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The intestinal dysfunction induced by high plant protein diets is frequently

observed in farmed fish, and probiotics of Bacillus genus were documented

to benefit the intestinal health through the modulation of intestinal

microbiota without clearness in its underlying mechanism yet. Fusobacteria,

Proteobacteria, and Firmicutes were observed to be the dominate phyla,

but their proportion di�erentiated in the intestinal bacterial community of

Pengze crucian carp (Carassius auratus var. Pengze) fed di�erent diets in this

study. Dietary supplementation of B. cereus and B. subtilis could reshape the

intestinal bacterial community altered by high plant protein diets through a

notable reduction in opportunistic pathogen Aeromonas together with an

increase in Romboutsia and/or Clostridium_sensu_stricto from Firmicutes.

Due to the alteration in the composition of bacterial community, Pengze

crucian carp exhibited characteristic ecological networks dominated by

cooperative interactions. Nevertheless, the increase in Aeromonas intensified

the competition within bacterial communities and reduced the number of

specialists within ecological network, contributing to the microbial dysbiosis

induced by high plant protein diets. Two probiotics diets promoted the

cooperation within the intestinal bacterial community and increased the

number of specialists preferred tomodule hubs, and then further improved the

homeostasis of the intestinal microbiota. Microbial dysbiosis lead to microbial

dysfunction, and microbial lipopolysaccharide biosynthesis was observed to

be elevated in high plant protein diets due to the increase in Aeromonas,

gram-negative microbe. Probiotics B. cereus and B. subtilis restored the

microbial function by elevating their amino acid and carbohydrate metabolism

together with the promotion in the synthesis of primary and secondary bile

acids. These results suggested that dietary supplementation of probiotics B.

cereus and B. subtilis could restore the homeostasis and functions of intestinal

microbiota in Pengze crucian carp fed high plant protein diets.
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Introduction

Aquaculture industry, one of the fastest growing animal

food-producing sectors in agriculture, provides a large amount

of high-quality protein to consumers around the world (1, 2).

In recent decades, intestinal dysfunction is widely observed

in farmed fish due to the excessive use of plant protein in

commercial feed, and substantial evidences indicated that the

occurrence of intestinal dysfunction is usually accompanied by

a dysbiosis of intestinal microbiota (3–5). It is well-accepted that

micro-ecological ecosystem formed by symbiotic microbes plays

a crucial role in the health status of host through production

of digestion-related enzymes, vitamins synthesis, protection

from pathogens, and promotion of immune maturation, etc.

(6, 7). Hence, regulating the homeostasis of intestinal microbiota

would be one effective strategy to maintain the health of

farmed fish.

Probiotics, defined as live microorganisms, have attracted

more and more attentions for their benefits to the homeostasis

of intestinal microbiota in aquatic animal, as well as growth

performance, nutrient digestion, antioxidant capacity, and

immunity system (8). Bacillus genus serves as one of the

most common probiotic species and is widely applied to

aquaculture industry (9, 10). Numerous researches have

investigated the effect of Bacillus species on the intestinal

microbiota of fishes like grass carp (Ctenopharyngodon idellus)

(11), turbot (Scophthalmus maximus) (12), common carp

(Cyprinus carpio L.) (13), olive flounder (Paralichthys olivaceus)

(14), Nile tilapia (Oreochromis niloticus) (15), and tongue sole

(Cynoglossus semilaevis) (16). Nevertheless, most of these studies

in farmedc fish focus on the effects of Bacillus species on the

composition of bacterial community, which is not enough to

interpret the modulation of intestinal microbiota homeostasis

by probiotics.

