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Abstract: The previous studies on asphalt mix and asphalt with waste engine oil addition indicate the
possibility of using this type of waste material for the construction of road pavements. The research
presented in this paper aimed at the preliminary assessment of possible waste engine oil (WEO)
addition to the asphalts foamed with water-soaked zeolites. In this research, synthetic zeolite Na-P1
and natural clinoptilolite were used. In order to improve the foaming effect, the zeolites were soaked
with water before dispensing to the asphalt, in the amount of 75% asphalt weight for Na-P1 and
25% for clinoptilolite. The tests were performed for one type of waste engine oil—5W40 and two
type of binders: 20/30 and polymer modified 25/55-60. The asphalt parameters such as the dynamic
viscosity, penetration and softening point were determined with the addition of WEO and zeolites in
the concentration of 0%, 3%, 5%, 7% for both materials. It was found that the WEO addition lowers
the viscosity and softening point of asphalt but increases penetration. The zeolite addition affected the
change of these parameters to a minor extent or was statistically irrelevant. The chemical analysis of
the asphalt samples with WEO addition performed with the X-ray Fluorescence method did not show a
significant amount of heavy metals which would increase the probability of low-temperature cracking.
The analysis of the results indicates the possibility of using zeolite-foamed asphalt technology with
WEO addition.
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1. Introduction

The construction of road surfaces is associated with a significant consumption of natural resources,
including mineral aggregates and crude oil, as well as the emission of hazardous compounds into
the atmosphere during the process of asphalt mix production. Through the use of waste materials
and innovative technologies, there is a chance to make road construction not only environmentally
friendly but also less cost-intensive, while ensuring the appropriate durability of the pavement as well
as comfort and safety for users [1,2]. Long-term research results indicate that various waste materials
can be used in the asphalt mix instead of the natural aggregate, such as: Construction and demolition
waste (CDW) [3–5], ceramic aggregates [6–8] and fly ash [9,10].

In recent years, accelerated degradation of road pavements has been a major problem occurring
in Poland [11]. It is related to an increased level of heavy duty traffic and a change of the road traffic
structure [12]. The increasing amount of reclaimed asphalt pavement (RAP) is the consequence of
these changes. According to the rules of sustainable development, the best way to manage RAP is to
re-use it in asphalt pavements, especially in the field of the newly produced asphalt mix. The changed
rheological properties of asphalt under the influence of oxidation constitute a significant issue in
using RAP for these mixes. The increase of stiffness may have a major negative effect on the asphalt
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pavement durability [13,14]. Rejuvenating agents, which restore the chemical structure of aged asphalt
by providing lost aromatic constituents and reducing the overall viscosity of the binder, are used
for improving the properties of mix asphalt with RAP [15,16]. One of the potential municipal waste
materials that can be used to rejuvenate RAP is waste engine oil (WEO) from cars [17–19]. The structure
of WEO resembles the molecular structures of asphalt with sufficient aromatic content, which leads to
coherent bonding by altering the constituents and rejuvenating the aged asphalt [20,21]. Bio-oil has a
similar structure and it can be also successfully used as a rejuvenating agent in mix asphalt [22–24].
According to the latest research WEO allows not only to increase the amount of RAP addition in newly
designed mixes [25], but also adjusts their properties such as: Fatigue resistance [26], workability [27],
indirect tensile strength and moisture susceptibility [17] as well as reduces ductile performance [28].
Waste engine oil may also partially replace virgin asphalt binder. The WEO addition causes softening
effect, improves elasticity and recovers properties of base asphalt [29].

Another method that allows increasing the percentage of RAP in new mixes is the warm mix
asphalt technology (WMA), which is produced at a temperature lowered by 20 ◦C–40 ◦C [30,31].
Lower production temperature positively affects the slowdown of asphalt binder aging, which
counteracts the stiffening of layers containing waste materials. Slowed aging of the asphalt compensates
the age of the recycled aggregate binder, similar to using softer asphalt. Owing to better workability,
warm-mix asphalts may contain higher RAP addition [32]. The research on WMA was performed
with the addition of up to 100% RAP. The results indicate good workability in temperatures as low as
110 ◦C [33].

