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Abstract: The development of malign cells that can grow in any part of the stomach, known as gastric
cancer, is one of the most common causes of death worldwide. In order to increase the survival
rate in patients with this condition, it is essential to improve the decision-making process leading
to a better and more efficient selection of treatment strategies. Nowadays, with the large amount of
information present in hospital institutions, it is possible to use data mining algorithms to improve
the healthcare delivery. Thus, this study, using the CRISP methodology, aims to predict not only the
mortality associated with this disease, but also the occurrence of any complication following surgery.
A set of classification models were tested and compared in order to improve the prediction accuracy.
The study showed that, on one hand, the J48 algorithm using oversampling is the best technique to
predict the mortality in gastric cancer patients, with an accuracy of approximately 74%. On the other
hand, the rain forest algorithm using oversampling presents the best results when predicting the
possible occurrence of complications among gastric cancer patients after their in-hospital stays, with
an accuracy of approximately 83%.

Keywords: healthcare; gastric cancer; knowledge discovery in databases; data mining; classification;
prediction; clinical decision support systems; CRISP-DM; WEKA

1. Introduction

Many aspects that were previously unknown to healthcare professionals are now being revealed
by the data generated by healthcare, improving the quality of medical procedures or treatment
strategies [1]. Healthcare facilities like hospitals produce large amounts of heterogeneous data every
day, since it includes diverse sources, data types and formats. This heterogeneity of healthcare data
leads to the need of a rigorous observation of this data in order to assess its quality and identify
possible problems that need to be solved. Since the data are so complex, it is practically impossible
to analyze it with traditional tools and methods [2]. This complexity calls for more sophisticated
techniques that are able to manage and produce meaningful knowledge. That way, the healthcare
services records can serve as a way of assessing their quality and the patient’s satisfaction [3]. Thus,
the use of data technologies like data mining (DM) has become essential in healthcare.

DM is a process that refers to the extraction of useful information from vast amounts of data [4].
It is used to find hidden patterns and uncover unknown correlations that are not obvious when
observing the data with the naked eye [5]. Thus, DM can greatly benefit the healthcare industry by
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creating an environment rich in meaningful knowledge. Hence, using DM to support healthcare
professionals in decision-making is crucial to ensure a good healthcare delivery [4].

One of the most common causes of death worldwide is gastric cancer. It is the fourth most
frequently occurring cancer in men and the seventh most commonly occurring cancer in women.
According to the World Cancer Research Fund (WCRF) [6] there were over 1 million new cases and an
estimated 783,000 deaths related to gastric cancer in 2018. The greatest incidence rates are recorded in
Eastern Asia (countries like South Korea, Mongolia and Japan occupy the first three spots), whereas in
Northern America and Europe the rates are generally low [7].

Despite big advances in technologies and healthcare that provide better and more accurate
diagnoses, this cancer, while registering a decreasing trend worldwide, remains among the most deadly
malignancies [8]. There are a lot of factors that may influence the occurrence of this type of cancer. It is
strongly suggested that general bad eating and drinking habits contribute to it. The consumption of
alcoholic drinks and a diet rich in salty foods are among the most dangerous causes for gastric cancer.
Smoking also plays a part in raising the risk of its occurrence [9].

Since this disease’s symptoms are not specific, they are often overlooked and may have other
reasons besides gastric cancer. Initial signs may be indigestion, bloated feeling, slight nausea, and loss
of appetite. A diagnosis at this early stage enhance the treatment opportunities to fight the cancer and
can save a lot of lives. With the evolution of the condition and tumor growth, other symptoms, often
more serious, start to manifest, such as stomach pain, vomiting, weight loss and constipation. Since the
symptoms are considered ambiguous and it is not typical to do routine screenings, this cancer is often
detected at later stages, strengthening the high mortality rates all over the world [8].

The focus of this study is the prediction of the mortality of patients that suffer from this gastric
malignancy as well as the occurrence of complications after the patients’ hospital stays using DM
techniques. The goal is to analyze the data available and the results obtained and make comparisons
among different classifiers as to draw conclusions about them.

This paper is divided in seven sections. The current introduction section is proceeded by the
state-of-the-art and by some works related to gastric cancer are mentioned. The fourth section is the
methodology and methods, followed by a section that includes the phases of the data mining process.
In the sixth section, the results obtained are compared and discussed. Finally, in the last section, some
conclusions are drawn and the future work that will entail this DM project is revealed.

2. State of Art

In order to provide a deeper understanding of the context and importance of this study, this
section provides the general background related to the associated research field. Thus, some concepts
like knowledge discovery in databases (KDD), machine learning (ML) and DM are dissected and
their association with the healthcare field leads to the introduction of the clinical decision support
systems (CDSS).

2.1. Knowledge Discovery in Databases

Over the years, the rapid growth of digitization and computerization of processes in health
institutions, as well as the large number of transactions that are performed daily in these environments,
led to the production and collection of large amounts of data. This exponential increase in the amount
of data stored by hospital institutions has raised the need to transform this data into relevant and
useful information for the institution, leading to more efficient decision-making processes. This urgent
need of extracting knowledge from the growing amount of digital data propelled the use of new
computational theories and tools. This area is known as KDD [4,10,11].

According to Fayyad et al. [12], the KDD process consists of several phases and begins with the
analysis of the application domain and the objectives to be accomplished, and this process is divided
into 5 phases, represented on Figure 1.
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The first step of the process is to choose the base to be mined, which can be data samples, subsets
of variables up to large masses of data. The preprocessing phase aims to eliminate noise, missing values
and illegitimate values. The data transformation step depends on the search objective and the algorithm
to be applied, because it defines the limitations to be imposed on the database [11,12]. Improving data
quality is important for better results, thus ensuring better quality in discovered patterns.