The number of species and their abundance are the most

basic elements for constructing the bacterial community,

whereas the homeostasis of intestinal microbiota depends

on complex species-species interactions within the bacterial

community (17). Physiological benefits were observed to be

associated with probiotics consumption in human and animal

model without significant effects on microbial composition,

indicating that probiotics promoted the homeostasis of

intestinal microbiota rather than altered its composition

(18, 19). Trillions of bacteria, residing predominantly in the

gastrointestinal tract, interact with each other to accomplish

systems functions through the flow of energy, matter, and

information (20). Microbes in micro-ecological ecosystem

depend on interspecific interactions to form a dynamic

ecological network, in which species perform different

topological roles due to their ecological niche (20). Previous

evidence indicated that B. cereus G19 could affect microbial

interactions and increase the number of generalists to improve

the intestinal microbiota homeostasis (21). The symbiotic

microbes in the intestine are verified to play a crucially

important role in the host metabolism, since microbes possess

100-fold genes more than host and can synthesize a large

number of enzymes (22). Therefore, intestinal microbiota is

considered to be an auxiliary metabolic organ and participate

in metabolic process of host, such as amino acid, carbohydrate,

energy, and lipid metabolism through provision of fermentation

end products (23–26). Relying on complex species-species

interactions, the bacterial community maintains its stability in

the intestine, and also accomplishes a systemmetabolic function

simultaneously (27, 28).

Pengze crucian carp (Carassius auratus var. Pengze) is a

widely farmed freshwater omnivorous fish in China. Previous

studies of crucian carp confirmed that high plant protein

diets were damaged to the intestinal health (29, 30), while

probiotics Bacillus could recover the negative effects and

improve growth, antioxidant capability and filet quality (31–

34). The studies about Pengze crucian carp have documented

that B. cereus (35, 36) and B. subtilis (37) could improve the

growth performance and intestinal health status, while the two

probiotics on intestinal microbiota was unclear. And thus, the

objective of the current study was to investigate the effects

of B. cereus and B. subtilis on the intestinal microbiota, and

further explore their underlying mechanisms of modulating the

intestinal microbiota homeostasis.

Materials and methods

Experimental procedure and sample
collection

Juvenile Pengze crucian carp (Carassius auratus var. Pengze)

were bought from Fishery Science Research Institute, Jiujiang.

Prior to the experiment, the fish were reared in a floating cage

(4.0× 4.0× 2.0m) and fed basal diets for 3 weeks to acclimatize

to the experiment conditions. After being fasted for 24 h, 180

similar-sized individuals (mean initial weight 12.91 ± 0.02 g)

were randomly distributed into nine cages (1.5 × 1.5 × 1.5m).

Each group has three replicates with a density of 20 fish per

cage. The dietary ingredient preparation, weighed accurately and

mixed thoroughly, basal diets (Control group) made well and

dried, were followed by the standard procedure of diets made

for the Pengze crucian carp (36, 37). And then, abundant fresh

cells of the Bacillus cereus (CD group) and B. subtilis (BS group)

obtained through spreading cultivation, and mixed thoroughly

with the basal diets at the dose of 1 × 109 CFU/kg by spraying.

The dose of two probiotics was chosen in accordance with

previous studies (36, 37), and the concentration of probiotics B.

cereus and B. subtilis was determine by countess II automated

cell counter (Thermo Fisher Scientific, Shanghai, China) before

mixing. Fish were fed to apparent satiation three times a day

(8: 00, 13: 00, and 16: 00) for 70 days. During the experimental
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period, water quality conditions were stable (water temperature,

25.5 ± 3.2◦C; dissolved oxygen > 6.0mg L−1; NH4+-N <

0.3mg L−1; NO−
2 -N < 0.1mg L−1, respectively). At the end

of the experiment, prior to sampling, experimental fish were

anesthetized with 100 mg/L MS222 (Tricaine methanesulfonate,

Sigma-Aldrich Co. LLC.). The intestinal content in hindgut

from eight Pengze crucian carp in each group was collected

and frozen at −80◦C until further analysis. The experimental

protocols together with Pengze crucian carp handling and

sampling have been approved by the Committee on Research

Ethics of the Department of Laboratory Animal Science, Jiangxi

Agricultural University.

Illumina sequencing of bacterial 16S
rRNA gene

PowerFecalTM DNA Isolation Kit (MoBio Laboratories, Inc.)

was used for DNA extraction of digesta samples. Amplification

of the 16S rRNA V3-V4 region was performed as described

previously with barcoded fusion primers of 341F and 805R (38).

