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[Purpose] Recent studies have shown that COVID-19 
is often associated with altered gut microbiota composi-
tion and reflects disease severity. Furthermore, various 
reports suggest that the interaction between COVID-19 
and host-microbiota homeostasis is mediated through 
the modulation of microRNAs (miRNAs). Thus, in this 
review, we aim to summarize the association between 
human microbiota and miRNAs in COVID-19 patho-
genesis.

[Methods] We searched for the existing literature 
using the keywords such “COVID-19 or microbiota,” 
“microbiota or microRNA,” and “COVID-19 or probiot-
ics” in PubMed until March 31, 2021. Subsequently, we 
thoroughly reviewed the articles related to microbiota 
and miRNAs in COVID-19 to generate a comprehen-
sive picture depicting the association between human 
microbiota and microRNAs in the pathogenesis of 
COVID-19.

[Results] There exists strong experimental evidence 
suggesting that the composition and diversity of human 
microbiota are altered in COVID-19 patients, implicat-
ing a bidirectional association between the respiratory 
and gastrointestinal tracts. In addition, SARS-CoV-2 
encoded miRNAs and host cellular microRNAs mod-
ulated by human microbiota can interfere with viral 
replication and regulate host gene expression involved 
in the initiation and progression of COVID-19. These 
findings suggest that the manipulation of human micro-
biota with probiotics may play a significant role against 
SARS-CoV-2 infection by enhancing the host immune 
system and lowering the inflammatory status.

[Conclusion] The human microbiota-miRNA axis can 
be used as a therapeutic approach for COVID-19. 
Hence, further studies are needed to investigate the 
exact molecular mechanisms underlying the regulation 
of miRNA expression in human microbiota and how 
these miRNA profiles mediate viral infection through 
host-microbe interactions.

[Key words] SARS-CoV-2, COVID-19, human micro-
biota, dysbiosis, gut-lung axis, microRNAs
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INTRODUCTION
Coronavirus disease 2019 (COVID-19) caused by severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a global 
health emergency, and its heterogeneity driven by mutations and recom-
binations has instigated constant and long-term health threats1,2. SARS-
CoV-2 belongs to the Coronaviridae family and is a single-stranded RNA 
virus. Its viral spike glycoprotein (S protein) specifically binds to the hu-
man angiotensin-converting enzyme 2 (ACE2) receptor on the surface of 
alveolar epithelial cells for entry into host cells3. Essentially, the host ser-
ine protease TMPRSS2 cleaves the S protein and mediates membrane fu-
sion for virus entry into host cells4,5. Infection with SARS-CoV-2 triggers 
a cytokine storm characterized by an uncontrolled systemic hyper-in-
flammatory response and primarily affects the respiratory system with di-
verse clinical symptoms such as high fever, cough, and severe pulmonary 
conditions6,7. Diarrhea, nausea, and vomiting have also been observed in 
a substantial proportion of patients, indicating that the gastrointestinal (GI) 
tract is associated with COVID-198. As ACE2 receptors are expressed 
not only in the upper respiratory tract, but also in the GI tract, the virus 
has been detected in lung, blood, and fecal samples from COVID-19 pa-
tients9,10. In fact, the virus has been detected in fecal samples at a higher 
level than in nasopharyngeal specimens of young COVID-19 patients11. 
Therefore, SARS-CoV-2 may affect different people in different ways 
throughout various organ systems by directly and indirectly deregulating 
the host immune systems7. 

The human microbiome differs remarkably across age, sex, race, and 
ethnicity, suggesting that the specific and unique profiles of microbial 
population12,13 perform many essential roles for human health12. In a 
healthy state, the human microbiota plays various roles, including ener-
gy recovery from primary and secondary metabolism, protection from 
pathogenic invasion, and modulation of inflammatory responses and 
the host immune system via interaction with host immune cells14,15. The 
importance of maintaining eubiotic conditions in microbial ecosystems 
is strongly associated with health and disease states, and it is known that 
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multiple factors, such as lifestyle, diet, stress, and physical 
activity, can influence the status of the gut microbiome14-17. 
Growing evidence suggests that SARS-CoV-2 has been 
detected not only in the respiratory system (nasopharyngeal 
and mid-nasal specimens) but also in the GI tract (stool and 
rectal swabs) of COVID-19 patients. Infection of gut epithe-
lial cells by SARS-CoV-2 can disrupt the gut microbiome, 
inducing dysbiosis, intestinal inflammation, and gastrointes-
tinal symptoms18,19. Moreover, recent studies have shown 
that COVID-19 is often associated with altered gut microbi-
ota composition, reflecting disease severity20-23. As growing 
evidence indicates the interaction between COVID-19 and 
host-microbiota homeostasis, researchers have been inves-
tigating the potential of manipulating gut microbiota with 
probiotics to enhance the host immune system24,25. The cur-
rent review summarizes important findings on the direct as-
sociation between SARS-CoV-2 infection and the gut-lung 
axis in addition to the pathological effects of dysbiosis on 
COVID-19 severity. We have also highlighted the potential 
roles of microRNAs (miRNAs) modulated by altered micro-
biota in COVID-19 pathogenesis. In conclusion, we suggest 
the implications of probiotics or miRNA-based therapies for 
the intervention and treatment of COVID-19.

