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Cytosine DNA methylation is one avenue for passing information through cell divisions. Here, we present epigenomic
analyses of soybean recombinant inbred lines (RILs) and their parents. Identification of differentially methylated regions
(DMRs) revealed that DMRs mostly cosegregated with the genotype from which they were derived, but examples of the
uncoupling of genotype and epigenotype were identified. Linkage mapping of methylation states assessed from whole-
genome bisulfite sequencing of 83 RILs uncovered widespread evidence for local methylQTL. This epigenomics approach
provides a comprehensive study of the patterns and heritability of methylation variants in a complex genetic popula-
tion over multiple generations, paving the way for understanding how methylation variants contribute to phenotypic

variation.

[Supplemental material is available for this article.]

Phenotypic variation results from a combination of genetic varia-
tion, environment, and interactions among the two. The contri-
bution of natural epigenetic variation to phenotypic variation still
remains enigmatic due to the relatively few characterized natural
epigenetic alleles (epialleles) (Bender and Fink 1995; Cubas et al.
1999; Manning et al. 2006; Rangwala et al. 2006; Hitchins et al.
2007; Woo et al. 2007; Becker et al. 2011; Schmitz et al. 2011;
Durand et al. 2012). Epialleles are classified into three major groups,
which are defined by their dependence on an underlying genetic
variant (Richards 2006). Briefly, obligate epialleles are completely
dependent on a genetic variant, whereas pure epialleles are main-
tained independently of genetic variants. The dependence on ge-
netic variants for the third group, facilitated epialleles, breaks down
because the genetic variant can influence the epiallelic state but not
as reliably as they do for obligate epialleles (Richards 2006).

In Arabidopsis thaliana, there is extensive evidence for the in-
volvement of epialleles in creating phenotypic diversity (Johannes
et al. 2009; Reinders et al. 2009; Roux et al. 2011). Outside of
Arabidopsis thaliana, these are most evident for the peloric, colorless
non-ripening, and B’ epialleles from Linaria vulgaris, Solanum ly-
copersicum, and Zea mays, respectively (Patterson et al. 1993; Cubas
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et al. 1999; Manning et al. 2006). Still, these are rare events and
appear to be the exception rather than the rule. Work in Arabidopsis
thaliana has led to the most comprehensive analyses of natural epi-
genetic variation and uncovered a variety of modes to the formation
of epialleles (Schmitz and Ecker 2012). These include genetic variants
that can exert their influence on epiallelic states both locally and
distantly to other chromosomes (Bender and Fink 1995; Rangwala
et al. 2006; Woo et al. 2007; Durand et al. 2012; Schmitz et al. 2013).

The RNA-directed DNA methylation pathway (RADM) (for
review, see Law and Jacobsen 2010) provides a molecular basis for
the formation and maintenance of epiallelic states of many of the
identified epialleles in Arabidopsis and likely other flowering plant
species. This pathway generates a feedback loop between small
RNAs (smRNAs) and DNA methylation that represses gene ex-
pression and enables propagation of epiallelic states through both
mitotic and meiotic cell divisions. The presence of sSmRNAs also
provides sequence-specific guides that facilitate silencing at distant
loci, even on different chromosomes.

Because most characterized epialleles contain distinct molec-
ular signatures, usually SmRNAs in combination with DNA meth-
ylation, it is possible to systematically determine how extensive
natural epigenomic variation is in the wild. Pioneering efforts us-
ing epigenomic techniques (for review, see Schmitz and Zhang
2011) revealed extensive natural variation in methylation of gene
bodies compared to smRNA-associated transposon and repetitive
sequences between two accessions of Arabidopsis thaliana (Vaughn
et al. 2007; Zhang et al. 2008). Similar epigenomic approaches in
maize uncovered hundreds of differentially methylated regions
(DMRs), some of which were subsequently found unlinked to ge-
netic variants using near isogenic lines derived from the two profiled
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parental lines revealing the presence of heritable pure epialleles
(Eichten et al. 2011).

A major challenge in understanding natural epigenetic vari-
ation is determining the dependence of methylation variants on
genetic variants. Recent studies addressed one aspect of this chal-
lenge by using a population of mutation accumulation lines (Shaw
et al. 2000), which reduced genetic variation to the spontaneous
mutation rate (Ossowski et al. 2010), enabling a better understand-
ing of pure epigenetic variation. These studies uncovered single
methylation polymorphisms (SMPs) occurring at a much higher
rate than DNA mutations and found that they primarily occurred
in gene bodies (Becker et al. 2011; Schmitz et al. 2011). Larger re-
gions of differential DNA methylation that resembled loci targeted
by RADM were also identified and some were even found to affect
gene expression levels, although the rate of occurrence of these
types of DMRs was similar to the spontaneous DNA mutation rate
(Becker et al. 2011; Schmitz et al. 2011). Therefore, it is clear that
natural epigenetic variation can be uncoupled from genetic vari-
ation in the laboratory, but in nature, these two types of variants
coevolve.