High-throughput sequencing was performed using the Illumina

HiSeq platform. All of the sequencing data can be found in the

Sequence Read Archive (SRA) database at NCBI under accession

number PRJNA872491.

Bioinformatics and statistical analysis

The raw sequences were sorted into different samples

according to the barcodes by using the BIPES pipeline,

followed by a quality-control step remove low-quality amplicon

sequences by VSEARCH (39). The clean sequences were

then clustered into operational taxonomic units (OTUs) with

99% sequence similarity and annotated using the Ribosomal

Database (rdp_16s_v16_sp). A total of 3,056,535 effective

sequences and 1,375 OTUs were generated. Alpha diversity and

the relative abundance of taxa analyses were calculated by R

software v 4.1.3. The Wilcoxon test was used to test the α-

diversity index, and the relative abundance of taxa using R

software. Principal coordinates analysis (PCoA) based on the

Bray-Curtis dissimilarity analyses was employed to visualize

bacterial community structure and the difference in bacterial

community was calculated by permutational analysis of variance

(PERMANOVA) based on Bray–Curtis distance (40).

Based on the abundance profiles of individual OTUs,

molecular ecological network analysis was performed to evaluate

species-species interactions within bacterial community (http://

ieg2.ou.edu/MENA). Random matrix theory (RMT)-based

approach was used for ecological network construction and

topological roles identification (41). The network was visualized

using Circos and Cytoscape 3.9.0, respectively. Based on

modularity property, each network was separated into modules

TABLE 1 The α-diversity index of intestinal microbiota in Pengze

crucian carp.

Parameters Control CD BS

Obseverd OTUs 559.38± 214.66 600.25± 109.01 447.5± 113.47

Chao1 709.97± 242.68 757.75± 152.17 650.61± 101.68

ACE 714.27± 233.94 749.24± 147.95 656.66± 103.14

Shannon 2.3± 0.78a 3.3± 0.55b 1.65± 0.78a

Simpson 0.69± 0.14a 0.88± 0.04b 0.58± 0.18a

ACE, abundance-based coverage estimator. The values in the same row with different

superscripts are significantly different (P < 0.05).

by the fast-greedy modularity optimization. According to

values of within-module connectivity (Zi) and among module

connectivity (Pi), the topological roles of different nodes can be

categorized into four types: peripherals (Zi ≤ 2.5, Pi ≤ 0.62),

connectors (Zi ≤ 2.5, Pi > 0.62), module hubs (Zi > 2.5, Pi ≤

0.62) and network hubs (Zi > 2.5, Pi > 0.62).

Functional gene and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways were predicted using PICRUSt2

software (42) against a Greengenes reference database

(Greengenes 13.5). And then, the non-metric multidimensional

scaling (NMDS) and analysis of similarity (ANOSIM) were

used to evaluate the overall differences in predicted bacterial

functional composition related to metabolism based on Bray-

Curtis distance at KEGG orthology (KO) level (43). A two-sided

Welch’s t-test was used to identify significant different metabolic

pathways in the two groups by software STAMP (44), with P <

0.05 considered significant.

Results

Diversity and composition of the
bacterial community

Compared to the Control group, dietary supplementation

of B. cereus increased the number of observed OTUs, Chao1,

ACE, Shannon, and Simpson in bacterial community of Pengze

crucian carp, whilst a significant difference was recorded

in Shannon and Simpson (P < 0.05, Table 1). However, no

notable difference in α-diversity index mentioned above

was observed between BS and Control groups. As shown in

Figure 1, the bacterial community of carp was predominated

by Fusobacteria (Control: 49.48%; CD: 19.25%; BS: 26.01%),

Proteobacteria (Control: 26.16%; CD: 27.63%; BS: 11.60%),

and Firmicutes (Control: 20.26%; CD: 47.45%; BS: 60.59%). At

class level, fish fed basal diets was mainly rich in Fusobacteriia

(49.48%), Gammaproteobacteria (11.86%), Bacilli (11.23%),

Alphaproteobacteria (11.15%), and Clostridia (6.50%);

Clostridia (28.33%), Fusobacteriia (19.25%), Bacilli (16.58%),

Gammaproteobacteria (12.22%), and Alphaproteobacteria
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FIGURE 1

Chord diagram exhibited the relative abundance of bacterial phyla above ≥ a cuto� value of 2%.

