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Implementation of an AI-assisted fragment-
generator in an open-source platform†

Alan E. Bilsland,a Angelo Pugliese *b and Justin Bowera

We recently reported a deep learning model to facilitate fragment library design, which is critical for

efficient hit identification. However, our model was implemented in Python. We have now created an

implementation in the KNIME graphical pipelining environment which we hope will allow experimentation

by users with limited programming knowledge.

Introduction

Fragment based drug discovery has demonstrated notable
successes in the past several years with Sotorasinib and
Asciminib being the most recent approvals,1,2 while 21
fragment to lead projects were reported in 2020 alone.3 A
central feature of the FBDD paradigm is that well designed
fragment libraries allow proportionately greater coverage of
chemical space than traditional high throughput screening
(HTS) libraries.4 For example, drug-like chemical space is
estimated at 1023–1060 molecules, whereas there have been
calculated to be 1.66 × 1011 fragments consisting of C, N, O,
S, and halogens up to 17 heavy atoms.5–7

Fragments are also effective start points for optimisation
since binding interactions with protein targets can be more
efficient, though of lower affinity, than those of larger
molecules.8,9 However, good library design is critical to
exploit these potential advantages. Fragment libraries must
balance chemical and pharmacophore diversity, molecular
complexity, and physicochemical characteristics.

We recently reported a deep learning fragment generator
model using a chemical autoencoder.10 Full details of the model
are given in that publication. Briefly, however, autoencoders are
an encoder/decoder neural network architecture.11 In training,
the encoder produces a compressed “latent” representation of
its input, while the decoder reconstructs inputs from this. In
chemical autoencoders, inputs/outputs are molecular
representations. A frequently used approach is based on
encoding Daylight SMILES strings.12,13 In generation, the space
of latent representations is sampled and, in the aforementioned
case, novel molecules can be output in SMILES format.14

Our model is based on Long Short Term Memory
Recurrent Neural Networks15 and encodes both SMILES and
chemical/pharmacophore fingerprint features. Empirically,
merging chemical representations appears to result in
improved generative performance, similar to the approach of
Bjerrum and colleagues who trained “heteroencoder” models
to convert between different representations of the same
molecule.14 In our original publication we obtained higher
similarity scores at greater sampling distance around known
molecules using our model than with others tested.

We also applied transfer learning to the fingerprint
decoder branch to develop a model which simultaneously
outputs fragment SMILES and predicts the likelihood that
generated molecules will be “privileged” fragments, capable
of binding to multiple protein targets. We based this training
on data from previous in-house fragment screens.10 Unlike
the undesirable phenomenon of pan-assay interference
compounds in HTS, fragments able to bind to multiple target
classes can be useful library members since specificity is
built in after screening, during fragment elaboration.16

In generation, our model attempts to optimise this
fragment score while also considering synthetic accessibility
score,17 and fraction of sp3-hybridised carbons (FSP3), among
other features. Previous analyses have indicated poorer
DMPK and clinical success rates for highly sp2-hybridised
molecules.18,19 Therefore, increasing fragment library
3-dimensionality may be advantageous.20,21 Although greater
3D character in a library may also lead to lower hit rates, hit
rate is not the defining quality metric for a library and
greater specificity may be obtained with more out of plane
interactions in certain target pockets.22

Optimisation of combined scores is performed using
particle swarm optimisation (PSO), using the PySwarms
library.23,24 In PSO, multiple “particles” move in a search space,
each having a “self-belief” (cognitive) component of velocity,
and a component influenced by the whole swarm (social).
Velocities are iteratively updated as each particle moves, based
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on scoring the current positions of all particles and comparison
with the global best position of the swarm seen so far. In this
application, the position of a particle corresponds to a latent
embedding that may decode to a valid molecule.

Ultimately, particles are expected to converge around a
good solution. An additional inertial weight term controls the
magnitude of velocity update and the exploration/
convergence behaviour. This sampling approach was
previously reported to be an efficient approach for sampling
with continuous latent-variable chemical generator models25

and has the advantage that multiple objectives for
optimisation are easily combined.

In our implementation, the swarm is initialised around
the latent encoding of a seed molecule and searches a
bounded neighbourhood in the vicinity of the seed. PSO runs
are performed several times for each input. If a higher
scoring molecule is found on any run, the swarm reinitialises
around the latent encoding of that new molecule for the next
run. As the PSO search converges at high scoring molecules,
similar molecules can also be found which improve the
score. The swarm therefore moves to sample better regions of
the search space over successive runs. For each initial input,
we perform N runs, which we refer to as sampling depth.

KNIME (Konstanz Information Miner) Analytics Platform
(KNIME AG, Zurich, Switzerland) is an open source visual
programming platform for data science.26 Within the
environment, data processing workflows are built using a
pipelining model in which successive processing steps are
implemented by connected nodes, each of which executes
one step of the overall workflow and processed data flows
between nodes.

