and the origin of the

genus Anguilla, estimated at 20–50 million years ago [19].

Similarly, if the European eel may at present experience singular

evolutionary forces because of its panmictic population [2], any

explanation these offer does not extend beyond the genus Anguilla

of freshwater eels [34].

Even if for most of their lives eels are eel-shaped, as ocean-

dwelling larvae [35] their body plan is radically different (Figure 1).

In fact, until the late nineteenth century, these large, long-lived,

laterally compressed leptocephali were considered to be autono-

mous pelagic species [36]. Fully transparent and slowly metabo-

lizing, a leptocephalus provides considerable survival benefits

[37,38]. After approximately one year, they undergo a dramatic

metamorphosis [39], including extensive tissue remodelling and

shortening of the body, resulting in cylindrical juveniles. In the

early embryos investigated here (Figure 6), nearly all Hox genes

are expressed and presumably functionally involved in determin-

ing cell fate. Logically, a high gene and cluster count can be

explained by the assumption that the eel’s two body plans are

simultaneously outlined at this stage.

Leptocephali are the fundamental developmental innovation

shared by all Elopomorpha [11–13], and therefore arose either

before or soon after the TSGD, or at the base of the lineage (arrows

in Figure 7). The last alternative is the most parsimonious (no loss of

developmental complexity in advanced teleosts), especially since no

member of the Elopomorpha is known to have ever discarded the

leptocephalous larval stage [11,13]. Regardless, either of the post-

TSGD origins is compatible with an intercalation model of indirect

development [40], in which a temporary excess of developmental

potential was permanently recruited for the conception of an

additional body plan. Although speculative, an explanation

invoking the morphological challenges associated with a complex

life history is consistent with the stable high Hox gene and cluster

count found in the anadromous Atlantic salmon [26].

Further functional studies on eel development will become

possible once A. anguilla’s life cycle can be completed in captivity. In

particular, there exists considerable variation in development

(timing, number of somites) between leptocephali of related and

interbreeding Anguilla species [1,35], which can only be studied

when these larvae can be raised under controlled conditions [8,41].

Methods

Eel embryos
Wild female and male silver short-finned silver eels (A. australis)

from Lake Ellesmere, New Zealand, were held together in a 2,300 L

recirculation system with seawater (30 ppt salinity) at 21uC. Sexual

maturation was induced as described [20]. Briefly, males received

nine weekly injections with 250 IU human chorionic gonadotropin

and females were injected once a week with 20 mg salmon pituitary

extract. Eggs and milt were stripped and the eggs were dry fertilized.

Embryos were reared in glass beakers with UV-sterilized seawater

(35 ppt) at 21uC. At 26, 48 and 96 hpf embryos were fixed in 4%

paraformaldehyde and stored in 100% methanol.

Total RNA was isolated from 27 hpf embryos using the Qiagen

miRNeasy kit according to the manufacturer’s instructions (Qiagen

GmbH, Hilden, Germany), and analyzed with an Agilent Bioana-

lyzer 2100 total RNA Nano series II chip (Agilent, Santa Clara). A

transcriptome library was prepared from 10 mg total RNA, using the

Illumina mRNA-Seq Sample Preparation Kit according to the

manufacturer’s instructions (Illumina Inc., San Diego, USA).

Genome size determination
Blood samples taken from two eels (A. anguilla and A. australis)

were washed with physiological salt and fixed in cold ethanol.

Prior to analysis the cells were collected, resuspended in

physiological salt and stained with propidium iodide. After

Figure 6. Hox gene expression in A. australis embryos. A) mRNA-
seq-based gene expression in a 27 hpf embryo. B) Whole mount in situ
hybridizations showing the expression of HoxB9a, HoxD12b and
HoxC13a. HoxB9a expression can be detected in 26 hpf (dorsal view)
and 48 hpf (lateral tail region view) embryos. HoxD12b and HoxC13a
display expression in the tail region (lateral views) at 96 hpf, but not at
48 hpf. White arrowheads indicate anterior expression boundaries. Scale
bars correspond to 100 mm.
doi:10.1371/journal.pone.0032231.g006

Hox Clusters in the European Eel Genome
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30 minutes of incubation the cells were analyzed by FACS, using

human blood cells as a size reference (3.05 Gbp haploid). The eel

genome size was calculated by (human size)/(mean fluorescence

human)6(mean fluorescence eel). Both Anguilla genomes were

determined to be 1.1 Gbp in size (haploid).