FIGURE 2

Relative abundances of the top 10 bacterial classes.
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(11.23%) took dominate in the intestinal bacterial community

in CD group; BS group recorded a high percentage of Clostridia

(59.16%), Fusobacteriia (26.01%), Alphaproteobacteria (6.65%),

and Gammaproteobacteria (4.15%) in bacterial community

(Figure 2).

Figure 3 exhibited a significant difference in microbial

species among three groups. Fish fed high plant protein diets

had a higher average relative abundance of Aeromonas (8.39%,

P < 0.05) and Cetobacterium (46.49%, P < 0.01) compared

to BS group (2.39 and 24.00%, respectively), whilst Control

group was higher than CD group (17.08%) in the value

for Cetobacterium (P < 0.01). CD group recorded a higher

average relative abundance of Aeromonas (6.65%, P < 0.05)

and Clostridium_sensu_stricto (5.45%, P < 0.01) compared to

BS group (2.39 and 1.92%, respectively). A lowest relative

abundance of Romboutsia was observed in Control group

(2.20%), which was dramatically different from that in CD

(22.65%) and BS (56.40%) groups (P < 0.01); BS group was

higher than CD group (P < 0.01) in this respect simultaneously.

Strikingly, principal coordinates analysis (PCoA) displayed a

FIGURE 3

Box plots showing significant variations of relative abundances of intestinal microbiota. **P < 0.01, *P < 0.05.
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FIGURE 4

Principal coordinates analysis (PCoA) plot based on Bray-Curtis

dissimilarity visualizing dissimilarities in the intestinal bacterial

community.

clear separation of bacterial community among three groups at

OTU level, and significant differences among each other were

further confirmed by PERMANOVA (P < 0.001, Figure 4).

Ecological network analysis

Circos plot described interactions across different species

within bacterial community, and 26 different bacterial classes

were observed among three groups (Figure 5A). OTUs from

Alphaproteobacteria, Gammaproteobacteria, Clostridia,

Actinobacteria, Deltaproteobacteria, Betaproteobacteria, and

Planctomycetia were recorded to take dominate in the ecological

networks within bacterial community (Table 2). Within Control

network, there were 436 OTUs and 2,872 edges including 2,030

gray edges (positive interactions) and 842 red edges (negative

interactions) between two OTUs. Total of 509 OTUs and 5,330

edges (gray edges: 4,695; red edges: 635) were observed in CD

network, and BS network consisted of 445 OTUs and 2,117

edges (gray edges: 1,766; red edges: 351).

Different separate modules were observed in three ecological

networks (Figure 5B). The bacterial ecological network in

Control group had 13 submodules (≥ 5 nodes), among which

four submodules recorded more than 30 nodes including C1

(141 OTUs), C2 (53 OTUs), C3 (63 OTUs), and C4 (41 OTUs);

17 submodules with more than five nodes were observed in

CD network, in which submodules such as D1 (182 OTUs),

D2 (54 OTUs), D3 (54 OTUs), and D4 (40 OTUs) were four

biggest submodules; BS network possessed 11 submodules (≥5

nodes), among which S1 (141 OTUs), S2 (53 OTUs), S3 (63

OTUs), and S3 (41 OTUs) contained more than 30 nodes.

Positive interactions took dominate in these three networks,

whereas many red edges were observed between C1 and

C2 submodules.