The interface is intuitive and easy to use, allowing
integration with a broad range of data sources, 3rd party
tools and software platforms; in particular, a range of
cheminformatics tools are available.27 Furthermore, the
platform provides integration with several programming
languages including Python and libraries such as Tensorflow
for deep learning applications.28

Workflows can be exported and shared easily among
individual users along with associated data, while the KNIME
Server platform which is available via either commercial or
academic licensing allows for easy deployment of workflows
in a webportal interface. The fragment generator model
described above has now been made available as an
implementation in KNIME, developed in version 4.1.2 and
tested on KNIME Server version 4.10.1 on Ubuntu 16.04. The
workflow is available at https://github.com/abilsland/
fragmentEncoder_KNIME.

KNIME server implementation

Screenshots of the protocol in KNIME Server webportal are
given in Fig. 1. As shown in Fig. 1A, users are prompted to
upload a SMILES file containing seed molecules to initiate
PSO. A default file is provided in the data folder of the
workflow. Our training molecules were stripped of

stereochemistry and the workflow performs this step, in
addition to removal of SMILES containing certain atoms not
in the model vocabulary if present. The complete model
vocabulary is available within the workflow annotation and at
https://github.com/abilsland/fragmentEncoder. Additional
filters can be added easily to a Table Creator node in the
workflow if required (Fig. 2A).

Uploaded SMILES are displayed (Fig. 1C), and the user is
given the choice of GPUs available on the server to use for the
run (Fig. 1A). We note that some potential users may operate in
environments with limited resource where different
applications compete for GPU resource and have differing
compute mode requirements. We therefore display the
compute mode. Default (rather than exclusive process) is
preferred to allow multiple processes to run on the same GPU.

GPU information is displayed in the format <index>;<
compute mode>#<GPU UUID>, where index is the GPU
index returned by the Nvidia System Management Interface
tool (nvidia-smi; https://developer.nvidia.com/nvidia-system-
management-interface). We use the GPU Universally Unique
ID (UUID) to set visible devices for Keras Network Executor
KNIME nodes and within the Python script that runs PSO.
This avoids the possibility for index inconsistencies that
might arise in the Network Executor nodes since the default
CUDA ordering of GPUs may differ from that returned by
nvidia-smi.

After initial processing, Morgan fingerprints (radius 2)
and pharmacophore feature fingerprints are generated, and
features retained in our original training are extracted.

Subsequently, fingerprints and smiles are encoded by
relevant branches of the model, and latent vectors generated

Fig. 1 KNIME webportal implementation. A, File upload and GPU
choice screens. B, PSO swarm configuration options. C, Display of
uploaded PSO seeds. D, PSO results display. E, Download and filtering.
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for the inputs. In our original implementation, this step
would require knowledge of RDKit (RDKit: open-source
cheminformatics; https://www.rdkit.org) and use of the utility
functions supplied with the code.

A key feature for web users without knowledge of Python
is the ability to easily control key parameters of the particle
swarm using sliders (Fig. 1B). In our original
implementation, control of these would have involved
modification of the code and pickled parameters file. The
default values for these in the workflow are those values used
in the publication.10 Adjustment of the limits of these is
easily accomplished by updating the entries in the Table
Creator nodes in the “configure swarm” components of the
workflow (Fig. 2B).

Users have control of the number of particles, number of
iterations over which to perform PSO, boundary distance to
search around the current latent vector, sampling depth
(number of samples starting from the embedding of each
molecule in the input), in addition to swarm velocity and

inertia weight parameters. For example, more iterations will
increase the time of a run but may lead to more high-scoring
outputs while larger bounds may produce greater diversity
but also increases the search space which may reduce the
chance of finding high-scoring molecules.

After completion of the run, generated molecules are
displayed, together with the seed molecule whose latent
vector defined the search vicinity on that sampling run
(Fig. 1D). Note that seed molecules in the output are not
necessarily those present in the input file, since our search
strategy recentres the swarm each time a molecule with
improved score is found on any sampling round up to
sample depth for each input. Therefore, seeds which
resulted in high-scoring generated molecules may
themselves have been generated on a previous run. Also
returned are overall PSO score and the frequent-hitter
prediction score.

Finally, users can download the results file or adjust the
overall score cutoff for molecules returned by use of the
slider in Fig. 1E. To our knowledge there is not yet a
dynamically updating Table Viewer in KNIME that can be
controlled with a variable. Therefore, it is necessary to use
the “next” and “back” buttons in the webportal to update the
molecules displayed and available for download. We suggest
the default value of −4 as shown. However, some penalties in
PSO correspond to features which other users may deem
acceptable such as very low or high fsp3 and 7/8 member
rings. Thus, lower scores may be acceptable.