Genomic DNA libraries
Genomic DNA was isolated from blood of a female yellow

European eel (A. anguilla, caught in Lake Veere, The Netherlands)

using the Qiagen Blood and Tissue DNeasy kit according to the

manufacturer’s description. Paired-end libraries were prepared

from 5 mg of isolated gDNA using the Paired-End Sequencing

Sample Prep kit according to the manufacturer’s description.

Either a 200 bp band or a 600 bp band was cut from the gel

(libraries PE200 and PE600, Table S1). After amplification for 10

cycles the resulting libraries were analyzed with a Bioanalyzer

2100 DNA 1000 series II chip.

Mate pair libraries were prepared from 10 mg of isolated gDNA

using the Mate Pair Library Prep Kit v2 (Illumina Inc.). Either a

3,000 bp band or a 10,000 bp band was cut from gel (libraries

MP3K and MP10K, Table S1). After the first gel purification the

fragment length was analyzed using a Agilent Bioanalyzer 2100

DNA 12000 chip. After circularization, shearing, isolation of

biotinylated fragments, and amplification, the 400 to 600 bp

fraction of the resulting fragments was isolated from gel. Finally,

the libraries were examined with an Agilent Bioanalyzer 2100

DNA 1000 series II chip.

Illumina sequencing
All libraries were sequenced using an Illumina GAIIx

instrument according to the manufacturer’s description. Genomic

paired-end libraries were sequenced with a read length of 2676

nucleotides (to ,20-fold genome coverage), genomic mate-pair

libraries with a read length of 2651 nucleotides (to ,33-fold

Figure 7. Model for the evolution of teleost Hox gene organization. Schematic Hox clusters [10,26,52] are superimposed on a species
phylogeny with estimates of divergence times [53,54] – which vary considerably between studies [33]. Ancestral architectures are inferred on the basis of
maximum parsimony, i.e. the number of cluster duplications and gene loss events is minimized. Salmo salar (Atlantic salmon) has presumably lost several
duplicate clusters [26] (not shown). Deduced gene loss in a lineage is illustrated by a cross, question marks denote uncertainty about cluster gene
content in the pre-TSGD actinopterygian Polypterus senegalus (bichir). Arrows indicate the possible origins of the leptocephalus body plan.
doi:10.1371/journal.pone.0032231.g007

Hox Clusters in the European Eel Genome
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genome span), and the mRNA-Seq library with a read length of

2676 nucleotides (Table S1). Image analysis and base calling was

done by the Illumina pipeline.

Genome assembly
Sequencing reads from both paired-end libraries were used in

building the initial contigs (Figure S1). Both sets were preprocessed

to eliminate low quality and adapter contamination. Whenever

possible, PE200 pairs were merged into longer single reads. For

initial contig assembly, we employed the De Bruijn graph-based de

novo assembler implemented in the CLC bio Genomics Work-

bench version 3.6.5 (CLC bio, Aarhus, Denmark). A run with a k-

mer length of 25 nt resulted in an assembly a total length of

969 Mbp and a contig N50 of 1672 bp.

Initial contigs were oriented in larger supercontigs (scaffolds)

using SSPACE [42]. In scaffolding the contigs, we decided to

exclude low-quality and highly repetitive contigs as much as

possible. SSPACE was used in a hierarchical fashion, employing

first links obtained from the PE600 library to generate interme-

diate supercontigs, which were used as input for subsequent runs

with links from the MP3K and MP10K libraries, respectively. At

each stage, a minimum of three non-redundant links was required

to join two contigs. This procedure resulted in a final scaffold set

with a total length of 923 Mbp and an N50 of 77.8 Kbp (Table

S1). AUGUSTUS (version 2.4) was used to predict genes [43],

which were provisionally annotated using Blast2GO (version 2.4.8)

[44]. The draft assembly is available at www.eelgenome.org.

In order to obtain more information on flanking genes for the

analysis of conserved synteny (Figure 5), scaffolds were subjected to

a further round of linking by SSPACE using reduced stringency

(two instead of three non-redundant links required to join scaffolds).

This resulted in extended scaffolds with an N50 of 169 Kbp.

Hox genes
Hox contigs in the short-finned eel embryonic transcriptome

(generated using CLC bio’s de novo assembler) were identified via

Blast [21] searches at the NCBI website (www.ncbi.nlm.nih.gov).

European eel genomic scaffolds were annotated using CLC bio’s

DNA Workbench. Remaining Hox genes and genes flanking the

Hox clusters were identified using Blast, based on AUGUSTUS/

Blast2GO predictions. Annotated Hox scaffolds have been

submitted to GenBank (accession numbers JF891391–JF891400).