Soybean (Glycine max L. merr.) is a major crop providing an
important source of protein and oil. A high-quality reference
soybean genome is available (Schmutz et al. 2010), which supports
that this plant has experienced at least two polyploid events, the
most ancient being 59 Mya. Soybean is considered an allopoly-
ploid (Gill et al. 2009), which resulted from the merger of two
genomes that diverged ~13 Mya and reunited ~5-10 Mya when
the genus Glycine was formed (Doyle et al. 2003; Straub et al. 2006;
Innes et al. 2008; Stefanovic et al. 2009). Roughly 75% of all soy-
bean-coding sequences are present in two or more copies in the
genome. Therefore, to understand the role of DNA methylation in
this species and its impact on gene expression, we sequenced ge-
nomes, DNA methylomes, and transcriptomes in the parents and
RILs. This also enabled us to understand how DNA methylation
patterns are established, inherited, and maintained as they segregate
through a complex genetic population. The vast majority of identi-
fied DMRs cosegregated with the genetic background from which
they were identified, which enabled population-wide identification
of methylQTL for >90% of the DMRs. Rare examples of DMRs were
identified that did not show evidence for linkage to a particular ge-
nomic region, which could be indicative of pure epigenetic variants.

The findings of this study have broad implications for the
fields of crop epigenomics, epigenetics, inheritance of methylation
variants, and plant breeding. There is a growing interest about the
potential role for epigenetics to explain phenotypic diversity that
cannot be attributed to genetics in a variety of systems, but the
evidence is still limiting at the population level. This study clearly
demonstrates that the majority of methylation variants adheres to
Mendelian modes of inheritance but also demonstrates rare ex-
amples of epigenetic variation that do not follow the standard laws
of inheritance.

Results

Single-base resolution DNA methylome of Glycine max

To understand the contribution of cytosine DNA methylation to
the soybean genome, whole-genome bisulfite sequencing (Meth-
ylC-seq) (Lister et al. 2008) was performed on DNA isolated from
leaves of the LD00-2817P germplasm (hereafter referred to as
“LD"). In total, greater than 162 million 101-bp reads were se-
quenced that only aligned to unique regions of the genome, which

represents approximately eightfold coverage per strand of the ge-
nome (Supplemental Table 1). Briefly, methylated cytosines were
determined by applying a binomial test to data from reads covering
each cytosine and using the unmethylated chloroplast genome as
a control (see “Methods” for a more detailed description). The LD
methylome contains 15,444,227 methylated CGs (mCG) (51% of
all CGs), 14,942,676 mCHG (39% of all CHGs), and 13,628,219
mCHH (0.05% of all CHHs), which represents a greater proportion
of methylated cytosines compared with a recently reported DNA
methylome for Arabidopsis thaliana (Fig. 1A; Schmitz et al. 2011).
Of the cytosines that are methylated in the LD genome, there are
almost equal numbers of mCG and mCHG, which contrasts to the
Arabidopsis thaliana methylome (Fig. 1B) and could indicate that
RdADM targets a greater proportion of the soybean genome. Of the
detected methylcytosines, the distribution of methylation levels
at each site in each context was similar to the levels found in
Arabidopsis thaliana, with the exception of mCHG (Supplemental
Fig. 1A,B). In general, mCG and mCHG are methylated at higher
levels as compared to mCHH.

The distribution of mCG, mCHG, and mCHH sites genome-
wide revealed that gene-rich and transposon-poor euchromatic
regions of each chromosome contain lower bulk methylation
compared with the gene-poor and transposon-rich heterochro-
matic regions in the pericentromeres of the chromosomes (Fig. 1C;
Supplemental Fig. 2A-F). Using previously published small RNA
sequencing data (Tuteja et al. 2009), the relative abundance of 21—
24 nucleotide (nt) smRNAs were plotted along each chromosome,
which revealed a higher density of 24-nt smRNAs in regions of
the genome that contain abundant non-GC methylation (Fig. 1C;
Supplemental Fig. 2G), as well as for 21-23-nt SmRNAs (Supple-
mental Fig. 3).

Two whole genome duplications have occurred in the diploid
ancestor of soybean, an early duplication ~59 million years ago
(Mya) and a recent duplication ~13 Mya. (Schmutz et al. 2010). A
comparison of the DNA methylation profiles between these du-
plicated regions revealed that younger sequences are more likely to
contain greater amounts of DNA methylation typical of the RADM
pathway (Fig. 1C,D), indicating that these sequences are actively
being silenced. In fact, CG, CHG, and CHH methylation was, on
average, ~10%, ~20%, and ~10% higher for recently duplicated
regions, genes, or exons compared to early duplicated regions, re-
spectively (Fig. 1D). The increase in DNA methylation of the recent
duplications also was significantly differentially associated with
distance from the pericentromeric regions when compared to the
early duplication events (Mann-Whitney-Wilcoxon test, P-value <
2.2 x 107'%) (Fig. 1E,F; Supplemental Fig. 4). Collectively, these
results indicate that DNA methylation is one potential mechanism
that plants use to cope with duplicated DNA and could potentially
explain, in part, why the soybean genome contains greater
amounts of DNA methylation compared to Arabidopsis thaliana.