METHODS
We searched for existing scientific literature using the 

keywords “COVID-19 or microbiota,” “microbiota or 
microRNA,” “COVID-19 or probiotics” in PubMed until 
March 31, 2021. Next, we reviewed the articles related to 
the alteration of human microbiota by SARS-CoV infection 
in respiratory and GI tract to understand the involvement 
gut-lung axis in COVID-19 pathogenesis. In addition, we 
have summarized the interaction between human microbiota 
and miRNA expression in the progression of COVID-19. 

The altered gut and lung microbiota in the patho-
genesis and prognosis of COVID-19

Multiple studies have shown the involvement of human 
microbiota in innate and adaptive immunity and respiratory 
infections26. The healthy human lung has low density but 
harbors a high microbial diversity with the most prevalent 
bacterial compositions of Bacteroides, Firmicutes, and 
Proteobacteria27. However, in case of COVID-19, the lung 
microbiota in bronchoalveolar lavage fluid of COVID-19 
patients shows significant differences in microbiota com-
position, with enrichment of pathogenic and commensal 
bacteria, indicating microbial dysbiosis in COVID-1928. In 
addition, Fat et al. have evaluated the lung microbiota in 
lung biopsies from 20 patients with fatal COVID-19 and 
observed that Acinetobacter, Brevundimonas, Burkholderia, 
and Chryseobacterium were commonly present with mixed 
fungal infections in these patients29. To date, few studies 
have analyzed the nasopharyngeal microbiota of patients 
with COVID-19 patients30-32. Hoque et al. have investigated 
the profiles and genomic determinants of the microbiome 
in nasopharyngeal specimens with and without COVID-19. 

They found that the typical composition of bacterial phyla is 
represented by Proteobacteria, Tenericutes, Actinobacteria, 
and Cyanobacteria in the COVID-19 metagenome30 (Table 
1). Although the dominant phyla showed no statistically 
significant differences among groups in concordance with 
another study31, COVID-19 still affected the prevalence of 
certain microbes such as Proteobacteria and Cyanobacteria, 
suggesting that microbiomes in the respiratory tract might 
have a significant impact on the pathogenesis and severity 
of COVID-1930. Moreover, Budding et al. have uncovered 
evidence for an association between decreased pharyngeal 
microbial diversity and SARS-CoV-2 infection and suggest-
ed an age-dependency of pharyngeal microbiota dysbiosis32. 

