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ABSTRACT
Intrapartum-related events are the third leading cause of
childhood mortality worldwide and result in one million
neurodisabled survivors each year. Infants exposed to a
perinatal insult typically present with neonatal
encephalopathy (NE). The contribution of pure hypoxia-
ischaemia (HI) to NE has been debated; over the last
decade, the sensitising effect of inflammation in the
aetiology of NE and neurodisability is recognised.
Therapeutic hypothermia is standard care for NE in
high-income countries; however, its benefit in
encephalopathic babies with sepsis or in those born
following chorioamnionitis is unclear. It is now
recognised that the phases of brain injury extend into a
tertiary phase, which lasts for weeks to years after the
initial insult and opens up new possibilities for therapy.
There has been a recent focus on understanding

endogenous neuroprotection and how to boost it or to
supplement its effectors therapeutically once damage to
the brain has occurred as in NE. In this review, we focus
on strategies that can augment the body’s own
endogenous neuroprotection. We discuss in particular
remote ischaemic postconditioning whereby endogenous
brain tolerance can be activated through hypoxia/
reperfusion stimuli started immediately after the index
hypoxic-ischaemic insult. Therapeutic hypothermia,
melatonin, erythropoietin and cannabinoids are examples
of ways we can supplement the endogenous response to
HI to obtain its full neuroprotective potential. Achieving
the correct balance of interventions at the correct time in
relation to the nature and stage of injury will be a
significant challenge in the next decade.

BACKGROUND
Intrapartum-related insults at full term such as
hypoxia-ischaemia (HI) are the third leading cause
of global child deaths.1 Each year, over 0.7 million
affected newborns die and 1.15 million develop
acute disordered brain function known as neonatal
encephalopathy (NE).2 NE is the second common-
est preventable cause of childhood neurodisability
worldwide3 with profound psychosocial and eco-
nomic consequences for families and society.
Protecting the newborn brain from injury around
the time of birth is a global health priority.4 5

TERM NEWBORN BRAIN INJURY: CAUSES,
PATHOGENESIS AND MANAGEMENT
NE is a descriptive term for neurological dysfunc-
tion in the newborn infant, manifested by symp-
toms including difficulty with initiating and
maintaining respiration, depression of tone and
reflexes, subnormal level of consciousness, poor
feeding and seizures.6 NE has a complex and

multifactorial aetiology. For over two decades, peri-
natal neuroprotection research has focused on pure
hypoxic-ischaemic brain injury; however, accumu-
lating preclinical7 8 and clinical9 evidences suggest
the critical importance of the sensitising effect of
inflammation.
The clinical signs of NE progress after a latent

period of hours to days. This timing of the evolu-
tion of clinical signs is thought to reflect brain
energy levels and the cascade of neurochemical
processes responsible for brain injury. These are
summarised in figure 1 and described in more
detail below.

Acute HI
During the acute hypoxic-ischaemic insult, some
cells undergo primary cell death, the magnitude of
which will depend on the severity and duration of
HI. In the absence of substrates (oxygen, glucose),
the neuron’s supply of high-energy metabolites such
as ATP falls below a critical threshold. The Na+/K+
ATP-dependent pump begins to fail, neuronal
depolarisation occurs and the synaptic cleft floods
with glutamate, which activates the N-methyl-D-
aspartate (NMDA) receptor. Toxic cytoplasmic Ca2+

concentrations arise through several mechanisms,
including overactivation of glutamate receptors
(NMDA, a-amino-3-hydroxy-5-methyl-4-isoxazole-
propioinic acid (AMPA)), other channels and trans-
porters, or through release from internal stores
through physical damage to mitochondria and
endoplasmic reticulum10; the increased Ca2+ trig-
gers many downstream neurotoxic cascades. As well
as generating an osmotic gradient that leads to
oedema and lysis of cells, Ca2+ activates nitric oxide
synthase, which in turn generates high levels of the
toxic reactive oxygen species nitric oxide (NO•). At
high concentrations, NO• reacts with superoxide
(O•−) to produce peroxynitrite (ONOO−), which
damages mitochondria via peroxidation and nitrosy-
lation of membrane lipids. Consequently, mitochon-
drial dysfunction and membrane depolarisation
develop with further release of O•− and decline in
endogenous anti-oxidants such as glutathione. Ca2+

also triggers the activation of cytosolic phospholi-
pases, which increase eicosanoid release leading to
inflammation.