Patterns of DNA methylation in genes and transposons

CG gene-body methylation appears to be conserved in plants and
animals (Feng et al. 2010; Zemach et al. 2010b); and soybean is no
exception (Fig. 2A), although its exact function is still unknown
and not all genes in plant genomes contain CG gene-body methyl-
ation. The density of both mCHG and mCHH is lowest throughout
the gene body when compared to transposons (Fig. 2A; Supple-
mental Fig. SA-C), which is consistent with the lack of 24-nt
smRNA-directed DNA methylation targeting most genes (Fig. 2B).
The density of all three types of DNA methylation is higher at
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Figure 1. Characteristic features of the DNA methylomes between Arabidopsis thaliana and soybean. (A) Fraction of methylated cytosines for each
context as a proportion of that context genome wide. (B) The DNA methylation present in the soybean methylome is highly enriched for CHG and CHH
methylation. (C) A circle plot of gene density, transposon density, FPKMs, mCG, mCHG, mCHH, and 24-nt smRNAs for LD. (Red lines) Regions from the 59
Mya whole-genome duplication. (Blue lines) Regions from the recent whole-genome duplication 13 Mya. (D) Weighted methylation levels for early and

recent whole-genome duplications (WGD) for the entire duplicated regions and genes and exons within those duplicated regions. (£, F) Distance in Mb of
duplicated regions from the centromeres.

sequences both upstream and downstream from the transcriptional 24-nt smRNAs are most abundant (Fig. 2B; Supplemental Fig. 6C).
start and stop sites increases (Fig. 2A; Supplemental Fig. SD-F). The higher density of methylation upstream and downstream
In contrast to CG gene-body methylation, transposons are from LTRs also distinguishes them from the other classes of

targeted by the RADM pathway, resulting in enriched levels of all transposons (Fig. 2A), which reflects their distribution along the
types of DNA methylation and an abundance of 24-nt smRNAs chromosomes (Fig. 2C). LTR transposons are located in the het-
(Fig. 2A,B; Supplemental Fig. 5G). Although the levels of all types erochromatic pericentromeres, whereas TIRs and LINEs are located
of DNA methylation between the major classes of soybean retro- throughout the chromosome arms (Fig. 2C).

transposons (long terminal repeat [LTRs] and LINEs) and DNA

transposons (terminal inverted repeats [TIRs] and helitrons) are . .

similar, there are interesting characteristics that distinguish them Effects of DNA methylation on gene expression

from one another. The LTR and LINE retrotransposons contain the To better understand the role of DNA methylation and its associ-
highest levels of DNA methylation near the actual repeat structures ation with gene expression, RNA was isolated from LD leaves and
that define the 5’ and 3’ ends of retrotransposons (Fig. 2A), which RNA-seq data were generated, aligned, and quantified (Methods;
coincides with the location containing the greatest abundance of Supplemental Table 2). The levels of CG gene-body methylation
24-nt smRNAs (Fig. 2B; Supplemental Fig. 6A,B). This contrasts to were positively correlated with gene expression levels (Fig. 3A),
the DNA methylation levels at the 5" and 3’ ends of TIR trans- whereas the levels of CHG or CHH methylation in gene bodies
posons, which are depleted relative to the transposon bodies where were negatively associated with gene expression levels (Fig. 3B,C),
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Figure 2. Characterization of gene body and transposon DNA methylation in soybean. (A) The distribution of mCG, mCHG, and mCHH densities and
(B) the distribution of 21-24 nt smRNA levels in gene bodies, Long terminal repeats (LTRs) retrotransposons, LINE retrotransposons, terminal inverted
repeat (TIR) DNA transposons, and Helitron DNA transposons including =4 kb from the start and stop codons. (C) Chromosome-wide density of LTR,
LINE, TIR, and Helitron transposons. Only data points between 1% and 99% quintiles were used to generate values for each bin in the plots presented in A

and B.
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Figure 3. The association between DNA methylation and gene expression levels in soybean. (A) Increasing levels of CG gene-body methylation is
correlated with increasing levels of gene expression. Box plot representation of different levels of CG gene-body methylation is displayed along the x-axis,
whereas normalized gene expression levels are plotted on the y-axis. Genes containing >0.5% non-GC methylation were filtered from this analysis.
Increasing methylation levels of both CHG (B) and CHH (C) sites are associated with decreasing levels of gene expression levels. (D,E) The soybean
genome contains a higher proportion of RADM-targeted loci compared to the Arabidopsis thaliana genome. Fraction of genes (y-axis) targeted by varying
levels of CHG (D) and CHH (E) DNA methylation (x-axis). Unmethylated genes were defined as loci containing <0.5% CG, CHG, and CHH methylation.
(F) Gene families containing the highest fraction of members containing >2.5% weighted CHG methylation. Only gene families with more than 100
members were considered in this analysis and only the top fifteen classes are displayed.

which is consistent with the ability of the RADM pathway to ac-
tively repress subsets of soybean genes.