Along with lung microbiota, the composition and diversi-
ty of gut microbiota are also altered in COVID-19 patients, 
suggesting a bidirectional association between the respirato-
ry and GI tract microbiota18,33. The commensal microbiota 
ecosystem in the gut is complex and dynamic, and plays an 
important role in regulating the host immune system and 
metabolism34. During COVID-19 infection, the disrupted 
gut microbiome contributes to the severity of COVID-19 
by promoting gut permeability and systemic inflammation, 
which leads to impaired ACE2 expression19,35. Studies have 
shown that the gut microbiota of COVID-19 patients is 
characterized by decreased levels of beneficial bacteria with 
a predominance of opportunistic bacteria20,21 (Table 1). A 
cross-sectional study evaluating the intestinal microbiota in 
fecal samples from COVID-19 patients and healthy controls 
has reported that the gut microbiota of COVID-19 patients 
is significantly dominated by opportunistic pathogens, such 
as Streptococcus, Rothia, Veillonella, and Actinomyces, with 
reduced bacterial diversity and beneficial symbionts com-
pared with healthy controls20. Similarly, the gut microbiota 
of COVID-19 patients showed significant alterations during 
hospitalization, and intestinal dysbiosis was positively cor-
related with COVID-19 severity21. The baseline fecal abun-
dance of opportunistic pathogens, such as Coprobacillus, 
Clostridium ramosum, and Clostridium hathewayi showed a 
positive correlation with COVID-19 severity. However, the 
anti-inflammatory bacterium, Faecalibacterium prausnitzii, 
was inversely correlated with the severity of COVID-19 in 
this study. In addition, Yeoh et al. have demonstrated that 
the dysbiotic gut microbiota composition is concordant 
with COVID-19 severity, which is associated with plasma 
concentrations of several cytokines, chemokines, and in-
flammation markers22. Even after recovery from COVID-19 
and resolution of respiratory symptoms, gut microbiota dys-
biosis was still detectable and persistent, suggesting impli-
cations for future immune-related health problems beyond 
COVID-1921,22. Moreover, Gou et al. have suggested that the 
disrupted composition of gut microbiota may underlie the 
susceptibility of normal individuals to severe COVID-19, 
associated with an abnormal inflammatory status36. Prom-
inently, these studies demonstrate a direct interaction be-
tween SARS-CoV-2 infection and microbiota dysbiosis of 
the respiratory and GI tracts. Therefore, severe COVID-19 
patients may have disrupted the gut epithelial barrier, which 
may allow the virus to reach not only the gut-lung axis but 
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also internal organs by entering the bloodstream23. 

The interaction of human microbiota and miRNAs 
in COVID-19 pathogenesis

The potential mechanism by which gut microbiota affects 
host pathophysiology is by precisely modulating the gene 
expression through miRNAs at the post-transcriptional lev-
el37,38. Nakata et al. have demonstrated that increased miR-
21-5p expression by commensal bacteria affects the intesti-
nal epithelial permeability by regulating ADP ribosylation 
factor 439. Intestinal probiotics, Lactobacillus fermentum, 
and Lactobacillus salivarius can increase miR-155 and miR-
233 expression and enhance intestinal barrier function40. The 
exact mechanisms by which gut microbiota regulate miR-
NA expression remain largely unknown; however, different 
metabolites produced by gut microbiota may regulate the 
miRNA profiles of host cells. Notably, microbiota-derived 
extracellular vesicles harbor biologically active components, 
such as mRNAs and miRNAs, which may affect host gene 
expression41. Host miRNAs, such as fecal miRNAs mainly 
produced by intestinal epithelial cells, can be delivered to 
the gut microbiota and regulate the transcription and expres-
sion of microbial genes, shaping gut microbiota composi-
tion42. Collectively, these results indicate the implication of 
host miRNA expression for gut microbiota profiles and their 
bidirectional interaction in host homeostasis. 

Previous studies have demonstrated that several viruses 
encode miRNAs that regulate host gene expression involved 
in promoting apoptosis in order to enhance their replica-
tion43. Aydemir et al. have identified 20 pre-miRNA candi-
dates and 40 mature miRNAs encoded by SARS-CoV-2, 
which can regulate host gene expression by targeting 
NFKB, JAK/STAT, and TGFB signaling pathways44 (Table 
2). Therefore, viral miRNAs, such as SARS-CoV-mir-D8-
5p and SARS-CoV-mir-R1-5p, target many human genes 

involved in the transcription, metabolism, and immune sys-
tems, implicating the roles of miRNAs during viral infec-
tion44,45. Likewise, predicted 26 mature miRNAs from the 
SARS-CoV-2 genome might target human genes involved 
in innate antiviral immunity46. In SARS-CoV-2, small viral 
RNAs contribute to lung pathology by inducing pro-inflam-
matory cytokines, whereas their antagomirs specifically 
reduced the inflammatory lung pathology, highlighting the 
potential role of the small viral RNA antagomiRs in eliciting 
direct antiviral effects47. 