Figure 1. Phases of the KDD process.

After completing the previous phases, DM is applied. This is the most important phase of the
KDD process.

2.2. Data Mining

DM is the process of using machine learning techniques and statistical and mathematical functions
to automatically extract potentially useful information from data in a way that is understandable to
users. It can reveal the patterns and relationships among large amounts of data in a single or several
data sets. The knowledge achieved can adopt various forms of representation, such as equations, trees
or graphs, patterns or correlations [13].

DM methods can be divided into two categories: supervised and unsupervised. The supervised
methods are used to predict a value and require the specification of a target attribute, on the contrary
unsupervised methods are applied to discover the intrinsic structure, patterns, or affinities between
the data [14].

The definition of the mining technique to be applied is closely related to the mining task to be
performed, as this task defines the relationship between the data, ie the model. DM tasks are the types
of discovery to perform in a database, that is, the information to extract. To determine which task to
solve, it is important to have a good knowledge of the application domain and to know the type of
information to obtain.

Therefore, DM includes two main types of techniques: descriptive and predictive. An example of
descriptive techniques are the clustering techniques that are responsible for discovering information
hidden in data. On the other hand, examples of predictive techniques are classification and regression
techniques, that are used to retrieve new information from existing data [15–17]. The focal point of this
paper are predictive techniques, more specifically, classification techniques.

Thus, there are many applications for DM, since it is greatly adaptable to distinct businesses
and goals. They can go from retail stores, hospitals and banks to insurance or airline companies.
The acquired knowledge during the DM process can also be used to support the decision-making
process in various processes, e.g., in medicine—in the diagnosis phase, a correct and rapid analysis of
this large volume of data is important for the identification of pathologies.
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2.3. Clinical Decision Support Systems

To accomplish these goals, CDSS use clinical knowledge that is incorporated into the system
helping professionals to analyze patient data, as well as decision-making. This knowledge used
to maintain these systems is often extracted through DM techniques that, as mentioned before, are
used to analyze and explore data with the aim of discovering patterns that might be helpful for
decision-making [18].

3. Related Work

The improvement of gastric cancer diagnosis, mortality and complications rates have always
been one of the most common work themes when it comes to the application of DM techniques in
healthcare. Thus, some of the existing works have been studied prior to the conception of this paper.

Lee [15] applied DM techniques in order to create a prediction process for the occurrence of
postoperative complications on gastric cancer patients. They have developed artificial neural networks
(ANN) and compared their results with those of the traditional logistic regression (LR) approach,
where they’ve achieved an average correct classification rate of 84.16% with ANN in contrast with
82.4% of LR.

Polaka et al. [16] planned various approaches for diagnosing gastric cancer using the original
dataset and datasets with subsets of features. The best results were obtained for the dataset using
attribute subsets selected with the wrapper approach. Four different models were tested, where C4.5
obtained 74.7% of accuracy, as well as CART. The RIPPER algorithm produced an accuracy of 73.9%,
while the multilayer perceptron got the best results with 79.6%.

Hosein Zadeh et al. [17] used an optimized multivariate imputation by chained equations (MICE)
technique to predict the chances of survival in gastric cancer patients. Three different techniques were
executed: the first one, which consisted in the application of logistic regression, obtained 63.03% of
accuracy, while the second technique that used a not optimized MICE algorithm earned an accuracy
value of 66.14%. Finally, the third approach with the optimized MICE algorithm produced results with
72.57% of accuracy.

Mohammadzadeh et al. [19] carried out a study aimed to develop a decision model for predicting
the probability of mortality in gastric cancer patients also identifying the most important factors
influencing the mortality of patients who suffer from this disease. Regarding the effective factors
on mortality of gastric cancer, the determined factors were diabetes, ethnicity, tobacco, tumor size,
surgery, pathological stage, age at diagnosis, exposure to chemical weapons and alcohol consumption.
The accuracy of developed decision tree was 74%.

4. Methodology and Methods

4.1. Methodology

The reference model used during the development of this study was cross-industry standard
process for DM, most commonly known as CRISP-DM.

The CRISP-DM methodology provides a structured approach to planning a DM project
and is a six phase hierarchical process, divided in the following steps: business understanding,
data understanding, data preparation, modelling, and evaluation and deployment, as shown on
Figure 2 [20,21]. The Section 5 describes in detail the application of all this steps in the context of
this study.
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Figure 2. Phases of the CRISP-DM model.

4.2. Methods

In order to analyze and explore the available data and to induce the data mining models (DMM),
the chosen ML software was Waikato Environment for Knowledge Analysis (WEKA). During the
execution of this study, five modelling techniques were used with WEKA in order to induce the DM
models, namely: random forest (RF), J48, simple logistic (SL), Bayes net (BN) and PART. This study
includes ensemble techniques Bagging and adaptive boosting (Adaboost) using some of the mentioned
algorithms. It is important to note that in this study the application of oversampling using synthetic
minority oversampling (SMOTE) was also tested.

4.2.1. Random Forest

RF is an ensemble learning method for classification which operates by constructing a multitude
of decision trees. Initially, a bootstrap sample from the training data was selected (random sample
obtained with replacement) with the goal of inducing a decision tree (DT). The repetition of this step
was performed until an ensemble of DTs was created, each one of them having its own prediction value.
Thus, the final prediction was achieved by combining the output from all trees, which corresponds
to the most frequent output obtained by the ensemble. RF could correct for decision trees’ habit of
overfitting to their training set making it a very efficient and accurate classifier [22,23].