Latent phase
After reperfusion, the initial hypoxia-induced cyto-
toxic oedema and accumulation of excitatory
amino acids partially resolve in 30–60 min, with
apparent recovery of cerebral oxidative metabolism.
It is thought that the neurotoxic cascade is largely
inhibited during the latent phase, when there is
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Figure 1 Schematic diagram illustrating the different pathological phases of cerebral injury after cerebral HI. The primary phase (acute HI), latent
phase, secondary energy failure phase and tertiary brain injury phase are shown. (A) Magnetic resonance spectra showing the biphasic pattern of
NTP/EPP decline and lactate/NAA increase during primary and secondary phases following HI insult. Persisting lactic alkalosis is shown in tertiary
phase. (B) Amplitude-integrated EEG showing normal trace at baseline, flat tract following HI, burst-suppression pattern in latent phase, emergence
of seizures in secondary phase and normalisation with sleep–wake cycling in tertiary phase. (C) Following HI, there is a period of hypoperfusion
associated with hypometabolism during latent phase, followed by relative hyperperfusion in secondary phase. (D) Cellular energetics and
mitochondrial function are reflected in the biphasic response shown on magnetic resonance spectroscopy (A), with a period of recovery in latent
phase followed by deterioration in secondary phase. There is partial recovery in tertiary phase. (E) The most important pathogenic changes are
shown for each phase (see main text for description), including generation of toxic free radical species, accumulation of EAAs, cytotoxic oedema,
seizures and inflammation. Cell lysis occurs immediately following HI, while programmed cell death occurs in secondary phase; latent phase provides
a therapeutic window. Persisting inflammation and epigenetic changes impede long-term repair. (F) Damage is maximal in the secondary phase, but
persists into the tertiary phase as inflammation and gliosis evolve. (G) In the future, neuroprotective treatments are likely to involve a ‘cocktail’ of
therapies to be administered intrapartum, in the latent phase to prevent secondary energy failure and through secondary and tertiary phases to
offset evolving damage. HI, hypoxia-ischaemia; EAAs, excitatory amino acids; EPP, exchangeable phosphate pool; NAA, N-acetylaspartate; NO, nitric
oxide; NTP, nucleoside triphosphate (this is mainly ATP); OFRs, oxygen free radicals; RIPostC, remote ischaemic postconditioning.
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endogenous inhibition of oxidative metabolism and increased
tissue oxygenation.11 The ‘therapeutic window’ is believed to
span this period. Much of our understanding of cerebral metab-
olism following HI has evolved through magnetic resonance
spectroscopy (MRS) through which we have shown that latent
phase duration is inversely related to insult severity.12 In the
early recovery period (2–8 h after HI), MRS may provide an
early marker of injury severity; an overshoot of phosphocreatine
(PCr; donates phosphate to ADP to generate ATP) is associated
with favourable outcome13 and raised cerebral lactate or inor-
ganic phosphate (Pi) at 2 h is indicative of adverse outcome.14

Secondary phase
Both preclinical15 and baby studies16 using phosphorus-31 (31P)
MRS have demonstrated the deterioration in cerebral oxidative
metabolism 6–24 h after HI (termed secondary energy failure)
(figure 1). Despite adequate oxygenation and circulation, PCr
and nucleotide triphosphate (NTP—mainly ATP) fell and Pi
increased. Low cerebral PCr/Pi, NTP/total mobile phos-
phates,16 17 increased brain lactate18 and an alkaline intracellular
pH (pHi)19 in the first few days after birth were associated with
neurodevelopmental impairment and increased mortality.

This secondary phase is marked by the onset of seizures,
secondary cytotoxic oedema, accumulation of cytokines and mito-
chondrial failure (figure 1). Mitochondrial failure is a key step
leading to delayed cell death. The degree of energy failure influ-
ences the type of neuronal death during early and delayed
stages,20 21 and the degree of trophic support influences the angio-
genesis and neurogenesis during the recovery phase after HI.