One important aspect of scoring is the absence of structural
alerts in generated molecules. These are defined by Daylight
SMARTS filters (https://www.daylight.com/dayhtml/doc/theory/
theory.smarts.html). We supply a default set in a file in the
workflow data folder “SMARTS_unwanted_functionalities.txt”.
However, these are mainly a publicly available set from
SureChembl.org (https://www.surechembl.org/knowledgebase/
169485-non-medchem-friendly-smarts). We typically employ a
more extensive set internally and it is highly recommended
that users augment the supplied set. Without sufficient
definition of unsuitable molecules, the swarm may fail to
converge in high-scoring regions of the search space.

We direct interested readers to an additional set of filters
derived from the pan-assay interference compound filters
reported by Baell and Holloway.29 As detailed in ref. 30, these
were converted to SMARTS format by Rajarshi Guha.
Subsequently, Greg Landrum curated these for optimal
performance in RDKit (https://rdkit.blogspot.com/2015/08/
curating-pains-filters.html). These curated filters are available
at https://github.com/rdkit/rdkit/blob/master/Data/Pains/
wehi_pains.csv.

KNIME requirements to execute the workflow are Python,
RDKit, and Keras integration. For those unfamiliar with
KNIME, RDKit and Keras nodes can be installed from within
the software, using File > Install KNIME extensions. Within
the available software extension locations, RDKit nodes are
found at KNIME Community Extensions – Cheminformatics
and Python/Keras nodes at KNIME & Extensions. However,

Fig. 2 User editable parts of the workflow. A, Input molecule
filters. Top, filter SMILES metanode; bottom, opened metanode. If
additional filters are required, these can be added as SMARTS
patterns in the Table Creator node. B, Swarm configuration
components. Top, the components; bottom, opened component. If
different limits on the PSO options are required, the Table Creator
configuration can be edited.

RSC Medicinal Chemistry Research Article

https://www.rdkit.org
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.surechembl.org/knowledgebase/169485-non-medchem-friendly-smarts
https://www.surechembl.org/knowledgebase/169485-non-medchem-friendly-smarts
https://rdkit.blogspot.com/2015/08/curating-pains-filters.html
https://rdkit.blogspot.com/2015/08/curating-pains-filters.html
https://github.com/rdkit/rdkit/blob/master/Data/Pains/wehi_pains.csv
https://github.com/rdkit/rdkit/blob/master/Data/Pains/wehi_pains.csv


1208 | RSC Med. Chem., 2022, 13, 1205–1211 This journal is © The Royal Society of Chemistry 2022

simply opening the workflow will also give the option to
automatically search and install required extensions.

On first installation of the Python/KNIME nodes, these
node sets also require Anaconda (Anaconda Inc., Austin, TX
78701, USA), available at https://www.anaconda.com. Within
KNIME, the path to the Anaconda installation should be set
in File > Preferences > Python. Default Anaconda
environments can be generated automatically in KNIME
preferences, though our model requires a specific
environment which we make available as a yml file, along
with the workflow. For those not comfortable working in
Anaconda at the command line, the required environment
can be generated by importing the file in the Anaconda
Navigator GUI. KNIME preferences should then be set to use
this environment. The same environment should be used
within the File > Preferences > Python deep learning setting.

Although our implementation has only been tested on in
our internal Linux installation of KNIME Server, the workflow
is expected to be portable to Windows. A Windows-specific
conda environment file is also provided since the
distributions of some required packages obtained under
Anaconda are platform-specific.

Use case – generation of a GPCR-
focused fragment library

To illustrate use of the workflow, we obtained a set of known
GPCR-targeted drugs from ESI† Table S2 of ref. 31. SMILES
were obtained from these using the Chemical Identifier
Resolver API at the National Cancer Institute Computer Aided
Drug Design Group Chemoinformatics Tools and User
Services (https://cactus.nci.nih.gov/chemical/structure).
Fragments were obtained from these using the retrosynthetic
combinatorial analysis procedure (RECAP,32). Existing RDKit
KNIME integration includes a molecule fragmenter node,
although this is not based on RECAP.

We removed dummy atoms, eliminated fragments with
heavy atom count less than 8, more than 4 rings, and those with
any substructure matches against our SMARTS filters. We then
randomised each remaining SMILES 5 times since different
SMILES corresponding to the same molecule have different
latent encodings by the model.33,34 These were used as input to
the model with default settings as above and utilising our in-
house SMARTS. These are available in ESI† File S1.

The workflow generated 2847 unique molecules which
were further filtered according to our standard in-house
fragment-like property filters,35 resulting in a list of 2031
fragments. After filtering further on Tanimoto similarity
between generated molecules versus both the input list, and
our existing fragment library, using Morgan fingerprints
(radius 2), we obtained 340 molecules. 232 were retained
after visual inspection. These are available in ESI† File S2.