The soybean genome contains ~66,000 protein-coding genes
(Schmutz et al. 2010) in contrast to the ~27,000 protein-coding
genes present in the Arabidopsis thaliana Col-0 genome (The
Arabidopsis Genome Initiative 2000), which reflects recent whole
genome duplications (Schmutz et al. 2010). The soybean LD ge-
nome contains higher amounts of all three types of DNA methyl-
ation (Fig. 1A) and greater proportions of CHG methylation when
compared to Arabidopsis thaliana (Fig. 1B), which is likely a result of

the RADM pathway more actively targeting genes in soybean (Fig.
3D,E). We defined genes as possible targets of RADM that con-
tained >2.5% of either CHG or CHH weighted methylation levels
as these levels had a measurable effect on gene expression. Al-
though ~6% and ~5% of the Arabidopsis thaliana genes are tar-
geted, respectively, by CHG and CHH methylation, ~26% and
~20% are targeted in soybean, representing an approximately
fourfold increase (Fig. 3D). A closer inspection of the top 15 classes
of genes that are most frequently targeted by CHG and CHH
methylation (Fig. 3F) revealed enrichment for biotic pathogen re-

Genome Research 1667

www.genome.org



Schmitz et al.

sponse proteins, MADS-box transcrip-
tion factors and protein degradation
machinery, which is similar to the three
gene families most targeted by CHG and
CHH methylation in Arabidopsis thaliana
(Schmitz et al. 2013).
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RdDM targets recently duplicated
paralogs
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CG weighted methylation in paralog B

Recently duplicated genes in Arabidopsis
thaliana show a strong preference for main-
tenance of methylation states (Widman C
et al. 2009), but analysis of the effects
of DNA methylation on gene expres-
sion in this species is limited by a rela-
tively low number of paralogs. In con-
trast, the whole-genome duplications in
soybean have resulted in almost 10,000
identified pairs of paralogs, and it is
plausible that these recent duplications
underlie the increased number of genes
targeted by CHG and CHH methylation
detected above. To determine if paralogs
are more likely to contain one paralog
that is enriched for non-CG methylation,
the CG, CHG, and CHH methylation
levels of these pairs were plotted against
one another (Fig. 4A-C). For CG methyl-
ation, the density plot revealed that most
pairs are methylated at relatively equal
levels, as the diagonal of the plot is most dense (Fig. 4A). This pattern
reflects that CG gene-body methylation, which is not repressive in
nature, is largely maintained between paralogs similar to previous
reports for orthologs (Takuno and Gaut 2013). This pattern con-
trasts with CHG and CHH methylation in which the vast majority
of paralogs are unmethylated or methylated at very low levels and
present near the lower left corner of the plot (Fig. 4B,C). In-
terestingly, clear examples of differentially methylated paralogs are
present along the zero plane of the x- or y-axis (Fig. 4B-F; Supple-
mental Table 3). A total of 602/9793 paralogs in soybean were
differentially targeted by non-CG methylation, which represents
a significant enrichment (P-value < 6.648 X 10~7) (Methods) when
compared to Arabidopsis thaliana paralogs (4/497). Furthermore, the
methylated forms of the paralogs were expressed at significantly
lower levels (P-value < 2 X 107!, Wilcoxon signed-rank test) and
resided closer to transposons when compared to their unmethylated
counterparts (Supplemental Fig. 7). In fact, 56/602 differentially
methylated paralogs were strictly defined by the presence of
a transposon that was targeted by CG, CHG, and CHH methylation
overlapping the gene space. These results indicate that one po-
tential route to gene expression variation in recently duplicated
genomes among paralogs is through the actions of DNA methyl-
ation and in some cases nearby transposon sequences.
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Figure 4.

Variation in DNA methylation among soybean parental
and recombinant inbred lines

To explore the potential for natural variation of DNA methylation
patterns in soybean, MethylC-seq and RNA-seq were performed on
the LDX01-1-165 germplasm (hereafter referred to as “LDX"”). Ad-
ditionally, the methylomes and transcriptomes of two recombinant
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inbred lines (RILs) that were derived from the LD and LDX parental
germplasms (Kim et al. 2011) were profiled to enable deter-
mination of the heritability of DNA methylation states upon
combination of newly introduced genetic variants. Over 100 mil-
lion 101-bp aligned reads were recovered for LDX and the two RILs
(R-11268 and R-11272) representing greater than ~11X coverage
for each sample (Supplemental Table 1). RNA-seq data was ac-
quired for all three lines in biological triplicates and had at least 30
million aligned reads per sample (Supplemental Table 2).

The single-base resolution bisulfite-sequencing data enabled
identification of single methylation polymorphisms (SMPs)
(Schmitz et al. 2011), differentially methylated regions only in the
CG context (CG-DMRs), and differentially methylated regions in
all types of DNA methylation (C-DMRs) present between the four
sequenced lines. In total, 280,712 CG-SMPs, 703,685 CHG-SMPs,
and 9,819,894 CHH-SMPs were identified between the parental
and RIL methylomes. CG-SMPs were more abundant in genes and
more specifically in introns compared to transposon and inter-
genic sequences (Supplemental Fig. 8A), whereas CHG- and CHH-
SMPs were more abundant in transposon sequences (Supplemen-
tal Fig. 8A). The patterns of CG-SMP variability are similar to the
patterns observed for CG-DMRs (Supplemental Fig. 8B).