Tertiary phase
There is evidence that active pathological processes occur for
weeks, months and years after a hypoxic-ischaemic insult; this
has been termed tertiary brain injury.22 Indeed, a persisting cere-
bral lactic alkalosis has been observed using MRS over the first
year after birth in those infants with adverse neurodevelopmen-
tal outcomes.18 Mechanisms of this persisting damage involve
gliosis, persistent inflammatory receptor activation and epigen-
etic changes.

Endogenous neuroprotection
Brain damage and lasting functional impairment after NE are
the results of a balance between injurious mechanisms (cell
death, persistent inflammation) and endogenous protection
(acute response, recovery, repair). Optimal therapy will demand
exploitation of multiple pathways that prevent brain cell death
and promote repair.23 Much neonatal neuroprotection research
has emphasised immediate cytotoxic mechanisms; however, the
brain also mounts a potent, though only partially successful,
defensive response against many of the deleterious secondary
mechanisms of injury.24 Therapies to boost the endogenous neu-
roprotective response are particularly attractive; they are less
likely to disrupt physiological neurotransmission, so may offer
more effective treatments with fewer unwanted side effects.

We discuss five interventions whose actions include the aug-
mentation of the endogenous neuroprotective response. Birth
asphyxiated babies have an endogenous cooling response;25

therapeutic hypothermia is already the standard clinical care for
babies with moderate or severe NE. Remote ischaemic postcon-
ditioning (RIPostC) is a novel therapy, which has enormous
promise as an intervention that harnesses the body’s neuropro-
tective ‘conditioning’ mechanisms. Melatonin is known for its
role in entraining the circadian rhythm;26 however, endogenous
levels of melatonin increase after HI and exogenously

administered melatonin confers brain protection.27 Endogenous
endocannabinoids and erythropoietin (Epo), likewise increased
following HI, also have a role in neuroprotection. There is
expanding evidence to show that Epo confers protection that
extends to the tertiary phase of injury, promoting repair.

THERAPEUTIC HYPOTHERMIA
Background
For over 50 years, it has been known that babies with birth
depression have an endogenous cooling response.25 We
observed this phenomenon in our pilot cooling study in a low-
resource setting.28 After two decades of laboratory studies,29 30

clinical trials31 and endorsement from regulatory bodies (http://
www.nice.org.uk/guidance/ipg347), therapeutic hypothermia is
now standard clinical care for moderate-to-severe NE in the UK
and high-income countries.5

Mechanism
Pathways underpinning hypothermic neuroprotection are
covered in detail in recent reviews by Wassink et al32 and
Edwards et al33 In brief, these pathways include a decrease in
metabolic rate with parallel decreases in O2 consumption and
CO2 production, reduced loss of high-energy phosphates during
HI and during secondary cerebral energy failure, reduced exci-
totoxicity, reduced reactive oxygen species production, protein
synthesis preservation, decreased oedema, modulation of the
inflammatory cascade and a change in pro-apoptotic and anti-
apoptotic signalling.34–36

Clinical application
In intensive care settings, clinical trials have included whole
body cooling with core temperature reduced to 33.5°C for
72 h37 and selective head cooling with core temperatures
reduced to 34.5°C.38 Some studies suggest less severe brain MRI
findings in babies who have had whole body cooling versus
selective head cooling; other studies suggest equal benefit from
both cooling methods.39 40

There is clear evidence that therapeutic hypothermia as a
therapy for moderate-to-severe NE reduces adverse outcome
(mortality and neurodevelopmental disability) at 18 months of
age (typical relative risk 0.75, 95% CI 0.68 to 0.83)31; this
improvement persists into childhood41 and there is widespread
benefit to society, individuals and the economy (UK >£125
million benefit).42 However, therapeutic hypothermia offers
only an 11% reduction in risk of death or disability, from 58%
to 47%.4 Moreover, effective cooling treatment requires a high
level of neonatal intensive care support, which is not available
in many lower resource settings. There is an urgent need to
develop additional simple, safe and effective neuroprotective
treatment strategies.