For all molecules in the input and generated sets, we then
calculated 2D pharmacophore fingerprints in RDKit and
performed pair-wise similarity comparisons between all
generated and input molecules. For each generated molecule

we obtained the maximum value of Morgan and
pharmacophore fingerprints similarity against all input
fragments from the GPCR set. As shown in Fig. 3, despite the
relative chemical dissimilarity between generated and input
molecules, nevertheless similar 2D pharmacophore features
are retained suggesting that these molecules might provide
chemically novel starting points for a GPCR-focussed
fragment library.

Conclusions

In recent years, deep learning applications for de novo design in
drug discovery have gained considerable momentum.12,36

However, applications specifically focused on FBDD have
received less attention than those focused on drug-like chemical
space. Nevertheless, fragment-based approaches are emerging,
particularly those with applications in fragment elaboration.

Arús-Pous and colleagues developed a “scaffold decorator”
model, in which a generator model outputs scaffolds which
are modified by the addition of fragments at defined
attachment points by a decorator model.37 Lim and
colleagues similarly reported a scaffold-based design

Fig. 3 Analysis of generated molecules seeded from the GPCR
fragment set. A, Distribution of maximum Morgan fingerprint similarity
between generated molecules and input molecules after filtering. B,
Distribution of maximum 2D pharmacophore similarity between
generated and input molecules. All fingerprints were calculated in
RDKit. Histograms were generated in Vortex software (Dotmatics,
Bishops Stortford, UK).
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approach using sequential addition of atoms and bonds to
scaffold molecular graphs generated by a variational
autoencoder.38 Green and colleagues reported a convolutional
neural network “DeepFrag”. Given structural information on
a protein/ligand interaction, this model outputs the
fingerprint of a fragment from a predefined library that
would be predicted to improve binding affinity.39

The latter group subsequently reported an open source
browser implementation of their model in order to improve
accessibility to a user-base beyond those skilled in
programming.40 Alberga and colleagues also recently
reported a SMILES generator which was used to generate
biased molecule libraries against several targets.41 This
model was based on the reinforcement learning approach
proposed by Olivecrona in which a previously trained
generator (“prior policy”) is guided toward generation of
molecules that optimise a new fitness function.42 The
authors developed a novel multiobjective fitness function to
output molecules with nondominated solutions on the
Pareto frontier, considering multiple pairs of features.41 A
GUI implementation of the model was made available for
end-users.

With similar intent, we report here an implementation of
our previous model that can be used directly in KNIME
Analytics platform or deployed for use in a user-friendly
webportal via KNIME Server. We hope that this may
encourage experimentation by users without significant
knowledge of Python programming. A significant advantage
of deployment in KNIME is the considerable code-free
integration with applications by various 3rd party vendors
and the wide range of pre-built workflows available via
KNIME Hub (https://hub.knime.com/). This would allow
users to easily augment the existing workflow, adding
functionality downstream for various tasks.

For example, a straightforward modification would be to
include selection or filtering based on fragments with known
activity against targets of interest, or on the members of an
existing library for applications such as that shown above.
Falcón-Cano and colleagues also reported a KNIME workflow
for prediction of aqueous solubility using gradient boosting
models which requires only SMILES as input.43 We did not
consider solubility directly in our model, though it is a
parameter of critical importance in fragment library design
due to high fragment concentrations required to detect
binding in fragment screens.35,44 Notably, Simulations Plus
(Lancaster, CA, USA) provide KNIME integration for their
ADMET Predictor software for prediction of a wide range of
properties including solubility and logD.

The 3D-e-Chem node set also provides a range of
functionality for structural cheminformatics, including ligand
and pharmacophore alignment, and docking.45 Another key
commercial vendor with substantial KNIME integration is
Schrödinger, LLC (New York, NY, USA). These nodes provide
access to a wide range of ligand- and structure-based
functionality from their Glide, Prime, Phase, MacroModel,
and Jaguar applications. Thus, one might also envisage

workflows coupling molecular generation to virtual screening
against specific targets.

In this respect, it is interesting to note that, in our original
publication, we demonstrated the potential for our model to
generate structures not in the FDB-17 screening subset of the
GDB-17 database, which comprises a virtual screening set of
10 M fragments selected for even coverage of lower
complexity fragment space suitable for hit progression.46

Thus, generative approaches can suggest novel chemical
matter that may not be found even in relatively large virtual
screens with predefined libraries.

While we cannot provide a comprehensive review of
KNIME cheminformatics capabilities here, we hope the above
examples may provide readers unfamiliar with the platform
some insight into the potential value of combining molecular
de novo design approaches based on deep learning, such as
our model, with the wide range of additional tools available
and deployable in the KNIME webportal.
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