MicroRNAs were identified by Blast using H. sapiens and D. rerio

miR-10 and miR-196 sequences (precursors and mature) retrieved

from miRBase release 18 (www.mirbase.org, [45]).

Phylogenetic methods
Species and Hox gene accession numbers used are listed in

Table S4. Amino acid sequences of Hox genes were aligned using

Clustal X [46] and checked manually. After excluding ambiguous

alignments, ProtTest 2.4 [47] was used to choose an optimum

substitution model, based on the Akaike information criterion. The

aligned sequences were subjected to maximum likelihood analysis

using RAxML version 7.2.6 [48] with 1000 rapid bootstrap

replicates (-f a option).

For the analysis of Hox9 genes (Figure 3), 70 aligned residues

were used and analyzed using a JTT+I+C model [49]. All other

alignments were fitted using a JTT+C model. The multi-gene

analyses of HoxA, HoxB, HoxC and HoxD (Figure 4) were based

on alignments of 427, 493, 935 and 308 amino acid residues,

respectively. The phylogenetic trees of sarcopterygian and

actinopterygian Hox9 paralogues (Figure S2) were based on 151

(HoxA9), 210 (HoxB9), 248 (HoxC9), and 136 (HoxD9) residues.

Synteny was analyzed using D. rerio and O. latipes genomic

contexts extracted from Ensembl release 65 (www.ensembl.org),

based on the Zv9 and MEDAKA1 genome assemblies, respec-

tively (Table S5). Pairwise alignments were generated by NCBI

tblastx and analyzed using genoPlotR [50].

Whole mount in situ hybridization
Chromosomal DNA was isolated from A. australis blood using a

DNeasy Blood & Tissue Kit (Qiagen). Riboprobe template

fragments, including a T7 RNA polymerase promoter, were PCR

amplified from chromosomal DNA using the following primer sets:

HoxB9a forward (59-TGAAACCGAAGACCCGAC-39), HoxB9a

reverse (59-GAAATTAATACGACTCACTATAGGGCTGAGG-

AAGACTCCAA), HoxD12b forward (59-TAATCTTCTCAGTCC-

TGGCTATG-39), HoxD12b reverse (59-GAAATTAATACGAC-

TCACTATAGATCCAAGTTTGAAAATTCATATTTGC-39),

HoxC13a forward (59-CACCTTGATGTACGTGTATGAAAA-39),

HoxC13a reverse (59-GAAATTAATACGACTCACTATAGGC-

TCCGTGTATTTCTCTGACG-39). Digoxygenin-labelled ribop-

robes were made according to standard protocols using T7 RNA

polymerase. Whole mount in situ hybridization with labelled

riboprobes was performed at 70uC, according to a slightly modified

version of a standard protocol [51]. Hybridizing riboprobes were

made visible using anti-Digoxigenin AP and BM Purple AP

substrate (Roche). Stained embryos were bleached using hydrogen

peroxide (Sigma-Aldrich) and photographed using a Leica M205

FA stereo microscope.

Supporting Information

Figure S1 Genome assembly pipeline. See Methods section

for details.

(TIF)

Figure S2 Unrooted maximum likelihood phylogenetic
trees of actinopterygian and sarcopterygian Hox9 genes.
See Methods section for details. Sequences used are listed in Table S4.

(TIF)

Figure S3 Meta-genic expression of Hox clusters.
mRNA-seq reads of the A. australis embryo were aligned to entire

Hox-containing scaffolds, demonstrating large amounts of mRNA

production from intronic and intergenic regions.

(TIF)

Table S1 Statistics of European eel genome and short-
finned embryonic eel transcriptome.
(DOC)

Table S2 Hox transcriptome contigs. All de novo assembled

Hox contigs of a 27-hour A. australis embryo map to ten A. anguilla

genome scaffolds.

(DOC)

Table S3 A. anguilla Hox genes. Complete list of A. anguilla

Hox genes, predicted protein sizes, matching A. australis embryo

contigs and best blastp hits.

(DOC)

Table S4 Hox genes used in phylogeny reconstruction.
List of the Hox gene sequences used in this study.

(DOC)

Table S5 Hox clusters used in synteny analysis. Genomic

locations of D. rerio and O. latipes Hox clusters. HoxCb is absent

from O. latipes, and HoxDb from D. rerio. However, the genomic

loci can still be identified based on the presence of flanking gene

duplicates or conserved microRNA (D. rerio HoxDb).

(DOC)
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