Caveats of hypothermia
Recently, therapeutic hypothermia has been shown to be inef-
fective and even harmful in the presence of infection/inflamma-
tion in adult clinical studies.43 In a preclinical neonatal rodent
study, cooling was not neuroprotective in inflammation-
sensitised HI.44 In a small prospective study of placental hist-
ology relative to MRI in babies, therapeutic hypothermia was
less protective in babies whose placenta showed chorioamnioni-
tis.45 We reported an unexpectedly high mortality in NE cases
cooled to 33.5°C in a small pilot therapeutic hypothermia feasi-
bility (not efficacy) study in sub-Saharan Africa28; this may have
been related in part to higher rates of intercurrent infection/
inflammation in affected infants.
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Brain injury and hypothermia both alter immune responsiveness.
Following HI, a bidirectional communication between the injured
brain and the peripheral innate and adaptive immune system regu-
lates the progression of both ischaemic pathology and tissue repair
(for an in-depth review of the dualistic role of inflammation, see
An et al,46). HI acutely triggers the release of cytokines and chemo-
kines from neurons, astrocytes and microglia. These signals induce
microglial activation, trigger further release of pro-inflammatory
cytokines such as tumour necrosis factor α and interleukin 6 (IL-6)
and recruit white blood cells (WBCs). The infiltration of macro-
phages is both detrimental in ischaemic injury and protective
against haemorrhage. Similarly, while early elevation of circulating
neutrophils after HI may augment brain injury,47 prolonged
immunosuppression and T cell lymphopenia is associated with
immune paralysis and worse outcome in animal models of
stroke,48 traumatic brain injury49 and human adult stroke.50 Thus,
inflammation following HI has both helpful and harmful effects,
which may affect the response to neuroprotective treatments.

A key mechanism of action of therapeutic hypothermia is the
inhibition of the pro-inflammatory cascade51; and hypothermia
may therefore inhibit both protective and damaging responses.52

A recent study investigated the effect of therapeutic hypothermia
on modulating the peripheral immune response over the first 72 h
after birth in 65 infants with NE.53 Hypothermia lowered absolute
neutrophil and lymphocyte counts compared with normothermic
infants. In the hypothermic group, those patients who did not
have a recovery of their WBC counts after rewarming had poor
outcomes, whereas those who had better recovery of WBC counts
had a better long-term outcome.53 This may indicate immune par-
alysis in the adverse outcome group. It is possible, therefore, that
hypothermic immune suppression has a negative influence on
infants with infection-sensitised brain injury. Several adult studies
of hypothermia have found higher infection rates in cooled
groups.54 This has not been shown in neonatal studies of hypo-
thermia treatment; however, blood culture-positive neonatal sepsis
rates are low (5–12%) and much larger trials would be needed to
detect any increase. A better understanding is crucial for achieving
optimal neuroprotection in NE.

REMOTE ISCHAEMIC POSTCONDITIONING
Background
‘Conditioning’ describes an adaptive process of endogenous pro-
tection that occurs in all mammalian species, in which small,
sublethal doses of a harmful agent protect an organism against a
lethal dose of the same agent. Conditioning paradigms include
toxins, substrate deprivation and infection/inflammation.24 One
conditioning agent may also confer protection against a differ-
ent insult.55 56

Ischaemic preconditioning describes brief non-lethal episodes
of ischaemia that confer protection against subsequent cell-lethal
ischaemia, as has been observed in clinical studies of transient
ischaemic attack57 58 and angina.59 It is likely that contractions
during labour also represent a preconditioning stimulus.
Ischaemic postconditioning evolved from this concept60 61 and
is defined as intermittent sublethal interruptions to blood flow
after the cell-lethal ischaemia.62 Postconditioning is effective if
performed on a non-vital organ, such as a limb, remote to the
affected organ63—called remote ischaemic postconditioning
(RIPostC). Use of a remote limb makes RIPostC a feasible clin-
ical treatment strategy for NE.