4.2.2. J48

The J48 algorithm used greedy technology to induce DTs for further classification. J48 generated
decision trees, where each tree node evaluated the existence or significance of each individual attribute.
Decision trees were built from top to bottom by choosing the most appropriate attribute for each
situation. Once the attribute was chosen, the training data was divided into subgroups, corresponding
to the different attribute values and the process was repeated for each subgroup until a large part of
the attributes in each subgroup belonged to a single class. It is important to note that the J48 classifier
implemented by WEKA corresponds to an open source Java implementation of the C4.5 algorithm and
is considered one of the most powerful and commonly used DT classifier [24–26].
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4.2.3. Simple Logistic

SL is a classifier for building linear logistic regression models. LogitBoost with simple regression
functions as base learners is used for fitting the logistic models. The optimal number of LogitBoost
iterations to perform is cross-validated, which leads to automatic attribute selection [27,28].

4.2.4. Bayes Net

BN is a base class for a Bayes network classifier. A Bayesian is a graphical model for probabilistic
relationships among a set of variables and is composed of directed acyclic graphs. It also provides
data structures like conditional probability distributions, network structure, etc and facilities common
to Bayes network learning algorithms like K2 and B [29,30].

4.2.5. PART

PART is a partial decision tree algorithm, which is a combination version of C4.5 and RIPPER
algorithms, developed to try to avoid their respective problems. The main specialty of the PART
algorithm is that it does not need to perform global optimization like C4.5 and RIPPER to produce
the appropriate rules. The fact that PART adopts the separate-and-conquer strategy, building a rule,
removing the instances it covers and continuing creating rules recursively for the remaining instances
until none are left, is a big advantage [31,32].

4.2.6. Bagging

Bagging is one of the popular ensemble methods proposed by Freund and Schapire [33] for
improving classifiers. Bagging is based on bootstrapping and aggregating concepts, integrating
the benefits of both approaches [34]. In Bagging, the training set is sampled generating random
independent bootstrap replicates. In addition, the classifier on each of these is constructed and
aggregated by a simple majority vote in the final decision rule [35].

4.2.7. AdaBoost

Freund and Schapire [33] also proposed Adaboost, a shortening of adaptive boosting.
This algorithm stands out mainly due to its potential, flexibility, and simplicity to be implemented
in different scenarios. It is an iterative process that produces a strong classifier which consists of a
sequence of weighted classifiers that complement one another. AdaBoost achieves its ultimate classifier
goal by sequentially introducing new models in order to compensate for the misclassified instances in
previous iterations [35].

4.2.8. Sythetic Minority Oversampling (SMOTE)

SMOTE is a popular oversampling technique (which replicates examples from the minority class).
It creates new samples based on the interpolation of minority class instances. Based on k nearest
neighbours (kNN), it randomly selects samples from minority classes and generates the new ones[36].

5. Data Mining Process

5.1. Business Understanding

Cancer affects millions of people all over the world and is one of the biggest threats to people’s
lives and life quality. Gastric cancer is one of the most common causes of cancer related deaths, behind,
for example, lung cancer [37]. The prognostic is usually not favorable to the survival of patients, since
there is only a probability of less than 30% survival upon diagnosis in Europe [37]. However, in Japan
this rate goes up to 90% thanks to early examinations and tumor resections [38].

This malignancy presents no specific symptoms in early stages, which causes delayed diagnoses
that lead to the high mortality of patients. In advanced stages, the patient may feel a variety of more
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serious symptoms, like abdominal pain, indigestion, severe nausea and inexplicable weight loss [38].
By the time these symptoms appear, the cancer has already developed to more dangerous stages.
When the tumor is diagnosed, it is often too late for any curative medical procedure to take place.
There are various objectives with this study, such as:

• Promote early examinations among the general population in order to avoid late gastric cancer
diagnoses that often lead to the patient’s death

• Predict the probability of mortality after the surgery
• Predict the occurrence of complications after in-hospital stays for gastric cancer patients

Thus, this study aims to improve many aspects related to gastric cancer and the way it affects the
patients’ lives. The focus falls on their hospital admissions and possible complications that may occur
related or not to the tumor. The procedures performed and the patient’s health status after the hospital
stay are also subjects of this work.

The first item is related to the healthcare business goals. The improvement of the quality of the
medical services provided is one of the most crucial aspects in this industry. This translates into an
increment on the survival rates of patients, in this case patients that suffer from gastric cancer.

The rest of the goals listed are related to the objectives inherent to the DM process. Through the
application and refinement of DM techniques these objectives will provide a substantial help to
healthcare professionals.

5.2. Data Understanding

The data used for this study was collected from a Portuguese hospital and is related to patients
with gastric cancer. It includes over 60 variables with information about the patients’ admission, stay at
the hospital, possible complications and the result of the performed procedure related to 154 patients.

5.3. Data Preparation

The original dataset provided had a lot of attributes with high percentages of missing values.
When it comes to the numerical variables, half of the attributes have over 45% of missing or null values.
This makes them not useful to study or to subject them to ML algorithms, since they offer little to no
meaningful information. Consequently, these attributes were removed from the dataset. Moreover,
after a careful analysis, it was detected that there were extremely similar attributes, even presenting
the same values. As such, one of those attributes was also removed from the dataset, leaving only
one of them in the dataset in order to avoid any redundancy. Also, some of the attributes refer to
technical aspects related to the extraction of the data, so they were removed from the dataset as well.
The categorical attributes were submitted to the same process.

After the data cleaning, three more features were created derived from existing attributes.
These new features refer to the number of postoperative complications registered, to the occurrence of
complications 30 days after the in-hospital stay and to the death of patients.