The aim of this work is to assess the possibility of using waste engine oil in foamed asphalt
technology with zeolite addition based on dynamic viscosity, penetration and softening point tests
results. According to the fact that WEO is used as a softening additive of asphalt contained in reclaimed
asphalt pavement, the conducted research also shows whether there is a potential possibility of using
WMA technology with foamed bitumen for asphalt mix with RAP production.

2. Experimental Materials

2.1. Asphalts

Two types of bitumen were used in the tests: 20/30 asphalt penetration grade and bitumen
modified with polymers PMB 25/55-60.

The basic properties of asphalt binders and their fraction composition are presented in Table 1.

Table 1. Properties of the basic bitumen.

Test Specification Result

20/30 Asphalt 25/55-60 Asphalt

Penetration (25 ◦C; 0.1 mm) EN 1426:2009 21.1 29.3
Viscosity at (135 ◦C), mPa·s ASTM D 4402 377.0 593.5

Softening point, ◦C EN 1427:2009 63.8 68.0

The 20/30 asphalt is a hard road bitumen. According to its high softening point and high
susceptibility to low temperature cracking, it is recommended for use only in bonding layers and high
stiffness modulus base layers under favourable climate regions. Under the Polish climate conditions
this type of binder is used occasionally. Considering common petroleum asphalts, the 35/50 penetration
grade asphalt is usually used for road pavements. In the research, hard road bitumen 20/30 was chosen,
as its properties correspond to asphalt 35/50 after over a dozen or so years of usage in pavement.

The PMB 25/55-60 asphalt is a popular road bitumen modified with polymers in Poland. It is used
for asphalt base layers and high stiffness modulus asphalt concrete. It may also be used in stone mastic
asphalt (SMA) layers on the road sections loaded with slow and heavy traffic. New polymer-modified
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binders are frequently used for improving the properties of mix asphalt with RAP. For that reason the
WEO addition impact on foaming effect of this type of binder was additionally verified in the research.

2.2. Waste Engine Oil

Waste engine oil used in this study corresponds to type 5W40. The research material was acquired
from a local car service.

2.3. Zeolites

The zeolites used in this study are presented in Figure 1.
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Figure 1. Zeolite materials used in the research: Na-P1 (a), clinoptilolite (b).

These materials represent two different structure topologies. Na-P1 is a synthetic zeolite obtained
in the hydrothermal reaction converting the F-class fly ash and aqueous solution of sodium hydroxide.
The pureness of the obtained product was about 70%. Na-P1 is a gismonde-like structure (GIS),
which is built out of two four-membered rings forming an eight-membered channel of 3.1 × 4.5 Å and
2.8 × 4.8 Å. NaP1 zeolite forms fine plate-habit grains. Their maximum dimensions are 1 µm of length,
0.2 µm of width and 0.1 µm of thickness. Crystals of the Na-P1 zeolite create rosette-structure clusters
(Figure 2a).

The second zeolite – natural clinoptilolite (ZN-C) was acquired from a Ukrainian deposit in the
form of zeolitic tuff, which was composed of 75% pure clinoptilolite, cristobalite, quartz, feldzspar and
clay minerals such as montmorillonite and illite. ZN-C has a heulandite-like structure (HEU) which is
built of two-dimensional channels formed by eight-membered rings of 4.1 × 4.1 Å and 10-membered
rings of 2.8 × 4.8 Å. Clinoptilolite also forms plate-habit grains, sometimes hexagonal, however the
dimensions are significantly greater than the Na-P1 zeolite (10 × 15 × 0.2 µm) (Figure 2b). Apart from
the difference in the mineral structure of the zeolites, they also differ in particle size distribution and
the textural parameters [34].
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Bound water called zeolite water constitutes an important structural element of zeolites. The way
of its release from the crystal structure has a direct impact on the asphalt foaming effect. The character
and intensity of the zeolite water release observed in the thermal curves is significantly different
for these materials. The endothermic effect is observed up to the temperature of 250 ◦C, which is
of particular interest for asphalt foaming. The maximum effect for the Na-P1 zeolite occurs at the
temperature of 120 ◦C whereas for the natural zeolite—at 190 ◦C. Both discussed effects are accompanied
by the distinct mass reduction (TG curve). In the case of the Na-P1 zeolite mass reduction, it amounts to
20.4%, whereas in the case of clinoptilolite—only to 7.7% [35]. The amount of “zeolite water” released
in the temperature range of the asphalt mix production may be insufficient to induce the foaming
effect of asphalt binders. In order to improve the effective foaming of bitumens, zeolite materials were
additionally soaked with water.