Mechanism
RIPostC has been shown to protect the adult and neonatal brain
in rodent models of stroke. The protective mechanisms of

RIPostC are incompletely understood, but are thought to
involve three intimately inter-related pathways initiated by the
release of a number of endogenous autocoids (including adeno-
sine, bradykinin, opioids) from the ischaemic skeletal muscle.
These pathways are (i) the neuronal pathway; (ii) the humoral
pathway and (iii) the systemic response (figure 2).64 Animal
models have shown that interruption of any one of these path-
ways abrogates the neuroprotection conferred by RIPostC.

In brief, the neuronal pathway describes the autocoid-
mediated stimulation of local afferent nerves that effect remote
protection via efferent nerves, including the autonomic nervous
system.65 66 Both limb ischaemia and efferent nerve activation
trigger the release of a number of bloodborne protective factors
that are transported in the circulation and mediate protection in
the brain—the humoral pathway.67 68 The systemic pathway
describes the impact of RIPostC throughout the body, including
immune effects (such as reduced neutrophil activation) and
reduced expression of apoptotic and inflammatory genes.69

Following remote ischaemic stimulus, these three pathways
converge in the brain to increase cerebral blood flow, attenuate
neuroinflammation and at a cellular level to activate pro-survival
signalling cascades, including genetic and epigenetic modula-
tion. Ultimately these processes protect mitochondrial integrity,
reduce energy demands, increase cell survival and promote
repair mechanisms70–72 (figure 2).

In neonatal73 and adult74 small animal models, RIPostC
reduces infarct size in focal and global ischaemia. Moreover,
these studies have shown an extended therapeutic window for
the application of RIPostC following hypoxic-ischaemic brain
injury63 and application of RIPostC up to 24 h after insult was
associated with improved long-term motor outcomes.75

In our large animal (piglet) model of perinatal asphyxia, we
found that four 10 min cycles of ischaemia/reperfusion of both
lower limbs, starting immediately following resuscitation, provided
protection in the white matter,76 with decreased cell death and
inflammation. MRS data in our study showed that RIPostC miti-
gated the rise in white matter lactate/N-acetyl aspartate and
increased whole-brain ATP, findings that predict better long-term
outcome in clinical studies in human newborns.16 77

Hurdles to clear before clinical translation
RIPostC has been explored in clinical settings for conditions,
including cardiac disease and stroke.78 A meta-analysis of 23
randomised clinical trials of limb conditioning in adults under-
going cardiac surgery found reduced incidence of myocardial
infarction in the limb-conditioned groups, regardless of timing.
A randomised control trial of RIPostC for children undergoing
cardiac bypass also showed cardioprotection.79 In adult stroke, a
recent study of 443 adults who underwent prehospital remote
ischaemic perconditioning as an adjunct to thrombolysis for
acute ischaemic stroke found a reduced risk of tissue infarction
in the treatment group.80 In all studies, remote ischaemic condi-
tioning was safe and well tolerated. However, another
meta-analysis of remote ischaemic preconditioning in open
cardiac surgery showed the cardioprotective effect was most
marked in studies without full blinding, emphasising the need
for further double-blind randomised studies.81

Clinical trials are needed to establish whether RIPostC is safe
and protective in NE. It will be important to address the safety
and reproducibility of inducing intermittent limb ischaemia,
with and without concomitant cooling therapy. There remain
difficult hurdles such as the dose–response of RIPostC (how
many cycles and for how long achieves best protection and
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avoids any detrimental effects), the therapeutic time windows
and the precise protective mechanisms.82

MELATONIN
Background
Melatonin is a naturally occurring neuroendocrine molecule
secreted in response to environmental light–dark cycles.
Melatonin is both lipophilic and hydrophilic. It easily crosses
biological membranes and acts via receptor-dependent and
receptor-independent processes to modulate cell signalling and

gene expression.83 84 While melatonin’s key and probably best-
known role is to regulate the body’s multifarious circadian
rhythms,26 it influences numerous physiological functions,
including growth and development, reproduction and the
immune response.