The final result was a dataset with 33 features (4 numeric and 29 categorical)(use Case one).
However, in order to analyze alternative approaches with fewer attributes, three more datasets
were created.

The first one (use Case two) was created with attribute selection performed by the OneR algorithm,
where 19 attributes were selected (1 numeric and 18 categorical). Whereas, the second dataset
(Use Case 3) included a subset of features that were selected using the Relief algorithm. This one was
composed of 20 attributes, from which one was numeric and the rest categorical. On the other hand,
the features selected for the third dataset (Use Case 4) were chosen based on the Pearson’s correlation
method. This subset of features was comprised of 21 attributes, where 2 of them were numeric and 19
were categorical. The summary of the characteristics of the datasets can be checked on the Table 1.
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Table 1. Summary of the datasets created for the prediction of mortality.

Use Case # Attr # Numeric Attr # Categorical Attr

1 33 4 29
2 19 1 18
3 20 1 19
4 21 2 19

5.4. Modeling

The first proposed goal was to predict the mortality of gastric cancer patients that were admitted
to the hospital. Based on the health status available, as well as info about the performed surgery and
its outcome, the models will predict if it’s more likely that the patient will survive or pass away. In this
case, four datasets (the original - after the data preparation - and three more that resulted of feature
selection) were tested. Thus, the classification process included four scenarios that contemplated
distinct set of features.

On the other hand, the second goal was to predict the occurrence of complications after hospital
stays. In this case, features related to the patients’ morbidity and survival, and complications’ rank
were removed, along with information about the possible existence of complications. These attributes
were eliminated in order to ensure an unbiased and correct prediction.

In order to assure that the models are assuming most of the patterns from the data correctly, and
are low on bias and variance, the usage of cross validation came into action. Cross validation provided
ample data to train the model and also leaving a lot of data to test it. For this study 10-folder cross
validation was used, dividing the dataset into 10 folds, and the holdout method was repeated 10 times,
such that each time, one of the 10 subsets was used as the test subset and the other nine subsets are put
together to form the training set.

The classifiers selected for this study were RF, J48, Simple Logistic, BN, and PART. In addition, the
algorithm AdaBoost and Bagging were also executed in conjunction with the first three models already
mentioned. In this DM approach, specifically when using decision trees, the main criterion for selecting
a variable to make a decision was the dependence of a variable on the class variable. There was no
differentiation between direct dependence and indirect dependence (intermediated by other variables).
Such distinction did not make a difference for classification, because trees based on direct dependence
or indirect dependence were very likely to result in the same classification. Nevertheless, if these
approaches are used to intervene in a system of the real world, indirect dependence may not have
impact, while direct dependence can.

Finally, two data approaches were tested: with and without oversampling (using SMOTE).
At this stage, the DMMs were constructed using the WEKA software. A DMM can be compose

by a target variable (T), a scenario (S), a data mining technique (DMT), a data approach (DA) and a
sampling method (SM). Regarding the DM mortality (DM1):

• T = {Mortality}
• S = {S1, S2, S3, S4}
• DMT = {RF, J48, J48 using Laplace correction, SL, BN, PART, AdaBoost + RF, AdaBoost + J48,

AdaBoost + J48 using Laplace correction, AdaBoost + SL, Bagging + RF, Bagging + J48, Bagging +
J48a using Laplace correction, Bagging + SL}

• DA = {With oversampling, without oversampling}
• SM = {Cross-validation 10 Folds}

• S1 = {all attributes (Use Case 1)}
• S2 = {19 attributes selected by the OneR algorithm (Use Case 2)}
• S3 = {20 attributes selected by the Relief algorithm (Use Case 3)}
• S4 = {21 attributes selected by the Pearson’s correlation method (Use Case 4)}

For DM surgery complications (DM2):
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• T = {Surgery complications}
• S = {S1}
• DMT = {RF, J48, J48 using Laplace correction, SL, BN, PART, AdaBoost + RF, AdaBoost + J48,

AdaBoost + J48 using Laplace correction, AdaBoost + SL, Bagging + RF, Bagging + J48, Bagging +
J48a using Laplace correction, Bagging + SL}

• DA = {Without oversampling}
• SM = {Cross validation 10 Folds}
• S1 = {22 attributes (without bias attributes)}

Thus, the induced DMM were:

DMM1 = one target, four scenarios, 14 DM techniques, one sampling dethod, two data approaches
DMM2 = one target, one scenario, 14 DM techniques, one sampling method, two data approaches

In total, 140 simulations were performed (1 × 4 × 14 × 1 × 2 for DMM1 plus 1 × 1 × 14 × 1 × 2
for DM2).

5.5. Evaluation

Once the modeling phase was concluded, the chosen classifiers were put to test in order to
evaluate and compare their results. The metrics used were accuracy, precision, F-measure and recall.
They are defined as such:

Accuracy = (TP + TN) = (TP + FP + TN + FN) (1)

Precision = TP = (TP + FP) (2)

FMeasure = 2x((PR + RC) = (PRxRC)) (3)

Recall = TP = (TP + FN) (4)

where TP = true positives, TN = true negatives, FP = false positives, FN = false negatives PR = precision,
and RC = recall.

The area under the ROC curve (AUC) metric was also used. ROC is a probability curve and
AUC represents degree or measure of separability that represents how much the model is capable of
distinguishing between classes.

In order to ease the understanding of the results obtained, they are divided by scenarios as
shown below.

5.5.1. Mortality Prediction Results

The Table 2 presents the results obtained during the classification process using the original
dataset for mortality, after the data preparation. It is important to note that for each DM technique two
data approaches were tested: with and without oversampling.