Host miRNAs can interfere with viral replication both 
directly and indirectly by inducing antiviral reactions in 
the progression of viral infection48 (Table 2). It has been 
demonstrated that the abundance and profile of miRNAs are 
associated with the severity and mortality of COVID-19 in 
aged patients, indicating the essential roles of host cellular 
miRNAs in the pathogenesis of COVID-1949. Likewise, the 
low expression and lack of differential expression of miR-
NAs have been predicted to promote susceptibility of lung 
epithelial cells to SARS-CoV-2 infection50. Arisan et al. 
have identified 7 key miRNAs (miR-8066, miR-5197, miR-
3611, miR-3934-3p, miR-1307-3p, miR-3691-3p, and miR-
1468-5p) with significant links to viral pathogenicity and 
host responses51. When evaluating the miRNA expression 
pattern in peripheral blood, miR-16-2-3p, miR-6501-5p, and 
miR-618 were the most upregulated miRNAs in COVID-19 
patients compared to the control group. In contrast, the ex-
pression of other miRNAs, such as miR-183-5p, miR-627-
5p, and miR-144-3p, was significantly reduced in patients 
compared to healthy donors, and were associated with the 
dysregulation of immune function through differential miR-
NA expression profile52. Recently, the potential functions 
of 13 host miRNAs in SARS-CoV-2 infection have been 
systematically reviewed, suggesting their potential roles 
in the interaction between miRNAs and viral activity53. 

Specimens Non-COVID-19 COVID-19 patients Ref.

Nasopharyngeal specimens

Firmicutes (56.47%)
Bacteroidetes (14.59%)
Actinobacteria (14.12%)
Fusobacteria (2.38%)

Proteobacteria (35.59%)
Tenericutes (18.09%)
Actinobacteria (17.42%)
Cyanobacteria (11.23%)
Firmicutes (7.6%)
Bacteroidetes (6.2%)

[30]

Fecal specimens

Romboutsia
Faecalibacterium
Fusicatenibacter
Eubacterium hallii group

Streptococcus
Rothia
Veillonella
Erysipelatoclostridium
Actinomyces

[20]

Eubacterium
Faecalibacterium prausnitzii 
Roseburia
Lachnospiraceae taxa

Depletion of commensal symbionts
      Eubacterium ventriosum
      Faecalibacterium prausnitzii
      Roseburia
      Lachnospiraceae taxa [21]
Enrichment of opportunistic pathogens
      Clostridium hathewayi
      Actinomyces viscosus
      Bacteroides nordii

Table 1. Alteration of the predominant microbiome in healthy verses COVID-19 patients.
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Moreover, several studies have investigated host miRNAs 
that directly target the expression of ACE2 and TMPRSS2, 
which are critical for viral entry and insertion. For example, 
miR-1246, miR-200c-3p, and miR-125a-5p were predicted 
to regulate ACE2 expression levels and their associated 
pathways54-56, while let-7a-5p and let-7d-5p were reported to 
negatively correlate with TMPRSS2 expression56-58. These 
results demonstrate the impact of host cellular miRNAs on 
SARS-CoV-2 infection and COVID-19 pathogenesis.

DISCUSSION
In this review, we summarize the current literature to date 

that provides evidence for the interaction of lung and gut 
microbiota in the pathogenesis and prognosis of COVID-19, 
with implications for modulating miRNA expression by al-
tered microbiome signatures (Figure 1).

The diversity and abundance of microbiota signatures 
among individuals strongly affect human health and dis-
ease-related inflammatory and metabolic conditions12-16. In a 
healthy state, the human microbiota plays various roles, in-
cluding energy recovery from metabolism, protection from 
pathogenic invasion, and modulation of the host immune 
system14,15. Several factors can modify human microbiota, 
including host genetics, lifestyle, diet, age, stress, physical 
activity, and antibiotics, and they continuously affect the 
healthy microbiota throughout the life of the host14-17. In 
particular, the frequency and duration of physical activity 
have strong evidence for a positive association with gut 
microbiome diversity15. In addition, host cells affect the 
composition and productivity of gut microbiota by releasing 
nonspecific factors (e.g., antimicrobial peptides, secreted 
immunoglobulin A and mucins, and epithelial barrier) and 
specific factors, such as miRNAs17,59. For example, hsa-
miR-515-5p and hsa-miR-1226-5p can enter bacterial cells 
and have a specific effect on gut bacterial growth17. In ad-
dition, the gut microbiota interacts with the host through 
various ligands (e.g., pathogen-associated molecular pat-
terns) and produces bioactive metabolites, including short-
chain fatty acids, anti-inflammatory and anti-proliferative 
lipids, essential vitamins (vitamins B and K), hormones, and 
serotonin14. Consequently, gut microbiota can influence host 

pathophysiology, and host factors reciprocally shape the 
bacterial ecosystem across individuals. 