Endogenous melatonin is integral to normal neurodevelop-
ment and protects the developing brain from injury.85–90

Maternal melatonin levels are raised in pregnancy91 92 and
melatonin readily crosses the placenta and blood–brain
barrier.93 94 Healthy term-born neonates have relatively low

Figure 2 (A) The neuroprotective mechanisms of RIPostC are thought to involve three inter-related pathways induced by remote limb ischaemia.
(1) The neuronal pathway involves activation of both local sensory nerves and the autonomic nervous system to mediate protective effects, including
the release of humoral factors; (2) the humoral pathway involves endogenous protective factors, including locally acting autocoids and bloodborne
humoral factors that travel to the brain and (3) the systemic response includes immune modulation and blood pressure regulation. (B) Within the
brain, the three pathways converge to increase cerebral blood flow, ameliorate neuroinflammation and to activate cell survival mechanisms. Direct
pro-survival actions within cells are mediated via G-protein-coupled (GPC) receptors and include mitochondrial protection (maintenance of
potassium-sensitive ATP channel, prevention of mitochondrial permeability transition pore opening) and transcriptional regulation (both genetic and
epigenetic modulation) in the nucleus. (C) Following remote ischaemic stimulus after HI, the effects of these neuroprotective mechanisms are to
decrease energy consumption; to increase substrate delivery and offset cerebral secondary energy failure; to protect against cell death and to
augment long-term recovery and repair. HI, hypoxia-ischaemia; I/R, ischaemia/reperfusion; RIPostC, remote ischaemic postconditioning.
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pineal melatonin production, which lacks diurnal variation for
the first weeks of life.95 96 However, we observed a 6- to
15-fold increase in plasma melatonin following HI in our
experimental model of perinatal HI27 and a similar response has
also been observed in human stroke and in critically ill chil-
dren,97 98 implying a role for melatonin in an endogenous pro-
tective response.

Mechanism
Acting via specific cell membrane and nuclear receptors, mela-
tonin achieves powerful neuroprotective effect via anti-oxidant,
anti-apoptotic and anti-inflammatory processes85–88 and by pro-
moting neuronal and glial development.99–101 Developing brain
tissue is highly susceptible to free radical damage102–104 and the
potent free radical-scavenging properties of melatonin and its
metabolites provide a fundamental neuroprotective mechan-
ism.105–109 Additional indirect anti-oxidant effects of melatonin
include upregulation of anti-oxidant enzymes94 and crucially
the preservation of mitochondrial integrity.106 107 109 Numerous
rodent and large animal studies have shown that melatonin
reduces oxidative damage to cerebral lipids104 110–116 and
notably ameliorates secondary cerebral energy failure27 and
apoptosis.116–121

Further, melatonin’s wide-ranging immune-modulating prop-
erties122 123 facilitate neuroprotection following
HI.27 118 121 124 Importantly, melatonin is protective in
lipopolysaccharide-sensitised HI.125 Given the evidence outlined
above indicating therapeutic cooling may lack efficacy following
infection-sensitised HI,44 45 melatonin may prove an effective
immune-modulating neuroprotectant in such cases.

Clinical use and safety
Melatonin is an extremely safe neurotherapeutic. No study of
antenatal or postnatal melatonin treatment has shown any
serious side effects,126 nor were any serious adverse events iden-
tified in 3000 children taking melatonin for up to 6 years.127 In
small neonatal clinical studies, melatonin improved outcomes in
sepsis,128 prematurity129 and perinatal asphyxia.130 In our large
animal model of perinatal asphyxia, we showed neuroprotective
efficacy conferred by melatonin-augmented cooling when com-
pared with cooling alone.27 In our study, melatonin 30 mg/kg
(which is 100 times the dose administered for disordered sleep
in children) administered to newborn piglets immediately after
HI over 6 h did not alter any physiological variable.27 A study
of 30 term infants with NE randomised to cooling alone or
cooling plus oral melatonin (five daily doses of 10 mg/kg per
day made up from melatonin tablets crushed and dissolved in
distilled water) suggested improved neurological outcome at
6 months in the melatonin group.131 However, four patients in
the hypothermia group had severe encephalopathy, whereas
only two in the hypothermia/melatonin group had severe
encephalopathy at birth; this may lend bias to the results in this
small study. Further, the blood levels of melatonin on day 5 in
the cooling group were 32.1+3.5 pg/mL, while in the mela-
tonin/cooling group were 42.7+5.1 pg/mL; preclinical data
suggest that significantly higher pharmacological levels of mela-
tonin are needed for optimal protection and work is currently
underway to determine the lowest effective dose of melatonin
for neuroprotection. Nevertheless, phase I and II clinical studies
of melatonin-augmented hypothermia for NE are keenly
awaited. In 2011, melatonin was rated by an international group
of leading perinatal neuroscientists as the most promising of 13
neuroprotectants nearing clinical translation.132