The Table 3 exposes the results obtained for the prediction of gastric cancer patients’ mortality
using the feature selection technique that evaluates the worth of a feature using the OneR algorithm.

The Table 4 presents the results obtained for the prediction of gastric cancer patients’ mortality
using the feature selection method that evaluates the worth of an attribute using the Relief algorithm.

In the Table 5, the results obtained for the prediction of gastric cancer patients’ mortality using the
feature selection that evaluates the worth of attributes by using the Pearson’s correlation are presented.
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Table 2. Prediction results for the mortality for the first scenario.

DM Technique Scenario Data Approach Accuracy (%) Precision F-Measure Recall AUC

RF S1 Without oversampling 68.4564 0.670 0.674 0.685 0.815
With oversampling 72.7273 0.723 0.717 0.727 0.859

J48 S1 Without oversampling 66.443 0.640 0.647 0.664 0.770
With oversampling 70.0535 0.699 0.694 0.701 0.772

J48 a S1 Without oversampling 67.1141 0.645 0.652 0.671 0.755
With oversampling 70.0535 0.699 0.694 0.701 0.801

BN S1 Without oversampling 67.1141 0.676 0.672 0.761 0.808
With oversampling 69.5187 0.693 0.694 0.695 0.837

SL S1 Without oversampling 68.4564 0.683 0.681 0.685 0.792
With oversampling 71.1230 0.706 0.707 0.711 0.821

PART S1 Without oversampling 66.443 0.662 0.658 0.664 0.777
With oversampling 63.6364 0.629 0.631 0.636 0.748

AdaBoost + RF S1 Without oversampling 69.7957 0.686 0.688 0.698 0.821
With oversampling 73.2620 0.726 0.725 0.733 0.862

AdaBoost + J48 S1 Without oversampling 64.4295 0.640 0.642 0.644 0.790
With oversampling 70.5882 0.701 0.701 0.706 0.848

AdaBoost + J48 a S1 Without oversampling 65.1007 0.659 0.655 0.651 0.794
With oversampling 73.7968 0.738 0.731 0.738 0.850

AdaBoost + SL S1 Without oversampling 61.0738 0.619 0.614 0.611 0.693
With oversampling 65.7754 0.662 0.659 0.658 0.783

Bagging + RF S1 Without oversampling 71.8121 0.702 0.705 0.718 0.810
With oversampling 73.2620 0.724 0.718 0.733 0.859

Bagging + J48 S1 Without oversampling 63.7584 0.605 0.616 0.638 0.800
With oversampling 72.1925 0.716 0.718 0.722 0.840

Bagging + J48 a S1 Without oversampling 65.7718 0.637 0.643 0.658 0.801
With oversampling 72.7273 0.722 0.723 0.727 0.840

Bagging + SL S1 Without oversampling 66.443 0.656 0.660 0.664 0.780
With oversampling 68.9840 0.690 0.689 0.690 0.834

a Using Laplace correction.

Table 3. Prediction results for the mortality for the second scenario.

DM Technique Scenario Data Approach Accuracy (%) Precision F-Measure Recall AUC

RF S2 Without oversampling 67.1141 0.656 0.659 0.671 0.811
With oversampling 73.7968 0.735 0.736 0.738 0.873

J48 S2 Without oversampling 63.7584 0.625 0.629 0.638 0.789
With oversampling 74.3316 0.744 0.743 0.743 0.826

J48 a S2 Without oversampling 64.4295 0.629 0.634 0.644 0.761
With oversampling 73.7968 0.738 0.738 0.738 0.821

BN S2 Without oversampling 67.7852 0.675 0.676 0.678 0.820
With oversampling 68.9840 0.687 0.687 0.690 0.836

SL S2 Without oversampling 68.4564 0.682 0.682 0.685 0.793
With oversampling 67.3797 0.667 0.669 0.674 0.804

PART S2 Without oversampling 61.7450 0.603 0.604 0.617 0.754
With oversampling 63.6364 0.632 0.633 0.636 0.776

AdaBoost + RF S2 Without oversampling 65.1007 0.643 0.646 0.651 0.760
With oversampling 71.1230 0.710 0.711 0.711 0.829

AdaBoost + J48 S2 Without oversampling 64.4295 0.643 0.643 0.644 0.779
With oversampling 71.1230 0.709 0.710 0.711 0.868

AdaBoost + J48 a S2 Without oversampling 63.7584 0.634 0.636 0.638 0.778
With oversampling 73.7968 0.733 0.734 0.738 0.878

AdaBoost + SL S2 Without oversampling 67.1141 0.670 0.671 0.671 0.791
With oversampling 66.8449 0.666 0.667 0.668 0.802

Bagging + RF S2 Without oversampling 63.7584 0.616 0.623 0.638 0.804
With oversampling 72.1925 0.718 0.719 0.722 0.879

Bagging + J48 S2 Without oversampling 65.7718 0.629 0.639 0.658 0.801
With oversampling 70.0535 0.697 0.697 0.701 0.842

Bagging + J48 a S2 Without oversampling 64.4295 0.617 0.628 0.644 0.798
With oversampling 69.5187 0.690 0.691 0.695 0.835

Bagging + SL S2 Without oversampling 68.4564 0.672 0.676 0.685 0.806
With oversampling 73.7968 0.734 0.733 0.738 0.848

a Using Laplace correction.
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Table 4. Prediction results for the class mortality for the third scenario.