The species performed different topological roles in the

ecological network, in which most of the nodes were peripherals

and several nodes performed as module hubs or connectors

(Figure 6). Control network 3 module hubs and 3 connectors

mainly from submodules C3 (one OTU from Nitrospira),

C4 (three OTUs from Bacilli, Actinobacteria, and Unassigned

bacteria), and C5 (two OTUs from Alphaproteobacteria and

Gammaproteobacteria); only 7 module hubs were observed in

D3 (three OTUs from Actinobacteria, Alphaproteobacteria, and

Gammaproteobacteria), D4 (one OTU from Spartobacteria),

D6 (one OTU from Alphaproteobacteria), D7 (one OTU from

Gammaproteobacteria), D8 (one OTU from Nitrospira) from

CD network; similarly, 7 module hubs were found in S1 (two

OTUs from Actinobacteria and Clostridia), S3 (four OTUs

from Betaproteobacteria, Clostridia, and Sphingobacteriia), S4

(one OTU from Unassigned bacteria), and S6 one OTU from

Unassigned bacteria) from BS network (Table 3).

Functional predictions of intestinal
microbiota with PICRUSt2

To understand the bacterial function of the Pengze

crucian carp, 7,341 KEGG orthology groups (KOs) were

obtained through PICRUSt2 in this study (Figure 7A). The

bacterial functional composition was clustered to three groups,

and a significant difference between each other was further

confirmed through ANOSIM (P < 0.05). KEGG functional

categories related to metabolic function were further analyzed

including Amino acid metabolism, Carbohydrate metabolism,

Digestive system, Energy metabolism, Glycan biosynthesis

and metabolism, Lipid metabolism, and Protein families:

metabolism. There were 24 dramatically different metabolic

pathways and one protein family observed between CD and

Control groups (P < 0.05). Compared to Control group,

the bacterial community in CD group possessed 18 enriched

metabolic pathways involved in amino acid metabolism

(three pathways), carbohydrate metabolism (four pathways),

glycan biosynthesis and metabolism (five pathways), and lipid

metabolism (six pathways, Figure 7B). Figure 7C exhibited 42

metabolic pathways and seven protein families between CD

and BS groups, and microbial function related to amino acid

and lipid metabolism was more active in CD group. A total of

27 significantly different metabolic pathways and seven protein

families was recorded between BS and Control groups (P <

0.05, Figure 7D), and BS group was rich in five pathways

from amino acid metabolism, two pathways from carbohydrate

metabolism, two pathways from energy metabolism, three
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FIGURE 5

Circular plot (A) and ecological network (B) descriptions of the interspecific interactions within bacterial community. The width of the bars

represents the abundance of each taxon. The bands with di�erent colors demonstrate the source of di�erent genera. The taxonomic levels

were class, order, family, genera, and species from the outside to the inside of the circle, respectively. Each node in network graph indicates one

OTU. Colors of the nodes indicate di�erent major classes. The edges (gray edge, positive interaction and red edge, negative interaction) inside

the circle and ecological network represent the interactions between species.

pathways from lipid metabolism, and four protein families

related to metabolism.

Discussion

Overuse of plant protein in diets was proved to induce

the intestinal disorder together with notably negative effects

on the intestinal microbiota of farmed fish (3, 5). Substantial

evidences have verified that the alteration in diversity of

intestinal bacterial community has been associated with the

growth performance of aquatic animal (45), and a reduction

in the microbial α-diversity together with a lower growth

was found in fish fed with a high soybean meal diet

compared to high fish meal diets (5). As we know, the

probiotics could improve host health through the modulation
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TABLE 2 The composition of the ecological network.