Atotal of 3241 CG-DMRs were identified among the four lines
sequenced, and 61% of these overlapped gene bodies and were
found in similar distributions across gene bodies (Supplemental
Fig. 8C), similar to the patterns of CG gene-body methylation (Fig.
2A). To determine the potential impact of these CG-DMRs on gene
expression, the methylation levels of each CG-DMR were plotted
against the gene expression level of the locus overlapping the
position of each CG-DMR within each sample (Supplemental Fig.
8D). Regardless of the methylation level present within each of the
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CG-DMRs, the gene expression levels re-
mained constant, indicating that in these
limited samples no clear correlation be-
tween CG-DMR methylation levels and

SNPs

gene expression levels was detected (Sup-
plemental Fig. 8D). Although CG-DMRs
are an average size of 431 bp and prefer-
entially found in gene bodies, C-DMRs, of

LD LDX

Regions
LDX

which there are 1416, are an average size WL WLDX WHeterozygous ness
of 1162 bp, also abundant in gene bodies
(Supplemental Fig. 8EF), and are most C-DMRs
abundant within 1 kb of the transcrip- (R-C1r}r2%8)
tional start site of genes (Supplemental CG_DMRs
Fig. 8G). However, for C-DMRs that over- i
lapped genes, increasing levels of methyl- I'LD | LDX  No association detected i n=216
ation within each C-DMR are correlated ' i " o "
0 Mb 10 Mb 20 Mb 30 Mb 40 Mb

with decreasing levels of gene expression
(Supplemental Fig. 8H), indicating that
these types of DMRs can contribute to the
variation in gene expression observed be-
tween different genotypes.

Additionally, whole-genome sequenc-
ing data were obtained for the LD and LDX
parental lines and SNPs were identified us-
ing the SHORE analysis pipeline (Ossowski
et al. 2008). As expected, most of the SNPs
identified in each genotype sequenced were located in intergenic
regions, but significant fractions were identified in protein-coding
genes (Supplemental Table 4). Major effect mutations were iden-
tified and defined as SNPs that abolished known start and stop
codons, as well those SNPs that created premature stop codons. We
hypothesized that loci that are targeted by non-CG methylation
may accumulate major effect mutations at a higher rate than non-
unmethylated loci because they are not frequently expressed in
sporophytic tissues, but were unable to find any significant cor-
relation to support this claim (XZ test, P-value = 0.93). Therefore, it
is likely that the repressive DNA methylation at these loci has
evolved for other purposes, some of which may be important for
plant development (Zemach et al. 2010a; Martinez and Slotkin
2012; Schmitz et al. 2013), germ line maintenance (Slotkin et al.
2009; Calarco et al. 2012; Ibarra et al. 2012) and/or responses to
biotic stresses (Dowen et al. 2012).

Cosegregation analysis of DMRs and genotype

Although there is extensive methylation variation within and
between plant species, the heritability of methylation variants has
not been extensively explored in a population on a genome-wide
scale. To understand the stability and heritability of methylation
variants, we examined the methylation levels of CG- and C-DMRs in
homozygous regions of R-11268 and R-11272 and compared them to
their parental states in LD and LDX (Fig. 5A; Methods). In total, 3670/
4474 and 1924/2048 of the methylation levels of CG-DMRs and C-
DMRs, respectively, in R-11268 and R-11272 cosegregated with the
parental state (Supplemental Tables 5, 6), whereas 254/4981 for CG-
DMRs and 122/2048 for C-DMRs were found to contain the meth-
ylation state of the other parent. This would suggest that methylation
states of some DMRs are due to distant loci or are epigenetically
unstable, as has been observed in Arabidopsis thaliana and maize
(Becker et al. 2011; Eichten et al. 2011; Schmitz et al. 2011), although
other possible explanations could include incorrect assignment of
DMRs to their genotype and low sequencing coverage of DMRs.

Figure 5. Heritability of CG- and C-DMRs in two soybean recombinant inbred lines. (A) Re-
constitution of recombinant inbred line genotypes using SNPs between LD and LDX from bisulfite se-
quencing data. SNPs were combined to determine homozygous LD or LDX and heterozygous regions of
each chromosome in R-11268 and R-11272. An example is shown for the patterns of heritability for both
CG-DMRs and C-DMRs from chromosome 8 from R-11268. The entire data set can be found in Sup-
plemental Tables 5 and 6. (Blue shaded areas) LD homozygous regions; (red shaded areas) LDX ho-
mozygous regions; (green shaded regions) heterozygous regions; (white shaded regions) ambiguous.
(Blue bars) LD; (red bars) LDX; (yellow bars) no association detected.

Population-wide identification of methylQTL

The epigenomics approach undertaken in this study enabled
identification of methylation variants that are both linked and
unlinked to genotype (although the latter is much rarer), but the
low sample size of only two RILs makes understanding the pop-
ulation dynamics of methylation states difficult. However, because
the methylation status of the majority of C-DMRs cosegregated
with their genotype in the two RILs, it should be possible to map
potential causal variants for the methylation variation in this
population. DNA methylome data were acquired for an additional
81 lines from the RIL population and QTL mapping for each C-
DMR was performed, which revealed evidence for a methylQTL for
1293/1416 (91%) C-DMRs (Fig. 6A; Supplemental Table 7). Of the
identified methylQTL, 1260/1293 mapped locally to the C-DMR
(Fig. 6B,C; Supplemental Fig. 9), whereas 33 mapped to a different
chromosome from where the C-DMR was located (Fig. 6D,E). Lastly,
heritability estimates for each methylQTL were calculated, which
revealed that many methylQTL could explain a large proportion of
the methylation variation of their associated C-DMR (Fig. 6F). The
methylQTL with lower heritability estimates could be reflective of
methylation variants that display higher epimutation rates, possibly
because these variants are not directly linked to a genetic variant.
Future efforts to identify causal genetic variants will be necessary to
understand the stability of different classes of methylation variants.