The foaming effect of asphalt binder with the addition of water-soaked zeolite is presented in
Figure 3.
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3. Research Method

3.1. Dynamic Viscosity

The dynamic viscosity tests were performed using a Brookfield’s viscometer according to ASTM
D 4402, at a temperature of 135 ◦C, in reference to paving and compacting the asphalt mix. The test
consists of calculating the ratio of shear stress caused by the rotating spindle to its rotational speed.

The measurements were performed for pure asphalt and for the asphalt with additives of the
WEO and zeolites soaked in water. The water saturation of zeolites in relation to the dry mass
was 75% and 25% w/m for Na-P1 and clinoptilolite, respectively. Both materials were added to the
bitumens in the amount of 3%, 5% and 7% in relation to the mass. After heating the asphalt in
the oven to the testing temperature, oil was added to the specimen and mixed manually until the
mixture became homogeneous. Afterwards, the water-soaked zeolite was added and mixed manually
again. Next, the samples were transferred to the viscometer and stabilised for 15 min. The viscosity
measurements were taken at the following time intervals: 15, 30, 45 min, counted from the moment of
specimen placement in the viscometer. The tests were conducted three times for every combination
of asphalt-zeolite-WEO in order to evaluate the repeatability of the obtained results. Each test was
performed on a separate sample. The final result is the average of three partial measurements.

3.2. Softening Point

The softening point tests were performed according to PN-EN 1427:2009. The softening point is
the asphalt temperature at which the specimen located in a standardized ring and heated under certain
conditions reaches the base of the device (overcome vertical distance of 25.0 mm ± 0.4 mm) under the
weight of steel ball. The test was performed in water with the initial temperature of 5 ◦C, which rose
steadily at a rate of 5 ◦C/min. According to the standard records, the final result is an average of two
measurements rounded to 0.2 ◦C.
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3.3. Penetration

The penetration tests were performed in accordance to PN-EN 1426:2009. Asphalt penetration is
the depth at which the penetrating needle is immersed in the asphalt specimen under the load of 100 g
within 5 s at a determined temperature of 25 ◦C. The final result is an average of three measurements
performed on each specimen.

3.4. XRF

The X-ray fluorescence spectrometry (XRF) method was used in order to determine the chemical
composition of the asphalt with WEO addition. An EDXRF spectrometer was used, based on the
principle of energy dispersion. An EDXRF system typically consists of three main components:
An excitation source, a spectrometer/detector as well as data collection and processing unit. In the
process, a radiation source illuminates the sample, a detector records the radiation received from the
tested sample and thanks to the principle of dispersion or separation reads the values of radiation
energy characteristic for particular elements. After the test, the qualitative and quantitative analyses
are performed in which elements are identified and the intensity of their graph peaks is determined.
In this type of analysis, the intensity of the recorded line corresponds with the area under the peak.
The WEO sample and both the 20/30 and 25/55-60 asphalts with 0%, 3%, 5%, 7% WEO addition were
tested with this method.

4. Results and Discussion

4.1. Dynamic Viscosity of Asphalt

The results of dynamic viscosity tests for bitumens with the addition of the WEO and zeolites
are presented in Figures 4–7. The lines in Figures 4–7 in the color green, red and blue determines
the viscosity level of asphalt with the addition of WEO (according to the legend). The purple line
determines the viscosity of the reference asphalt without additives. The % mark on the external outline
of the charts (black font) is the percentage addition of the zeolite material in relation to the weight
of the asphalt. The minute designation (black font) refers to the moment of viscosity measurement
counted from the moment of specimen placement in the viscometer (Measurement time and percentage
zeolite addition has been marked additionally on the first figure with the viscosity results—Figure 4).
The viscosity value in the mPa·s unit is presented with a dark blue font.
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Figure 4. The results of dynamic viscosity tests for the 20/30 asphalt with the addition of WEO and the
Na-P1 zeolite measured at 160 ◦C (mPa·s).
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Figure 5. The results of dynamic viscosity tests for the 20/30 asphalt with the addition of WEO and
clinoptilolite zeolite measured at 160 ◦C (mPa·s).
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Figure 7. The results of dynamic viscosity tests for the 25/55-60 asphalt with the addition of WEO and
clinoptilolite zeolite measured at 160 ◦C (mPa·s).