DM Technique Scenario Data Approach Accuracy (%) Precision F-Measure Recall AUC

RF S3 Without oversampling 65.7718 0.644 0.646 0.658 0.805
With oversampling 71.1230 0.699 0.700 0.711 0.863

J48 S3 Without oversampling 64.4295 0.625 0.632 0.644 0.781
With oversampling 68.9840 0.682 0.683 0.690 0.795

J48 a S3 Without oversampling 64.4295 0.625 0.632 0.644 0.754
With oversampling 68.9840 0.682 0.683 0.690 0.793

BN S3 Without oversampling 68.4564 0.682 0.683 0.685 0.820
With oversampling 67.3797 0.682 0.674 0.674 0.836

SL S3 Without oversampling 65.7718 0.651 0.652 0.658 0.790
With oversampling 66.8449 0.663 0.664 0.668 0.825

PART S3 Without oversampling 61.0738 0.600 0.604 0.611 0.756
With oversampling 65.7754 0.648 0.650 0.658 0.770

AdaBoost + RF S3 Without oversampling 63.0872 0.614 0.621 0.631 0.789
With oversampling 69.5187 0.688 0.691 0.695 0.830

AdaBoost + J48 S3 Without oversampling 59.0604 0.604 0.597 0.591 0.778
With oversampling 71.1230 0.711 0.711 0.711 0.861

AdaBoost + J48 a S3 Without oversampling 61.0738 0.619 0.614 0.611 0.780
With oversampling 73.1230 0.708 0.709 0.711 0.859

AdaBoost + SL S3 Without oversampling 63.0872 0.617 0.623 0.631 0.766
With oversampling 69.5187 0.692 0.693 0.665 0.815

Bagging + RF S3 Without oversampling 65.7718 0.640 0.658 0.644 0.805
With oversampling 72.1925 0.718 0.719 0.722 0.862

Bagging + J48 S3 Without oversampling 64.4295 0.611 0.624 0.644 0.800
With oversampling 70.0535 0.697 0.697 0.701 0.845

Bagging + J48 a S3 Without oversampling 65.1007 0.623 0.633 0.651 0.801
With oversampling 73.2620 0.728 0.729 0.733 0.841

Bagging + SL S3 Without oversampling 69.7987 0.683 0.688 0.698 0.799
With oversampling 72.7273 0.727 0.726 0.727 0.857

a Using Laplace correction.

Table 5. Prediction results for the class mortality for the fourth scenario.

DM Technique Scenario Data Approach Accuracy (%) Precision F-Measure Recall AUC

RF S3 Without oversampling 64.4295 0.632 0.636 0.644 0.801
With oversampling 71.6578 0.712 0.714 0.717 0.859

J48 S3 Without oversampling 63.0872 0.602 0.614 0.631 0.753
With oversampling 73.7968 0.735 0.735 0.738 0.792

J48 a S3 Without oversampling 63.7584 0.606 0.619 0.638 0.734
With oversampling 73.7968 0.735 0.735 0.738 0.797

BN S3 Without oversampling 65.7718 0.653 0.655 0.658 0.812
With oversampling 74.3316 0.740 0.741 0.743 0.842

SL S3 Without oversampling 65.1007 0.653 0.655 0.658 0.795
With oversampling 71.1230 0.709 0.708 0.711 0.809

PART S3 Without oversampling 61.0738 0.603 0.606 0.611 0.735
With oversampling 73.7968 0.735 0.735 0.738 0.782

AdaBoost + RF S3 Without oversampling 69.5187 0.688 0.691 0.695 0.740
With oversampling 64.1711 0.640 0.641 0.642 0.807

AdaBoost + J48 S3 Without oversampling 61.7450 0.609 0.613 0.617 0.790
With oversampling 68.9840 0.687 0.688 0.690 0.854

AdaBoost + J48 a S3 Without oversampling 62.4161 0.622 0.621 0.624 0.787
With oversampling 70.5882 0.705 0.706 0.706 0.859

AdaBoost + SL S3 Without oversampling 61.0738 0.622 0.616 0.611 0.776
With oversampling 67.9144 0.684 0.681 0.679 0.802

Bagging + RF S3 Without oversampling 67.1141 0.653 0.658 0.671 0.803
With oversampling 73.7963 0.732 0.734 0.738 0.864

Bagging + J48 S3 Without oversampling 63.7584 0.617 0.624 0.638 0.794
With oversampling 73.2620 0.732 0.732 0.733 0.836

Bagging + J48 a S3 Without oversampling 64.4295 0.608 0.621 0.644 0.795
With oversampling 74.3316 0.742 0.742 0.743 0.832

Bagging + SL S3 Without oversampling 65.7718 0.648 0.652 0.658 0.800
With oversampling 73.7968 0.733 0.735 0.738 0.856

a Using Laplace correction.
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5.5.2. Prediction Results for the Occurrence of Complications

Table 6 shows the results of the prediction of the occurrence of complications after surgery.

Table 6. Prediction results for the occurrence of complications.

DM Technique Scenario Data Approach Accuracy (%) Precision F-Measure Recall AUC

RF S3 Without oversampling 76.4706 0.730 0.730 0.765 0.654
With oversampling 83.2599 0.833 0.833 0.833 0.909

J48 S3 Without oversampling 81.6993 0.834 0.777 0.817 0.580
With oversampling 77.0925 0.773 0.770 0.771 0.806

J48 a S3 Without oversampling 81.6993 0.834 0.777 0.817 0.580
With oversampling 77.0925 0.773 0.770 0.771 0.825

BN S3 Without oversampling 67.3203 0.708 0.687 0.673 0.690
With oversampling 73.1278 0.733 0.731 0.731 0.822

SL S3 Without oversampling 80.3922 0.807 0.761 0.804 0.662
With oversampling 77.0925 0.771 0.771 0.771 0.826

PART S3 Without oversampling 77.7778 0.753 0.754 0.778 0.655
With oversampling 77.0925 0.775 0.770 0.771 0.794