Index Control CD BS

Acidobacteria 20 15 6

Actinobacteria 52 44 33

Alphaproteobacteria 112 105 96

Anaerolineae 0 0 2

Bacilli 16 19 10

Bacteroidia 1 11 4

Betaproteobacteria 20 33 42

Caldilineae 4 2 7

Chlamydiia 3 4 1

Clostridia 24 37 68

Cytophagia 1 3 1

Deltaproteobacteria 36 46 28

Epsilonproteobacteria 0 0 1

Erysipelotrichia 3 4 2

Flavobacteriia 3 3 2

Fusobacteriia 6 5 5

Gammaproteobacteria 57 79 50

Gemmatimonadetes 3 2 0

Nitrospira 2 1 3

Planctomycetia 16 30 16

Spartobacteria 1 2 3

Sphingobacteriia 5 7 5

Spirochaetia 0 0 1

Synergistia 0 0 1

Verrucomicrobiae 4 5 4

Unassigned 47 52 54

Total number of OTUs 436 509 445

The number of modules (≥5 OTUs) 13 17 11

The number of module hubs 3 7 8

The number of connectors 3 0 0

The number of gray edges 2,030 4,695 1,766

The number of red edges 842 635 351

Total number of edges 2,872 5,330 2,117

of intestinal microbiota. Hence, the objective of this study

was to evaluate the function of the two probiotics. The

present study indicated that B. cereus could dramatically

elevate the microbial α-diversity in terms of the increase

in Shannon and Simpson index. The positive effect of B.

cereus on the growth performance of Pengze crucian carp

observed in our previous studies (35, 36). Although B. subtilis

supplementation exhibited no significant influence on the

microbial α-diversity, a notable alteration in the microbial

composition was observed in Pengze crucian carp, as well

in carp fed with B. cereus. Firmicutes, Proteobacteria, and

Fusobacteria were the dominant phyla colonizing the intestine

of farmed fish, and evidences have suggested that high level

of plant protein could decrease the abundance of Firmicutes

FIGURE 6

Z-P plot showing the topological roles within the ecological

network.

together with an increase in the proportion of Fusobacteria and

Proteobacteria in crucian carp (46). Here, Pengze crucian carp

fed high plant protein diets also exhibited a high proportion

of Fusobacteria and Proteobacteria due to a significant

increase ofAeromonas and Cetobacterium. Specially,Aeromonas

species from Gammaproteobacteria, gram-negative microbes,

are reported as an opportunistic pathogen and have been

isolated from wound fish (47, 48). Accordingly, the significant

increase in Aeromonas indicated the negative effects of high

plant protein diets on the intestinal microbiota. However,

after consuming probiotics, the abundance of Firmicutes was

restored through the increase of Clostridium_sensu_stricto

and/or Romboutsia ratios in this study, confirming the benefits

of B. cereus and B. subtilis on the intestinal microbiota of Pengze

crucian carp.

The interspecific interactions enable the intestinal

microbiota to form an ecological network, through which

the micro-ecological ecosystem can maintain its dynamic

homeostasis in host (17). It is well-known that the interspecific

interactions present in bacterial community may be due to

the species performing similar or complementary function

(49). Here, a high cooperation (positive interactions) was

shown in bacterial community from middle intestine of Pengze

crucian carp fed different diets. According to the ecological

theory of r/K selection, r-strategy species are considered

to be representative community occupying a nutrient-rich

environment, characterized by low competition, high capacity

of nutrient utilization, and high growth rates (50). The middle

intestine is one place full of various nutrients, creating a

nutrient-rich living environment for a r-strategy bacterial

community in Pengze crucian carp. Previous evidences

have revealed that the cooperation-dominated community

would be more stable since cooperative interactions are more

robust to population perturbations in spatial condition, while

Frontiers inNutrition 08 frontiersin.org

https://doi.org/10.3389/fnut.2022.1027641
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2022.1027641

TABLE 3 Topological roles of intestinal microbiota in Pengze crucian carp.