The viscosity of the 20/30 asphalt was 377 mPa·s. After adding 3% of WEO, viscosity decreased to
264 mPa·s, 5%—to 221 mPa·s, while in the case of 7%—to 189 mPa·s (Figures 4 and 5). The viscosity
of the polymer-modified 25/55-60 asphalt was 593.5 mPa·s. With the WEO addition, the obtained
viscosity results reached: 3% WEO—461 mPa·s, 5% WEO—402 mPa·s and 7% WEO—334 mPa·s
(Figures 6 and 7). The highest percentage change of viscosity was observed with 3% added WEO,
for the 20/30 bitumen, it decreased 30% in relation to the initial value and 22% for 25/55-60. Viscosity
decreased as the WEO addition increased; however, the dynamics of the changes was lower and the
results were from 15% to 16% for the 20/30 asphalt and from 13% to 17% for the 25/55-60 asphalt,
respectively. According to the FTIR analysis, Liu et al. reported that the asphalt with the WEO viscosity
decrease is the effect of reduced amounts of LMS and carbonyl functional groups [36]. Shoukat and
Yoo pointed out that decreasing the binder viscosity by introducing additional oil fraction in asphalt
colloidal systems, could result in an improved resistance to thermal cracking [18].

In the bitumen samples with WEO foamed by zeolites, the viscosity generally increased along
with the zeolite addition (Figures 4–7). The phenomenon should be considered natural, as zeolites have
the form of an insoluble solid, conversely to organic or chemical additives, which are often completely
soluble and form a homogenous liquid with asphalt [37]. Similar correlation was obtained in the
research on the asphalts foamed with zeolites and mesoporous materials soaked with water [35,38].
A characteristic trend in the dynamics of changes cannot be determined along with the increase of the
zeolite addition. Considering the type of zeolite additive, the samples foamed with 3% of synthetic
zeolite Na-P1 had the viscosity changed by 3.6% to 12.5%. The dynamics of changes with the rise of
the zeolite addition was from −1.0% to 17.4% (Figures 4 and 6). Using 3% of the natural zeolite in
relation to the weight of the asphalt with the WEO addition, the change of viscosity between −5.2%
and 9.4% was observed. Increasing the amount of this foaming additive led to further changes of
viscosity from −6.2% to 9.3% (Figures 5 and 7). Comparing the viscosity results of the WEO modified
asphalt, the samples with the 7% zeolite addition had higher viscosity than before the foaming process.

Similarly as in the bitumens foamed by the addition of zeolites and mesoporous materials,
a decrease in viscosity over time was obtained for each combination of asphalt-zeolite-WEO [36,38].
The highest level of changes occurred after 30 min of the test (45 min after mixing asphalt with zeolite).
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After 45 min, the viscosity level stabilized. The reduction in asphalt viscosity over time was caused by
a slow release of the zeolite water.

4.2. Softening Point

The results of the softening point for bitumens with the addition of WEO and zeolites are presented
in Figures 8–11.
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Figure 8. The results of softening point tests for the 20/30 asphalt with the addition of WEO and
Na-P1 zeolite.
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Figure 9. The results of softening point tests for the 20/30 asphalt with the addition of WEO and
clinoptilolite zeolite.
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Figure 10. The results of softening point tests for the 25/55-60 asphalt with the addition of WEO and
Na-P1 zeolite.
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Figure 11. The results of softening point tests for the 25/55-60 asphalt with the addition of WEO and
clinoptilolite zeolite.