Discussion

Studies in plants have led to major advances in the field of epige-
netics, especially with regard to natural epigenetic variation (Weigel
and Colot 2012). Plant genomes contain cytosine DNA methylation
that occurs not only in the CG context but also in CHG and CHH
contexts (Cokus et al. 2008; Lister et al. 2008), and these specific
signatures are often indicative of the type of regulation occurring at
the methylated locus. Epigenomic techniques have revealed wide-
spread natural variation in DNA methylation in a range of plant
species (Vaughn et al. 2007; Zhang et al. 2008; He et al. 2010; Becker
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LTIl 12 345678 91011121314151617 181920 the majority of C-DMR methylation var-
Chromosome iants identified cosegregated with the
Figure 6. Population-level analysis of methylation variants and identification of methylQTL. (A)  genetic background from which they

Scatter plot of the location (x-axis) of all single methylQTL identified for C-DMRs (y-axis). (B,C) DNA
methylation profiles for LD, LDX, R-11268 and R-11272 of two different C-DMRs. (Gold lines) mCG;
(purple lines) mCHG; (pink lines) mCHH. (D) An example QTL map of a local methylQTL and (£) a distant
methylQTL. (F) Broad-sense heritability estimates for all single methylQTL/C-DMR pairs.

et al. 2011; Eichten et al. 2011; Groszmann et al. 2011; Schmitz
et al. 2011; Greaves et al. 2012; Shen et al. 2012), but we are only
beginning to understand the role of DNA methylation and modes
of inheritance for different methylation variants.

Although whole-genome bisulfite sequencing data revealed
natural epigenomic variation between soybean germplasms, it
revealed a greater proportion of the methylome that was invariably
methylated. In fact, although the soybean genome is approximately
eightfold larger than the Arabidopsis thaliana genome, it contained
proportionally more DNA methylation, which was disproportion-
ally present in CHG and CHH sites, indicating that RADM is more
active in the soybean genome. A closer inspection of the regions of
the genome targeted by non-CG methylation revealed that ap-
proximately fourfold more protein-coding regions are actively si-
lenced. Given the recent genome duplications present in the soy-
bean genome (Schmutz et al. 2010), this additional targeting could
indicate that these genes are being purged from the genome or
expressed at very low levels until subfunctionalization occurs
(Roulin et al. 2012). If this were the case, it would be expected that

were derived, but there were rare exam-
ples of uncoupling between methylation
states and genotype, which potentially
provide an additional source for natural
epigenetic variation. One possible mech-
anism to explain the methylation variants that did not cosegregate
with their genotype could include paramutation, as has been ob-
served in maize (Patterson et al. 1993; Arteaga-Vazquez and
Chandler 2010), but analysis of these C-DMRs did not reveal such
events. For the C-DMR methylation variants that do follow stan-
dard laws of inheritance, their stability is likely a result of being
targeted by non-GC methylation, a process that would enact
a double-hit mechanism by taking advantage of the activities of
maintenance methyltransferases at CG and CHG sites (Ronemus
et al. 1996; Mathieu et al. 2007; Du et al. 2012) in addition to small
RNA directed methylation by de novo methyltransferases at all
cytosines (Cao et al. 2003; Teixeira et al. 2009).

The heritability of methylation states of C-DMRs suggested
that some of these C-DMRs might have arisen as a consequence of
genetic variants, as has been observed with the PAI gene family
and the AtFOLT1 paralogs in Arabidopsis thaliana (Bender and Fink
1995; Durand et al. 2012), whereas others could have arisen and
segregated independently of genetic variants like QQS (Silveira
et al. 2013). In fact, QTL mapping of this population uncovered a
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methylQTL for ~91% of the C-DMRs, indicating that these
C-DMRs are either linked to a genetic variant or are stably inherited,
whereas the methylation states of the remaining ~9% of C-DMRs
likely do not follow standard laws of inheritance. The vast majority
of these methylQTL mapped to the C-DMR, but there was also clear
evidence for methylQTL located on different chromosomes than
the C-DMR. It should be noted that genome rearrangements in the
parental lines or misassemblies in the reference genome could
explain some of these distant methylQTL. For example, there are
four C-DMRs on chromosome 18 that are all significantly asso-
ciated with a single marker on chromosome 4. In any case, these
methyQTL are candidate regions that in many cases likely harbor
a causal genetic variant(s) underlying the methylation variation of
the respective C-DMR. Identifying the types of causal variants that
lead to methylation variation in plants will require large-scale epi-
genomic projects using natural plant populations, which will enable
higher-resolution association mapping. In fact, a number of phe-
notyping and sequencing projects are already underway that will
advance the use of quantitative genetic approaches to understanding
natural variation of morphological or molecular phenotypes of
interest (Lam et al. 2010; Cao et al. 2011; Gan et al. 2011; Huang
et al. 2012).

Methods

Plant material

The two parental lines, LD00-2817P (Diers et al. 2010) and LDX01-
1-65 (Brucker et al. 2005), were used to create the studied RIL pop-
ulation (see Supplemental Methods for additional information).