Treatment Topological roles OTUs Module number Phylogenetic associations

Control Module hubs OTU_225 4 Bacilli

Module hubs OTU_582 4 Unassigned

Module hubs OTU_369 5 Gammaproteobacteria

Connectors OTU_841 3 Nitrospira

Connectors OTU_973 4 Actinobacteria

Connectors OTU_1346 5 Alphaproteobacteria

CD Module hubs OTU_960 3 Actinobacteria

Module hubs OTU_1345 3 Alphaproteobacteria

Module hubs OTU_1015 4 Spartobacteria

Module hubs OTU_202 7 Gammaproteobacteria

Module hubs OTU_860 8 Nitrospira

Module hubs OTU_1701 6 Alphaproteobacteria

Module hubs OTU_41 3 Deltaproteobacteria

BS Module hubs OTU_970 1 Actinobacteria

Module hubs OTU_702 3 Sphingobacteriia

Module hubs OTU_1016 1 Clostridia

Module hubs OTU_314 4 Unassigned

Module hubs OTU_112 3 Betaproteobacteria

Module hubs OTU_1340 3 Clostridia

Module hubs OTU_187 3 Betaproteobacteria

Module hubs OTU_1173 6 Unassigned

competitive interactions, on the other hand, are susceptible

to disruption (51, 52). Nevertheless, due to the significant

increase in opportunistic pathogen Aeromonas, a relatively

high competition (negative interactions) was displayed in

the intestinal bacterial community of carp fed high plant

protein diets. Because of the variation in bacterial community,

the carp exhibited characteristic submodules in network, in

which the dominant microbiome was the major component.

From the ecological viewpoint, peripherals may represent

specialists, whereas connectors and module hubs may be

related to generalists, and network hubs are super-generalists

(53). The generalists played by species act as structural and

functional keystone and play a crucial role in maintaining the

property of network, so increasing the number of connectors

and module hubs can promote the network’s stability. Here,

the number of connectors and module hubs was observed in

carp fed probiotics diets, and similar results was observed in

sea cucumber (21). Took together, probiotics B. cereus and

B. subtilis could improve intestinal microbiota homeostasis

of Pengze crucian carp by enhancing the cooperation within

bacterial community and increasing the number of generalists

in ecological network.

The microbial fermentation is one of most important

capacities of intestinal microbiota to participate in host

metabolism by secreting digestive enzymes, which are observed

to vary among microbial species (20, 22, 26). Therefore,

the alteration in the microbial composition caused a notable

variation in the microbial metabolic function in the intestine

of carp in present study. Accordingly, high plant protein diets

disturbed the stability of intestinal microbiota and induced

microbial dysfunctions, contributing to the inhibition in the

growth performance of Pengze crucian carp (29, 35, 36).

Meanwhile, due to the increase of opportunistic pathogen

Aeromonas, the microbial function related to lipopolysaccharide

biosynthesis was dramatically increased in carp fed high plant

protein diets, and this was maybe one important reason for

the occurrence of intestinal inflammation induced by plant

protein since lipopolysaccharide could trigger TLR4-mediated

inflammatory pathway (54). As expected, probiotics B. cereus

and B. subtilis could restore the microbial function, and

affect host protein metabolism by elevating the amino acid

metabolism of microbial community as well in carbohydrate

metabolism, due to the significant increase in Clostridia ratio

from Firmicutes. Clostridia has been proved to participate

in amino acid metabolism and degrade polysaccharides (55–

57). Moreover, the current study revealed that dietary two

Bacillus probiotics could affect the lipid metabolism of carp by

promoting the synthesis of primary and secondary bile acids in

enteric cavity. It is widely accepted that microbial fermentation

processes depended on the consortium of microbial community

through microbe–microbe interactions (27, 58), and thus

microbial dysbiosis would lead to metabolic dysfunction (59).
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FIGURE 7

Non-metric multidimensional scaling (NMDS) plot visualizing bacterial functional community dissimilarities using Bray-Curtis distance (A).

Di�erentially abundant KEGG pathways between CD and Control (B), BS and CD (C), or BS and Control (D) groups by STAMP.
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Hence, dietary high plant protein diets induced microbial

dysfunction, and Bacillus supplementation diets could improve

the homeostasis of intestinal microbiota and recover the

microbial function in Pengze crucian carp.

In conclusion, though altering the microbial composition

and affecting species-species interactions and microbial

topological roles in the ecological network performed by

intestinal bacterial community, probiotics B. cereus and B.

subtilis could recover the microbial dysbiosis and dysfunction

induced by high plant protein diets.
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