AdaBoost + RF S3 Without oversampling 79.7386 0.798 0.750 0.797 0.662
With oversampling 82.3789 0.824 0.824 0.824 0.914

AdaBoost + J48 S3 Without oversampling 71.2418 0.696 0.703 0.712 0.640
With oversampling 78.4141 0.785 0.784 0.784 0.868

AdaBoost + J48 a S3 Without oversampling 72.5490 0.705 0.713 0.725 0.635
With oversampling 78.8546 0.794 0.788 0.789 0.868

AdaBoost + SL S3 Without oversampling 71.2412 0.702 0.707 0.712 0.599
With oversampling 74.4493 0.745 0.745 0.744 0.770

Bagging + RF S3 Without oversampling 76.4706 0.725 0.698 0.765 0.681
With oversampling 81.9383 0.819 0.819 0.819 0.908

Bagging + J48 S3 Without oversampling 80.3922 0.793 0.771 0.804 0.643
With oversampling 76.6520 0.767 0.767 0.767 0.872

Bagging + J48 a S3 Without oversampling 81.0458 0.806 0.776 0.810 0.660
With oversampling 77.9736 0.781 0.780 0.780 0.879

Bagging + SL S3 Without oversampling 75.8170 0.736 0.743 0.758 0.641
With oversampling 77.0925 0.771 0.771 0.771 0.852

a Using Laplace correction.

6. Discussion

6.1. Predict the Mortality of Gastric Cancer Patients

Regarding the first scenario, a first analysis of the results (Figure 3) revealed that the use of
oversampling improved them in 13/14 of the tested DM techniques, as it only worsened with the PART
algorithm. Without the use of oversampling, SL produced the best result, which despite presenting the
same accuracy as the RF model (68.4564%) showed better results for the other metrics in comparison
with RF. The best result for this scenario was obtained using oversampling by the ensemble technique
Boosting with J48 using Laplace correction, achieving an accuracy of 73.7968%.

Using a dataset with fewer features than the original one (scenario two), the initial best results
were achieved with the SL algorithm that produced an accuracy of 68.4564%. However, as it can be
seen in Figure 4, better values were obtained with the usage of oversampling, except when using the
SL algoritm (alone and ensemble with Adaboost). So, the best result obtained was 74.3316% using the
J48 algorithm with oversampling.

In the third scenario, the results that were obtained from the execution of the selected models
showed that initially the best result was obtained by the ensemble technique Boosting with SL resulting
in an accuracy of 69.7987%. Observing the Figure 5, it is notable that the use of oversampling improved
the results obtained in 13/14 of the tested DM techniques, just like in S1, but this time the exception
was the SL algorithm. Thus, the best accuracy value for this scenario was 73.2620%, obtained using the
ensemble technique Bagging with J48 using Laplace correction.
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Figure 3. Comparative graph for the results obtained in the mortality prediction for S1.

Figure 4. Comparative graph for the results obtained in the mortality prediction for S2.

Figure 5. Comparative graph for the results obtained in the mortality prediction for S3.

Finally, in the last scenario of mortality prediction, the Figure 6 shows that, like S1, S2 and S3, the
use of oversampling also increased the accuracy values in 13/14 of the applied algorithms. This time
the exception was the ensemble technique Boosting with RF that presented the highest accuracy value
(69.5187%) before using oversampling but decreasing after.

With the usage of oversampling, the results that were obtained from the execution of the selected
models showed that both PART and the ensemble technique Bagging with J48 using Laplace correction
produced the best accuracy of 74.3316%.

When compared to the results obtained with the datasets that were submitted to feature selection
methods, it’s possible to conclude that the original dataset (S1) produced better overall results for the
selected metrics without the use of oversampling, as can be seen on the Tables 7–9. However, that
observation changed with the application of oversampling since the results increased in other scenarios.
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Overall, the best result was obtained with the second scenario, ie using the attributes selected
by the OneR algorithm, which achieved an accuracy of 74.3316%, an accuracy of 0.744, an F-measure
of 0.743, a recall of 0.743 and an AUC of 0.826 using the J48 algorithm and the oversampling
data technique.

Figure 6. Comparative graph for the results obtained in the mortality prediction for S4.

Moreover, the results obtained for AUC highlight two algorithms: BN and RF (although combined
with other techniques), 0.879 being the best AUC result, obtained by Bagging with RF. However, most
of the algorithms obtained an AUC close to 1. A good model has AUC near to 1 which means it has a
good measure of separability.

The results obtained were not very high, due to the multitude of reasons that may lead to a
patient’s death. These include factors not directly linked to the gastric cancer or deaths that took place
because the patient was already palliative.

Table 7. Summary of the best results for the prediction of mortality (Accuracy).

Scenario Data Technique Classifier Accuracy (%)

S1 Without oversampling Bagging with RF 71.8121
With oversampling Boosting with J48 using Laplace 73.7968

S2 Without oversampling SL and Bagging with SL 68.4564
With oversampling J48 74.3316

S3 Without oversampling Boosting with SL 69.7987
With oversampling Boosting with J48 using Laplace 73.2620

S4 Without oversampling Boosting with RF 69.5187
With oversampling Bagging with J48 using Laplace 74.3316

Table 8. Summary of the best results for the prediction of mortality (Precision, F-measure, Recall).