Construction of sequencing libraries

DNA sequencing libraries for LD and LDX were constructed as
reported in Johnson et al. (2012). MethylC-seq libraries were
constructed according to Schmitz et al. (2011). RNA-seq libraries
were constructed using the Illumina TruSeq Kit v2 according to
the manufacturer’s guidelines.

Sequencing

gDNA-seq, MethylC-seq, and RNA-seq libraries were sequenced
using an Illumina HiSeq 2000 according to the manufacturer’s
instructions. gDNA-seq and MethylC-seq libraries were sequenced
for 101 cycles, and RNA-seq libraries were sequenced for 51 cycles.
An additional run of paired-end 2 X 101 bp sequencing was per-
formed for the gDNA libraries.

RNA-seq analysis

All RNA samples were performed as biological triplicates for
each genotype. Illumina HiSeq2000 output files in the FASTQ
format were aligned to the Glycine max reference genome ver-
sion 1.0 (Schmutz et al. 2010) (Gm1.0 ftp://ftp.jgi-psf.org/pub/
compgen/phytozome/v8.0/Gmax_v1.0/) using Bowtie version
0.12.7 (Langmead et al. 2009) and TopHat version 1.3.3 (Trapnell
et al. 2009) (flags = -g 1, —F 0). Gene expression values were calcu-
lated using Culfflinks version 1.1.0 (flags=-F O, -b, -N) (Trapnell et al.
2010).

MethylC-seq analysis

MethylC-seq analysis was performed similarly to Lister et al. (2011)
with some modifications (see Supplemental Methods).

Identification of DMRs

To identify DMRs, a root mean square test (Perkins et al. 2011) was
applied to all cytosines, which required building a contingency
table where the rows indicated a particular sample and the col-
umns indicated the number of reads that supported a methylated
cytosine or an unmethylated cytosine at each position in a given
sample. Using 10,000 permutations, the P-values were simulated;
and for each new permutation, a contingency table was generated
by randomly assigning reads to cells with a probability equal to the
product of the row marginal and column marginal divided by the
total number of reads squared. To increase the efficiency of this
process, if a P-value returned 100 permutations with a statistic
greater than or equal to the original test statistic, permutations
were discontinued (i.e., we used adaptive permutation testing). To
determine a P-value cutoff that would control the false discovery
rate (FDR) at a rate of 1%, the procedure in Bancroft et al. (2013)
was applied. Briefly, this method first generates a histogram of the
P-values and calculates the expected number of P-values to fall in
a particular bin under the null. This expected count is computed by
multiplying the width of the bin by the current estimate for the
number of true null hypotheses (1), which is initialized to the
number of tests performed. It then looks for the first bin (starting
from the most significant bin and working its way toward the least
significant) where the expected number of P-values is greater than
or equal to the observed value. The differences between the
expected and observed counts in all the bins up to this point are
summed, and a new estimate of m, is generated by subtracting this
sum from the current total number of tests. This procedure was
iterated until convergence, which we defined as a change in the my
estimate less than or equal to 0.01. With this m estimate, we were
able to estimate the FDR of a given P-value by multiplying the
P-value by the mj estimate (the expected number of positives at that
cutoff under the null hypothesis) and dividing that product by the
total number of significant tests we detected at that P-value cutoff.
We chose the largest P-value cutoff that still satisfied a 1% FDR
requirement. Once this P-value cutoff was chosen, significant sites
were combined into blocks if they were within 500 bases of one
another and had methylation changes in the same direction (e.g.,
sample A was hypermethylated and sample B was hypomethylated
at both sites). Three different types of DMRs were identified from
the data set—C-DMR (a change in all three contexts), CG-DMR (a
change only in the CG context), and CH-DMR (a change in either
the CHG or the CHH contexts). Furthermore, C-DMR, CG-DMR,
and CH-DMR blocks that contained fewer than 10, 5, and 5 dif-
ferentially methylated sites were discarded, respectively. Final
lists of C-DMRs required an overlap with both a CG-DMR and
a CH-DMR, and the final list of CG-DMRs were only retained if
they did not overlap a C-DMR or a CH-DMR.

Weighted methylation levels

Weighted methylation levels were computed as described in
Schultz et al. (2012).

Identification of “early” and “recent” whole genome
duplications (WGD) and paralogs

Synteny blocks were identified with DAGchainer (Haas et al.
2004), based on anchor points determined using the NCBI blastp
program (E-value < 1 X 1079), filtered to the top reciprocal best
matches per chromosome pair. Synteny blocks from Glycine (“re-
cent”) WGD were identified as those with median K values = 0.35
per block, and blocks from the legume (“old”) WGD were identi-
fied as those with median K; values > 0.35 and = 1.5 per block. K
values per gene were determined using the codeml program from
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the PAML package, version 4.4 (Yang 2007). The paralogs used in
this study and the descriptions of how they were identified were
obtained from Supplemental Table 4 in a previously published
study (Libault et al. 2010). Furthermore, our analysis on soybean
paralogs was strictly focused on genes harboring two copies in the
genome that were strictly duplicated genes from the recent WGD.
Differentially methylated paralogs were identified by searching for
pairs in which one paralog contained >2.5% CHG methylation and
the other paralog had <0.5% CHG methylation. Arabidopsis thali-
ana paralogs were obtained from Supplementary Material in a
previously published study (Ganko et al. 2007). The “prop.test”
function in R was used to estimate if the proportion of significantly
differentially methylated paralogs in soybean was greater than in
Arabidopsis thaliana.