Growing evidence on host-microbe interactions indicates 
that microbiota is an essential mediator in communication 
between the gut and other organs and maintaining human 
health via the gut microbiota-miRNA interactions60,61. Inter-
plays between microbiota and miRNAs have been reported 
in several lung diseases62, implicating the beneficial effects 
of probiotics on the modulation of miRNAs. Thus, the ad-
ministration of probiotics may function through several sig-
naling pathways, resulting in the prevention and treatment 
of various pathological conditions63. As microbiome dysbio-
sis is linked with the severity of COVID-19, the implication 
of probiotics in modulating the severity has been suggested 
as a promising weapon against COVID-1924,25,64. Several 
studies focusing on the gut microbiome and probiotics in 
COVID-19 have been conducted, and several registered 
clinical trials have focused on the usage of probiotics in 
COVID-1924.

MicroRNAs produced by all living organisms and virus-
es are well-conserved and regulate the expression of their 
target genes65. Although the exact mechanisms of host and 
viral miRNAs in SARS-CoV-2 infection are not well-de-
fined, it is evident that virus-encoded miRNAs and host 
cellular miRNAs are associated with the initiation and se-

Description Ref.

Viral miRNAs SARS-CoV-2-mir-D8-5p, SARS-CoV-2-mir-D10-3p, SARS-CoV-2-mir-D9-5p etc.: Regulate NFκB, JAK/STAT 
and TGFβ signaling pathways [44]

Host miRNAs

7 key miRNAs linked to viral pathogenicity and host responses: miR-8066, miR-5197, miR-3611, miR-3934-3p, 
miR-1307-3p, miR-3691-3p, and miR-1468-5p [51]

Differential miRNA expression in the peripheral blood from COVID-19 patients as compared to healthy controls 
   - Up-regulation: miR-16-2-3p, miR-6501-5p, miR-618, miR-61-3p  
   - Down-regulation: miR-183-5p, miR-627-5p, miR-144-3p, miR-21-5p

[52]

Target genes and their targeting miRNAs related to viral entry 
   - ACE2: miR-1246, miR-200c-3p, miR-125a-5p 
   - TMPRSS2: let-7-5p, let-7d-5p

[54-58]

Table 2. List of miRNAs related to COVID-19 pathogenesis.

Figure 1. Interplays between human microbiota and miRNAs in 
COVID-19 pathogenesis.
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verity of COVID-19. SARS-CoV-2 encoded miRNAs alter 
host gene expression to create a favorable environment for 
viral infection. Interestingly, host miRNAs can play dual 
roles as both antiviral and proviral factors45. The number of 
host miRNAs targeting the SARS-CoV-2 genome sequence 
inhibits viral replication by regulating innate antiviral im-
munity53. Other host microRNAs can increase the stability 
of the viral genome and inhibit decay, which is beneficial 
for viral replication and propagation66. All these results indi-
cate the potential impact of miRNAs on SARS-CoV-2 and 
host interplay, suggesting the development of therapeutic 
approaches for miRNAs against COVID-19. Therefore, 
miRNA-based antiviral therapies, such as miRNA mimics 
or inhibitors, can be used for the intervention and treatment 
of COVID-1967,68. 

The United States Centers for Disease Control and Pre-
vention (CDC) has reported that 45% of COVID-19 patients 
requiring hospitalization are ≥ 65 years old, and the highest 
mortality and morbidity against COVID-19 have been re-
ported in older patients with underlying chronic diseases 
associated with inflammation (https://www.cdc.gov/corona-
virus/2019-ncov/need-extra-precautions/index.html). Elder-
ly patients with certain medical conditions may be highly 
vulnerable to the infection with SARS-CoV-2 because they 
are associated with altered gut microbiota and the integrity 
of epithelial barriers69. In addition, the expression of ACE2, 
which is critical for viral interaction with host cells, has 
been shown to increase with age, accounting for increased 
susceptibility to older patients70. Moreover, the abundance 
and profile of miRNAs have also been associated with the 
severity and mortality of COVID-19 in aged patients, in-
dicating the essential roles of host cellular miRNAs in the 
pathogenesis of COVID-1949. 

In conclusion, the human microbiota-miRNA axis can be 
used as a promising therapeutic approach for the manage-
ment of COVID-19. Therefore, further studies are essential 
to investigate the exact molecular mechanisms of how 
altered human microbiota regulate the miRNA expression 
profile and how these deregulated miRNA profiles mediate 
viral infection through host-microbe interactions.  
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