CANNABINOIDS
Background
Endocannabinoids are emerging as a potential neurotherapeutic
for NE. The endocannabinoid system is a neuromodulatory system
that participates in a wide range of physiological processes in
mammals.133 This endogenous system consists of target receptors,
endogenous ligands and the enzymes responsible for endocannabi-
noid biosynthesis, transport and degradation.134 135 Accumulating
evidence indicates that endocannabinoids, like melatonin, are
inherently involved in the normal development of the fetal central
nervous system and its functions.136–141 Moreover, the levels of
endocannabinoids, which are normally found at low concentra-
tions in the brain, dramatically increase upon neuronal
injury,136 142–144 suggesting that endocannabinoids provide an
endogenous neuroprotective system.145

Mechanism
Endocannabinoids modulate the intensity and extension of neuro-
toxic processes146–150 and the inflammatory response151–155 and
promote cell survival.156–161 Synthetic cannabinoid agonists have
shown significant grey and white matter protection in animal
studies of brain injury.162–167 In large animal models of perinatal
asphyxia, cannabinoid WIN55212-2 administered immediately
after HI protected mitochondrial injury and prevented apop-
tosis.162 163 Cannabidiol given immediately after HI reduced neur-
onal injury, cerebral haemodynamic impairment, brain oedema
and seizures and restored motor and behavioural performance in
the 72 h after HI.166 167 In rodent models of stroke, prolonged
7-day administration of cannabinoid WIN55212-2 started imme-
diately after injury enhanced long-term neuronal and oligodendro-
cyte recovery and regeneration.164 165 Cannabinoids, however,
achieve neuroprotection in part through hypothermia. For
example, the cannabinoid agonist HU10 induced hypothermia in
an experimental stroke model and was protective, but this benefit
was completely abolished by rewarming animals to the tempera-
ture of the control group.168

Clinical use and safety
The main established clinical uses of cannabinoids are for chronic
pain, for muscle spasms and as an appetite stimulant.169 170

Additionally, the synthetic cannabinoid dexanabinol is in a number
of phase I clinical trials for primary and secondary solid tumours
(http://www.clinicaltrials.gov). A previous phase III randomised
controlled trial of 861 adult patients given dexanabinol as a neuro-
protectant following traumatic brain injury showed that dexanabi-
nol was safe but not efficacious.171 However, we did not identify
any reported clinical studies of cannabinoids for stroke or perinatal
brain injury, or studies where cannabinoids were combined with
therapeutic hypothermia.

Reported side effects of cannabinoids have all been mild and
transient, including sedation, anxiety, dizziness and nausea.169 170

Maas et al171 found no toxic cardiac, hepatic or renal effects in
their study of dexanabinol for traumatic brain injury. However,
cannabinoids have been shown to accumulate selectively in the
brain and their clearance is relatively slow,169 thus preclinical phar-
macokinetic studies would be imperative prior to clinical trials of
cannabinoids for NE.