The softening point of the 20/30 asphalt was 63.8 ◦C and 68.0 ◦C for the 25/55-60 asphalt. Modifying
the asphalt binders with 3% WEO addition caused a decrease in the softening point by 5.6 ◦C for the
20/30 asphalt and by 2.4 ◦C for PMB. Increasing the percentage of WEO caused a further decrease of the
parameter. Similar correlations for road bitumens were obtained by Liu et al. and Zargar et al. [36,39].
However, the dynamics of changes differed from the literature data. In the 20/30 bitumen samples,
the WEO addition growth from 3% to 7% caused a decrease in the softening point by 2.8 ◦C and 3.4 ◦C
for PMB 25/55-60. The softening point change of the asphalt modified with SBS copolymer was lower
in comparison to the results acquired by Zargar et al. [39]. Asphalt foaming with water-soaked zeolites
did not significantly affect the softening parameter of the 20/30 asphalt (changes from 0.2 ◦C to 1 ◦C).
In the case of the polymer-modified bitumen, the softening point growth ranged from 1.4 ◦C to 4 ◦C in
relation to the results of only WEO addition. An increase in the parameter below 1 ◦C was obtained
only in two samples.
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The asphalt placed in the road pavement becomes less susceptible to high temperatures under the
influence of the oxidation process. In turn, the mixture of waste engine oil can rejuvenate the aged
bitumen by decreasing the softening point. Qurashi et al. [19] also found that WEO was good for the
softening asphalt and gives it greater flexibility. The negative consequence of such changes is the lower
resistance of asphalt pavement to rutting (permanent deformations). It is particularly important in the
countries with warm and temperate climate.

4.3. Penetration

The results of penetration for bitumens with the addition of WEO and zeolites are presented in
Figures 12–15.

Materials 2019, 11, x FOR PEER REVIEW  10 of 17 

 

The asphalt placed in the road pavement becomes less susceptible to high temperatures under 
the influence of the oxidation process. In turn, the mixture of waste engine oil can rejuvenate the aged 
bitumen by decreasing the softening point. Qurashi et al. [19] also found that WEO was good for the 
softening asphalt and gives it greater flexibility. The negative consequence of such changes is the 
lower resistance of asphalt pavement to rutting (permanent deformations). It is particularly 
important in the countries with warm and temperate climate.   

4.3. Penetration 

The results of penetration for bitumens with the addition of WEO and zeolites are presented in 
Figures 12–15. 

 
Figure 12. The results of penetration tests for the 20/30 asphalt with the addition of WEO and Na-P1 
zeolite measured at 25 °C. 

 

Figure 13. The results of penetration tests for the 20/30 asphalt with the addition of WEO and 
clinoptilolite zeolite measured at 25 °C. 

61.7
57.5 58.2 59.0

44.5
38.9 39.0 39.5

34.8

28.1 27.8 26.7
21.1

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0% 3% 5% 7%

Pe
ne

tr
at

io
n 

[0
.1

m
m

]

Percentage zeolite addition

7% WEO

5% WEO

3% WEO

20/30

61.7
58.7 56.4 58.0

44.5
40.9 41.8 41.5

34.8
28.4 28.8 28.9

21.1

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0% 3% 5% 7%

Pe
ne

tr
at

io
n 

[0
.1

m
m

]

Percentage zeolite addition

7% WEO

5% WEO

3% WEO

20/30

Figure 12. The results of penetration tests for the 20/30 asphalt with the addition of WEO and Na-P1
zeolite measured at 25 ◦C.
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Figure 13. The results of penetration tests for the 20/30 asphalt with the addition of WEO and
clinoptilolite zeolite measured at 25 ◦C.
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Figure 14. The results of penetration tests for the 25/55-60 asphalt with the addition of WEO and Na-P1
zeolite measured at 25 ◦C.
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Figure 15. The results of penetration tests for the 25/55-60 asphalt with the addition of WEO and
clinoptilolite zeolite measured at 25 ◦C.

The results presented in Figures 12–15 indicate the increase pertaining to the penetration of
asphalt binders with the WEO addition. The dynamics of the penetration changes results from the
increased amount of WEO additive and has a nearly linear character. In the 20/30 asphalt samples,
over a two-fold increase in the tested parameter was obtained using 5% WEO (from 21.2 × 0.1 mm to
44.5 × 0.1 mm). However, in the 25/55-60 asphalt, such level of increase was obtained with 7% WEO
addition (from 38 × 0.1 mm to 83.2 × 0.1 mm). The asphalt binders foamed with zeolites had slightly
lower penetration. This is caused by the effect of bitumen stiffening after adding a solid in the form of
dust. According to Nciri et al., the stiffening process is caused by three mechanisms [40]:

(1) Volumetric-filling reinforcement: The stiffening caused by the presence of rigid inclusions in a
less rigid matrix,

(2) Physicochemical reinforcement: The stiffening caused by the interfacial effects between filler
particles and asphalt, including adsorption, absorption, and selective sorption.