Scenario Data Aproach Classifier Precision F-Measure Recall

S1 Without oversampling Bagging with RF 0.702 0.705 0.718
With oversampling Boosting with J48 using Laplace 0.738 0.731 0.738

S2 Without oversampling SL 0.682 0.682 0.685
With oversampling J48 0.744 0.743 0.743

S3 Without oversampling Bagging with SL 0.683 0.688 0.698
With oversampling Bagging with SL 0.727 0.726 0.727

S4 Without oversampling AdaBoost + RF 0.688 0.691 0.695
With oversampling Bagging with J48 using Laplace 0.742 0.742 0.743
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Table 9. Summary of the best AUC results for the prediction of mortality.

Scenario Data Approach Classifier AUC

S1 Without oversampling AdaBoost with RF 0.821
With oversampling AdaBoost with RF 0.862

S2 Without oversampling BN 0.820
With oversampling Bagging with RF 0.879

S3 Without oversampling BN 0.820
With oversampling RF 0.805

S4 Without oversampling BN 0.812
With oversampling Bagging with RF 0.864

6.2. Predict the Occurrence of Complications after In-Hospital Stays for Gastric Cancer Patients

When it comes to the prediction of complications after a hospital stay for gastric cancer, the
results obtained were more satisfactory, as can be observed on Figure 7. The reason for that is that it is
considerably easier to anticipate if a patient will suffer from any complications or disabilities following
a surgery by observing the health status available. As such, initially, the best accuracy value was
recorded for the J48 algorithm (81.6993%). In contrast to mortality prediction, in this case the use of
oversampling only improved in 8/14 algorithms. Nevertheless, the best final outcome for predicting
complications was obtained using oversampling, achieving an accuracy of 83.2599 % with the RF
algorithm, that also presented the best AUC value of 0.909.

Figure 7. Comparative graph for the results obtained in the complications prediction.

6.3. Summary

The best results achieved with this study, previously described, are summarised in Table 10, where
the two defined objectives are represented (DMM1 and DMM2). The obtained results, especially for
the mortality prediction, are in accordance with the reviewed literature.

Table 10. Best results obtained in this study.

Data Mining Models Scenario Data Approach Classifier Accuracy (%) Precision F-Measure Recall

DMM1 S2 With oversampling J48 74.3316 0.744 0.743 0.743
DMM2 S1 With oversampling RF 83.2599 0.833 0.833 0.833

Relating the two main objectives of this project, although pertinent, the attribute related to the
occurrence of complications after surgery was not considered crucial in predicting mortality. Although
the occurrence of complications after surgery may be directly related to mortality, in the case of this
dataset most patients survived even after the occurrence of complications.

The use of data mining in the healthcare setting can lead to several outcomes, not strictly related
to the classification problems presented hereby. With this kind of approach, new scientific knowledge
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can also be achieved, when understanding the contribution of the selected predictors for the response
variable. The several variables identified as predictive in terms of prognosis have a well-established
relationship in patients operated due to gastric cancer among medical literature.

TNM classification of malignant tumors and stage, for example, is usedby theoretical models and
physicians in practical evaluation and as expected are part of the top attributes when predicting
mortality and complications using data mining. The American Joint Committee on Cancer
(AJCC)/TNM classification is widely used among different cancers as a staging score, with implications
in terms of prognosis [39], as this study succeeds in confirming.

Other relevant attributes found by this analysis include the reason to search for medical care,
which can vary since the presentation of the disease can go from weight loss, nausea, and other mild
symptoms to anemia stigma, vomiting, and hematemesis (upper tract hemorrhage). One should
take into account that the incidence of symptoms are usually suggestive of a more advanced stage,
with a subsequent worse prognosis [40]. Last but not least, we also found that the post-operative
recovery is an important predictor of the mortality of this cancer, since patients which demand ICU
care, tend to have worse prognosis due to being hemodynamically unstable or having several or
serious comorbidities [41].

7. Conclusions and Future Work

In the last years, KDD and, more specifically, DM techniques are becoming increasingly useful for
processing and exploiting medical data. The useful information discovered and the patterns obtained
with the application of these methods, analysing in real-time complex and heterogeneous data and
make conclusions about it, can be used by health professionals to determine diagnoses, prognoses and
treatments for patients in healthcare organizations.

What was an impossible task to execute in the past, it is now possible to submit millions and
millions of medical records to an algorithm and receive relevant results. There are numerous software
available to the general public that offers tools for data processing, reading it, cleaning it, preparing it
for the application of algorithms, and even allowing to execute and refine the models.

This paper aimed to predict the mortality of gastric cancer patients based on their health status,
data about the tumor and surgery information, as well as to make predictions about the possibility
of occurrence of complications following a in-hospital stay using DM techniques. Considering the
various reasons that may lead to the patient’s death, it becomes challenging to predict if the patient
might perish or survive. There are a lot of aspects that influence this outcome that show no direct link
to the cancer in question. A lot of patients, due to late diagnosis, face little to no chances of survival
since no curative treatment can treat the tumor. These facts contribute to obtain the best accuracy
values around 74%.

On the other hand, it is simpler to predict if a patient will suffer from complications after their
hospital stay, since it is possible to rely more on the data available. Observing the data about the
tumor (its localization, stage, size, lymph nodes and metastasis) and analysing the health status of the
patient (given by the ASA score) among other factors, the prediction of the occurrence of complications
becomes a more straightforward process. Hence, the accuracy obtained for this goal was around 83%.

Future work will consist in obtaining a larger dataset with more relevant data in order to improve
the prediction process for both patients’ mortality and occurrence of complications. Others models
will also be tested and their results compared with the ones already obtained. Also, an interesting
future research would be to attempt to determine whether there exists a causal relationship between
the different variables in the used dataset, and the usage of other state of the art machine learning
algorithms such as deep neural networks. Finally, it would be interesting to use this work in a CDSS in
order to assist healthcare professionals and, consequently, improve the healthcare delivery for patients
with gastric cancer.
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