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Carbonates in marine sediments and
altered oceanic crust are major carbon
reservoirs on Earth’s surface, which can
be transported into Earth’s interior by
subduction. High-pressure experiments
and thermodynamic models demon-
strate that carbonates can stably exist
under Earth’s lower mantle conditions
[1,2]. However, melting experiments
suggest that subducting carbonate-
bearing oceanic crust will eventually
undergo decarbonation melting at the
mantle transition zone [3]. Therefore,
whether there are some recycled carbon-
ates in the lower mantle remains poorly
understood. Fortunately, an answer has
begun to take shape from the perspective
of metal stable isotopes.

Given the considerable differences in
δ26Mg (=[(26Mg/24Mg)sample/(26Mg/
24Mg)DSM3 − 1] × 1000) and δ66Zn
(= [(66 Zn/64 Zn)sample / (66 Zn/64 Zn)
JMC Lyon − 1] × 1000) between car-
bonates and the mantle [4], Mg and
Zn isotopes of basalts can be used to
trace recycled carbonates or carbonate-
bearing materials in the mantle (see
contributions in this Special Topic and
Refs [4,5]). Many plumes stem from
the core–mantle boundary and their
derivant ocean island basalts (OIBs) can
be regarded as a probe into the lower
mantle. If carbonates can be transported
into the lower mantle and captured
by upwelling plumes, we will have an
opportunity to find light Mg and heavy
Zn isotopic anomalies in OIBs.The same
is true for magmas from large igneous

provinces (LIPs), which have also been
regarded as plume products.

Pitcairn Island in the South Pacific
Ocean and St. Helena Island in the South
Atlantic Ocean are well known for the
occurrence of EM1 (Enriched Mantle 1,
characterizedbyunradiogenic Pb andNd
isotopic signatures) and HIMU (high μ,
μ = 238U/204 Pb, with extremely radio-
genic Pb) OIBs, respectively. In gen-
eral, recycled ancient pelagic sediments
are thought to have contributed to the
EM1 component in the lower mantle
[6] while the recycling of ancient altered
oceanic crust is critical for the formation
ofHIMU[7].Given that both kindsof re-
cycled crustal components may incorpo-
rate carbonates therein, lavas from these
two islands are ideal candidates for prob-
ing potential recycled carbonates in the
lower mantle.
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Figure 1. Variations in δ26Mg versus (a) 206Pb/204Pb and (b) CaO/Al2O3 ratio for different types of
OIBs. In panel (a), the gray arrows denote general explanations for genesis of the two groups of
OIBs: recycled (decarbonated) pelagic sediments (+ oceanic crust) for EM1 lavas (Arrow 1), carbon-
ated peridotite source for HIMU lavas (Arrow 2). The blue curve shows the modeling for isotopic
modification of a peridotitic mantle when it is metasomatized by carbonatitic melts with HIMU-type
Pb isotopes. See Supplementary Data for data sources and modeling process.

Pitcairn OIBs have the lowest δ26Mg
(as low as –0.4�) so far in fresh OIBs
[6] (Fig. 1a) that are distinct from the
normal mantle. The low δ26Mg values
are coupled with low Nb/Th and un-
radiogenic Pb and Nd isotopic ratios,
which can be best explained if the Pit-
cairn EM1 source contains subducted
carbonate-bearing pelagic sediments [6].
However, the low CaO/Al2O3 ratios of
these EM1 basalts (Fig. 1b) contradict
with experimental melts of carbonated
mantle [8] and thus argue against any car-
bonates in the Pitcairn EM1 source. This
paradox can be reconciled by early de-
carbonation reactions during subduction
and the low-δ26Mg signature of carbon-
ates has been inherited by silicate residue
(e.g. eclogite), which ultimately became
part of the Pitcairn plume [6].Therefore,
the low δ26Mg values of Pitcairn basalts
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do not support subduction of actual
carbonate components into the lower
mantle.

Carbonatedmantle has been regarded
as the source of HIMU OIBs because
(i) their low SiO2, high CaO and high
CaO/Al2O3 (Fig. 1b) can be gener-
ated by melting of carbonated peridotite
or eclogite [8], (ii) their trace element
signatures are similar to those of car-
bonatitic melt inclusions in diamonds
and (iii) olivine phenocrysts in HIMU
OIBs have high Ca and low Al con-
tents [7]. However, mantle-like δ26Mg
values were observed in HIMU lavas
(Fig. 1) [9] rather than frequently seen
low-δ26Mg values in basalts generated by
the melting of carbonated sources [4,5].
This is consistent with the metasoma-
tism model for the generation of HIMU
OIBs [7]: the HIMU mantle source
could be carbonated peridotite formed
by interaction between normal peridotite
and carbonatitic melts from subducting
carbonated oceanic crust. Such carbon-
atiticmelts haveMgOcontents (typically
<7.0 wt%; [3]) far lower than mantle
peridotite, which cannot modify the lat-
ter’s Mg isotopic compositions under a
low melt/rock ratio condition (see the
blue curve in Fig. 1a). Therefore, the St.
Helena HIMU melts from carbonated
peridotites still retain mantle-like δ26Mg
values.

Recently, heavy δ66Zn values (0.31–
0.38�) have been found in Crozet OIBs
and have been attributed to carbon-
bearing oceanic crust in the sources [10].
However, it is unclear whether the major
element (e.g. CaO andCaO/Al2O3) and
trace element compositions (e.g. Hf/Sm
ratio) of the Crozet OIBs are consistent
with a carbonated source. Additionally,
we still do not know whether the OIBs
with a previously suggested carbonated
source (e.g. HIMU OIB) have heavy
δ66Zn. Therefore, it is too early to claim
that the high δ66Zn values observed in
severalOIB samples are definite evidence

for recycled carbonate in the deep man-
tle. For LIP-related rocks, Mg and Zn
isotopic anomalies have not yet been
observed in flood basalts. For example,
picrites and basalts of the Emeishan LIP
have mantle-like δ26Mg (–0.35� to
–0.19�) [11] and MORB-like δ66Zn
(0.24–0.34�) [12]. Considering their
high-degree melting origin, the nor-
mal δ26Mg and δ66Zn values of flood
basalts do not mean the lack of recycled
carbonate in their sources because of en-
hanced dilution of melts from peridotitic
mantle. Recently, low δ26Mg values
(–1.09� to –0.35�) have been ob-
served from carbonatites and nephelin-
ites (low-degree mantle melts) from the
Tarim LIP in NW China [13], though
their relationship to the mantle plume is
not as clear as OIBs.

In summary, the ‘carbonate memory’,
including low δ26Mg and high δ66Zn val-
ues, has been found in some OIBs, al-
though there is still a certain distance to
go in proving recycled carbonates in the
lower mantle. Currently, published data
of metal stable isotopes for fresh OIBs
and LIP rocks are still limited. The frac-
tionation behavior of these isotopes dur-
ing melting has not been verified exper-
imentally. There are still few integrated
studies with measurements of multiple
metal stable isotopes, radiogenic isotopes
and major and trace elements on a same
batch of OIB samples. These impedes
the application of these metal stable iso-
topes to trace deep carbonate recycling.
Nevertheless, with the further develop-
ments of analytical techniques, the ex-
panding high-quality database of metal
stable isotopes and the integrated geo-
chemical study of plume-related lavas, we
shall have a clear picture of deep carbon-
ate recycling in the near future.
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