(3) Particle-interaction reinforcement: The stiffening beyond physicochemical reinforcement and
volume filling.
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The research conducted by Nciri et al. indicates that the chemical composition of the binder
changed after adding ground waste oyster shells. The fraction of aromatic components decreased and
the fraction of resins increased. However, the asphaltenes and saturated fractions remained equivalent.
The results show that the aromatics in lighter fractions of asphalt were changed to resins. It is possible
that zeolite materials interact with the asphalt binder in a similar way, which needs to be confirmed in
laboratory tests.

4.4. XRF

The X-ray fluorescence (XRF) technique is the non-destructive method for determining the
chemical composition of test materials. In the road construction, it is used to determine the composition
of elemental aggregates [41], asphalt [35] additives and modifiers [42]. This method can also be applied
to identify the contamination of bitumen by additives characterized by a high amount of heavy metals
such as: Zinc (Zn), copper (Cu), molybdenum (Mo) and other elements: Phosphorous (P) and calcium
(Ca). The research shows that these types of additives (e.g., Recycled Engine Oil Bottom—REOB) may
negatively affect the asphalt quality. The paraffinic nature of the REOB can reduce the adhesion to
the aggregate and as a consequence, decrease the resistance of the asphalt mix to water and frost.
Metals such as iron, copper, and chromium can act as catalysts in the oxidation of the asphalt cement.
Paraffin can precipitate asphaltene, which accelerates the hardening of the asphalt. Such binders are
characterized by lower plasticity and higher stress at low temperatures, which results in early and
increased thermal cracking [43,44]. An analysis of the chemical composition of asphalt using the XRF
technique allows for quick initial verification of the quality of the asphalt modified with various types
of additives.

The chemical composition of the studied materials determined with ED-XRF is presented in
Table 2.

Table 2. Chemical composition of the studied materials.

WEO
5W40

35/50
Asphalt

(A)

PMB
25/55-60

(B)

A + 3%
WEO

A + 5%
WEO

A + 7%
WEO

B + 3%
WEO

B + 5%
WEO

B + 7%
WEO

Al % 0.038 0.027 0.025 0.025 0.027 0.024 0.026 0.024 0.024
Si % 0.066 0.007 0.007 0.005 0.006 0.007 0.007 0.004 0.006
P % 0.089 0.035 0.035 0.038 0.041 0.039 0.038 0.039 0.039
S % 0.186 3.600 3.461 3.465 3.370 3.379 3.341 3.304 3.267

Ca % 0.208 0.013 0.014 0.019 0.025 0.026 0.020 0.023 0.025
V % nd * 0.026 0.024 0.025 0.025 0.024 0.024 0.023 0.023
Ti ppm 4.1 nd nd nd nd nd nd nd nd
Fe % 0.002 0.006 0.005 0.006 0.005 0.005 0.005 0.005 0.005
Ni % nb 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005
Zn ppm 680 nd 5 30 40 50 30 40 60
Sn ppm 60 nd nd 50 60 60 60 60 60

CH2 % 99.338 96.280 96.422 96.403 96.485 96.477 96.525 96.562 96.595

* nd: not deleted.

The chemical composition of asphalts was dominated by the hydrocarbons and sulfur, reaching
99.9%. Pollutants in the form of metals: Mo, Cu and Sn were not detected, whereas the Zn contents
were marginal (5 ppm) and found only in the PMB 25/55-60 asphalt. The samples of the asphalt
with WEO revealed the presence of the elements originating from the additive. The amount of
detected heavy metals—tin and zinc—increased along with the concentration of WEO. They are trace
amounts ranging from 30 to 60 ppm Sn and from 50 to 60 ppm Zn. However, heavy metals such as
molybdenum or copper, characteristic of recycled engine oil bottom, were not detected in the tested
samples. The amounts of heavy metals are marginal and should not have a negative impact on the
asphalt mix properties. However the use of waste engine oil has the potential to carry out heavy metals
to the environment, therefore leaching tests should be carried out.