ERYTHROPOIETIN (EPO)
Background
Epo is a pleiotropic cytokine with multiple roles in addition to
that of a haemopoietic growth factor. As with melatonin and can-
nabinoids, the role of Epo in normal brain development and
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neuroprotection is becoming clear (for review see Rangarajan and
Juul172). Epo receptors (EpoR) are located throughout the central
nervous system on neurons,173 glia174 and endothelial cells;175

they participate in proliferation and differentiation of these
cells176 and are upregulated following brain injury. In a similar
way to the exaggerated hypoxic-ischaemic injury observed when
the endogenous melatonin response is abolished in pinealecto-
mised animals,177 the absence of endogenous Epo and EpoR aug-
ments ischaemic damage and impairs neuronal survival.178

Epo is a key component of the body’s endogenous ‘condition-
ing’ response to injurious paradigms, including ischaemia.
Hypoxic preconditioning occurs when Epo is expressed after
brief hypoxia, reducing damage following a second insult.179

This effect can be replicated by treatment with exogenous Epo
prior to HI.180 Preclinical and clinical studies have harnessed
the conditioning and regenerative potential of Epo, which is
now emerging as a promising neuroprotectant that promotes
repair into the tertiary phase of NE.

Mechanism
Hypoxia and pro-inflammatory cytokines activate hypoxia-
inducible factor to induce expression of Epo and EpoR.
Following brain injury, Epo is anti-apoptotic,181 anti-oxidative182

and anti-inflammatory.183 However, a key role for Epo is repair;
Epo binding stimulates neurogenesis, oligodendrogenesis and
angiogenesis, all of which are upregulated following brain
injury.184 185 Additionally, Epo increases neuronal and glial
migration around the injured area via the secretion of matrix
metalloproteinases.186 187 In animal studies of term and preterm
perinatal HI, Epo treatment results in reduced brain volume loss
and improved cognitive and motor outcomes188–190 and aug-
ments the neuroprotection conferred by cooling alone.191

Epo in clinical trials
Numerous animal studies of Epo for brain injuries, including
stroke and perinatal HI, have shown that high-dose recombinant
Epo and Epo-mimetics are safe and cross the blood–brain
barrier, resulting in neuroprotection.192 Epo pharmacokinetics
has been studied using doses from 250 U/kg to 2500 U/kg.193

Phase I/II studies in human preterm193 and term194 195 neo-
nates, performed to establish feasibility, safety and appropriate
dosing, have not identified any of the common side effects
observed in adults (polycythaemia, thrombosis, hypertension).
Epo-mimetics have been developed to improve neuroprotection
without stimulating erythropoesis.196

Follow-up of 22 infants enrolled in a phase I clinical trial of
Epo-augmented hypothermia (no comparison group) for treat-
ment of NE found no deaths and only one infant with moder-
ate–severe disability at age 2 years.197 A number of larger phase
II/III studies of Epo safety and efficacy in neonatal populations
are underway (reviewed in Rangarajan and Juul172). The
optimal dose and regimen for human Epo neuroprotection is
still not known; however, key points have been learnt from
rodent studies such as the requirement for multiple injections
and late 1 week dosing for maximal protection198; a study of 45
term infants comparing single-dose Epo alone on day 0 with
72 h therapeutic hypothermia alone for treatment of NE found
superior protection in the hypothermia group.199 Further
studies are needed to fully understand the specific role of Epo
in the tertiary phase of brain injury and repair. Thus, the com-
bined safety and efficacy of Epo administered alongside estab-
lished and novel treatments that ameliorate secondary energy
failure (cooling, melatonin) must be determined as key next
steps in clinical translation.

CONCLUSION
Perinatal HI leading to NE sets up a cascade of processes that
lead to an evolving brain injury, which includes a latent phase,
secondary energy failure phase and tertiary brain injury phase.
Coexisting infection/inflammation may exacerbate this injury.
The brain mounts a potent, though only partially successful,
defensive response against many of the deleterious secondary
mechanisms of injury. Therapies that augment the endogenous
neuroprotective response such as RIPostC are attractive but need
further study to define optimal protocols. Part of the endogenous
neuroprotective response is lowering of the core body tempera-
ture as well as increased melatonin, Epo and cannabinoid levels.
Augmenting these endogenous responses have shown protection
in preclinical studies and therapeutic hypothermia is now a
routine therapy for moderate-to-severe NE. Clinical trials are
now ongoing for Epo-augmented hypothermia. We anticipate
that future newborn brain protection will comprise a tailored
combination of therapies; the challenge will be to ensure the
timing and dose of each neuroprotectant are appropriate for the
phase of injury to ensure optimal and lasting protection.
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