Small RNA analysis

smRNA data were downloaded from the National Center for Bio-
technology for Information SRA012752 (Tuteja et al. 2009). These
small RNAs were isolated from young cotyledons from the
Williams accession. Raw smRNA data were preprocessed by remov-
ing the 3’ adapter sequence and any sequencing reads under 16 bp.
Reads passing these filters were aligned to the Gm1.0 reference
genome using the Bowtie (v0.12.7) and the following parameters:
-e 1 -120 -n 0 -a -m 1000-best-nomaqround. Only reads that
contained perfect matches within the genome and that did not
have more than a thousand locations were retained for further
data analysis.

Identification of SNPs

SNPs were identified using the SHORE variant identification soft-
ware package (Ossowski et al. 2008) using the BWA aligner (Li and
Durbin 2009), allowing up to 5% errors per read and a max of three
gaps. Any SNP with a quality score of 25 or above was used for
further analysis.

SNP effects

The impact of SNPs on coding regions were determined using the
SnpEff tool (“SnpEff: Variant effect prediction”; http://snpeff.
sourceforge.net) (Cingolani et al. 2012) using a Glycine max refer-
ence file.

Genetic reconstruction of RILs based on bisulfite sequencing reads

Only SNPs that distinguished the LD and LDX parental lines were
used to determine the genotypes of the RILs. All SNP pairs con-
taining C-T, T-C, A-G, or G-A changes were excluded because we
were unable to distinguish those SNPs due to bisulfite conversion
of reads. Next, the number of reads in each RIL that matched the
LD or LDX alleles was determined using the bisulfite converted
reads, and any position containing at least four reads matching
a parent was considered for further analysis. A position was de-
termined heterozygous if at least four reads were identified that
supported each parent. Using these data, a score was assigned as 1.0
for the LD genotype, O for heterozygous positions, and -1.0 for the
LDX genotype. Next, the genome was divided into 100-kb bins,
and the score for each bin was computed by averaging the scores of
each position within it. Only bins with greater than 10 SNPs were
included in the calculation. Next, we assigned tags to bins based on
the score. Bins with a score greater than 0.5, were tagged as LD,
whereas bins with a score of less than -0.5 were assigned as LDX.
Bins without a score were kept untagged, and the rest (with score
between -0.5 and 0.5) were labeled as heterozygous. Lastly, large
regions were formed by concatenating adjacent bins with the same

tag (LD or LDX) or bins that had the same tag but were spaced by
untagged bins.

Assignment of DMRs to genotype

DMRs were assigned to genotypes based on their overlap with the
genetic reconstruction of the R-11268 and R-11272 RILs. If a DMR
was within one reconstructed region, then its genotype was the
same as that region. To determine the parental methylation state of
each DMR, the weighted methylation level was computed for each
genotype (LD, LDX, R-11268, and R-11272). If the value of RIL was
within 20% of either one of the parents, then the DMR was assigned
to that parent. If the value of RIL was more extreme or between
either parent-weighted methylation level, then it was labeled “No
association detected.” To compare the methylation level of DMRs
in the offspring and the parents, we computed the ratio of the
weighted methylation level of each region in the RILs and then
subtracted the lower weighed methylation level from each parent to
determine the absolute difference between the weighted methyla-
tion levels of two parents. The ratio can be represented using the
following equation:

Ratio = Met — min(Met;p, Met; px ) max Metp, Met; px
— min(Met;p, Met; px)

where Met is the weighted methylation level of this region in a RIL,
and Met; p and Met; px are the weighted methylation levels in LD
and LDX, respectively.

QTL mapping of C-DMRs

The R/qtl package (Broman et al. 2003) was used to map QTL for
each C-DMR. First, missing genotypes were imputed using the
“fill.geno” function. Next, genotypes between SNP markers were
simulated and imputed using the “sim.geno” function with the
following parameters: “step=1, error.prob=0.01, n.draws=20.” Then,
for each C-DMR, the “scanone” function (option: “model=np’ ")
was used to compute a LOD score for each SNP marker across the
genome. Permutation testing (1000 times) was used to estimate
the significance of each LOD peak(s). methylQTL was defined as
the closest significant SNP marker (P-value < 0.01) to the summit of
the highest peak. Only the single highest LOD score was reported
for each C-DMR. The broad-sense heritability of each QTL was es-
timated by doing an ANOVA analysis using the “fitqtl” function.

Additional analyses

For analysis of SMPs, transposons, and for information regarding
gene annotations Arabidopsis thaliana data used in this study, see
Supplemental Methods.

Data access

The data generated for this work have been deposited in the NCBI
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo/) and are accessible through accession number GSE41753. Ge-
nome sequencing data have been deposited in the NCBI Sequence
Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra/) under acces-
sion number SRA060034. Processed data can be visualized at http://
neomorph.salk.edu/soybean_RIL_methylomes/browser.html.
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