Materials 2019, 12, 2265 13 of 17

4.5. Statistical Data Analysis

In order to determine the effect of the additive type (zeolite and WEO) on the presented binder
properties, the test results were statistically analyzed using two-way ANOVA tests. The obtained
results are presented in Table 3 for asphalt 20/30 and Table 4 for PMB 25/55-60. If the p value does not
exceed the significance level α = 0.05 assumed in the analysis, then the given factor impact on the level
change of the examined feature should be considered as statistically significant.

Table 3. ANOVA analysis on the parameters of the waste engine oil (WEO)-modified asphalt.

Asphalt 20/30

Na-P1 Zeolite

Penetration test

Source SS df MS F p

Percentage WEO addition 1808.72 2 904.36 696.02 0.0000
Percentage zeolite addition 65.00 3 21.67 16.67 0.0026

Error 7.80 6 1.30 - -
Total 1881.51 11 - - -

Softening point test

Source SS df MS F p

Percentage WEO addition 20.91 2 10.45333333 73.5 0.0001
Percentage zeolite addition 0.99 3 0.328888889 2.3125 0.1758

Error 0.85 6 0.142222222 - -
Total 22.75 11 - - -

Dynamic viscosity test

Source SS df MS F p

Percentage WEO addition 11257.64 2 5628.82 189.88 0.0000
Percentage zeolite addition 1217.31 3 405.77 13.69 0.0043

Error 177.86 6 29.64 - -
Total 12652.81 11 - - -

Clinoptilolite zeolite

Penetration test

Source SS df MS F p

Percentage WEO addition 1636.14 2 818.07 751.97 0.0000
Percentage zeolite addition 43.76 3 14.59 13.41 0.0045

Error 6.53 6 1.09 - -
Total 1686.43 11 - - -

Softening point test

Source SS df MS F p

Percentage WEO addition 19.46 2 9.73 143.56 0.0000
Percentage zeolite addition 0.86 3 0.29 4.25 0.0626

Error 0.41 6 0.07
Total 20.73 11

Dynamic viscosity test

Source SS df MS F p

Percentage WEO addition 12075.28 2 6037.64 132.13 0.0000
Percentage zeolite addition 569.54 3 189.85 4.15 0.0652

Error 274.18 6 45.70 - -
Total 12919.00 11 - - -

SS: Sum of the squared deviations; df: Degree of freedom; MS: Mean square; F: F-value; p: P-value.
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Table 4. ANOVA analysis on the parameters of the WEO-modified asphalt.

Asphalt PMB 25/55-60

Na-P1 Zeolite

Penetration test

Source SS df MS F p

Percentage WEO addition 1419.98 2 709.99 1811.56 0.0000
Percentage zeolite addition 16.06 3 5.35 13.66 0.0043

Error 2.35 6 0.39 - -
Total 1438.40 11 - - -

Softening point test

Source SS df MS F p

Percentage WEO addition 40.13 2 20.06 91.66 0.0000
Percentage zeolite addition 2.52 3 0.84 3.83 0.0759

Error 1.31 6 0.22 - -
Total 43.96 11 - - -

Dynamic viscosity test

Source SS df MS F p

Percentage WEO addition 49484.32 2 24742.16 75.72 0.0001
Percentage zeolite addition 9364.63 3 3121.54 9.55 0.0106

Error 1960.54 6 326.76 - -
Total 60809.49 11 - - -

Clinoptilolite zeolite

Penetration test

Source SS df MS F p

Percentage WEO addition 1303.20 2 651.60 604.81 0.0000
Percentage zeolite addition 13.57 3 4.52 4.20 0.0639

Error 6.46 6 1.08 - -
Total 1323.24 11 - - -

Softening point test

Source SS df MS F p

Percentage WEO addition 23.83 2 11.91 44.92 0.0002
Percentage zeolite addition 6.71 3 2.24 8.43 0.0143

Error 1.59 6 0.27 - -
Total 32.12 11 - - -

Dynamic viscosity test

Source SS df MS F p

Percentage WEO addition 42428.67 2 21214.33 371.10 0.0000
Percentage zeolite addition 3402.75 3 1134.25 19.84 0.0016

Error 343.00 6 57.17 - -
Total 46174.42 11 - - -

SS: Sum of the squared deviations; df: Degree of freedom; MS: Mean square; F: F-value; p: P-value.

The statistical analysis carried out confirmed that the change in the properties of bituminous
binders was dependent mainly on the amount of dispensed waste engine oil. The value of the p factor
for the percentage WEO amount was from 0.000 to 0.0002.

Additionally, the percentage of zeolite additive had a statistically significant impact on the
penetration and viscosity of the tested bitumens. The impact of the added clinoptilolite zeolite amount
was statistically irrelevant in the case of the PMB 25/55-60 asphalt (p = 0.0639 > 0.05) penetration and
viscosity of the 20/30 asphalt (p = 0.0652 > 0.05). The softening point was not affected by the amount
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of added zeolite material. Only for the PMB 25/55-60 asphalt, the impact of dispensed clinoptilolite
amount turned out to be statistically significant (p = 0.0143 < 0.05).

The results of the ANOVA statistical analysis confirmed the analysis of the results carried out in
Sections 4.1–4.3.

5. Conclusions

The research presented in the paper concerned the preliminary evaluation of possible use of waste
engine oil in the zeolite foamed asphalt technology. Two types of asphalt were used in laboratory
tests: 20/30 penetration grade and PMB 25/55-60 bitumen modified with polymers as well as two types
of zeolites: Natural zeolite clinoptilolite and Na-P1-structure type synthetic zeolite produced from
fly ashes.

The analysis of the test results shows that the change of bitumen properties is affected to a greater
degree by the addition of WEO than by the addition of water-soaked zeolites, which was confirmed by
the results of the statistical analysis ANOVA.

Zeolites are only a “carrier of water” and the main purpose of their use is to create the asphalt
foaming effect, which in consequence allows to reduce the production and compaction temperatures of
the asphalt mix.

The asphalt binders with the WEO addition had lower dynamic viscosity and softening point
but higher penetration. The highest decrease in the viscosity and softening point was recorded in the
samples with 3% WEO addition. Increasing the concentration to 5% and 7% WEO caused a further
change in the tested parameters with lower dynamics of changes. In turn, the growth of penetration
that occurred while increasing the amount of WEO addition was proportional. Research results
indicates the potential possibility of using waste materials such as waste engine oil in the asphalt mix
produced in the zeolite-foamed asphalt technology with RAP.

In order to verify the preliminary results of the tests, further research including the assessment
of the physical and mechanical properties of asphalt mix produced in the zeolite-foamed asphalt
technology with RAP and WEO addition is required.
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7. Andrzejuk, W.; Barnat-Hunek, D.; Fic, S.; Styczeń, J. Wettability and surface free energy of mineral-asphalt
mixtures with dolomite and recycled aggregate. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471. [CrossRef]

http://dx.doi.org/10.1016/j.conbuildmat.2011.12.094
http://dx.doi.org/10.2478/v.10169-012-0011-2
http://dx.doi.org/10.1016/j.jclepro.2017.07.140
http://dx.doi.org/10.1016/j.resconrec.2017.11.027
http://dx.doi.org/10.3390/su10061737
http://dx.doi.org/10.3390/ma11050658
http://www.ncbi.nlm.nih.gov/pubmed/29695115
http://dx.doi.org/10.1088/1757-899X/471/3/032011


Materials 2019, 12, 2265 16 of 17

8. Muniandy, R.; Ismail, D.H.; Hassim, S. Performance of recycled ceramic waste as aggregates in hot mix
asphalt (HMA). J. Mater. Cycles Waste 2018, 20, 844–849. [CrossRef]

9. Rongalia, U.; Singhb, G.; Chourasiyac, A.; Jaind, P.K. Laboratory performance of stone matrix asphalt
containing composite of fly ash and plastic waste. J. Sci. Ind. Res. India 2013, 72, 186–192.

10. Mistry, R.; Roy, T.K. Effect of using fly ash as alternative filler in hot mix asphalt. ScienceDirect 2016, 8,
186–192. [CrossRef]

11. Raport o stanie technicznym nawierzchni sieci dróg krajowych na koniec 2018 roku. Generalna
Dyrekcja Dróg Krajowych i Autostrad. Warszawa. 2019. Available online: https://www.gddkia.gov.pl/
frontend/web/userfiles/articles/r/raporty_18751/2018/Raport%20stan%20na%20koniec%202018.pdf (accessed
on 27 May 2019).
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