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Summary points

• Estimates of the global burdens of morbidity attributable to acute attacks of Plasmodium
falciparum malaria typically dwarf those of Plasmodium vivax, i.e., hundreds of millions

versus tens of millions of cases.

• Global burden estimates take no account of latent and subpatent reservoirs of infections

carrying more subtle burdens of illness and death in impoverished settings of malnutri-

tion, coendemic infections, and limited access to quality healthcare. Impacts of chronic

malaria on human health may be substantial and are excluded from estimates of bur-

dens of acute malaria.

• Compartments of human infection by P. vivax beyond vascular patency—vascular sub-

patency, extravascular subpatency, sexual latency, and hepatic latency—obscure

endemic transmission and burdens of infection and illness.

• Long thought to be absent from most of sub-Saharan Africa due to the high prevalence

of the Duffy-negative phenotype among residents, recent investigations suggest that

widespread reservoirs of transmission may occur across that region.

• Human glucose-6-phosphate dehydrogenase (G6PD) deficiency may also affect suscep-

tibility to infection and directly impact access to effective antirelapse therapy of P. vivax
using 8-aminoquinolines that are dangerous to those patients. Natural polymorphisms

of the human cytochrome P-450 2D6 gene impact parasite susceptibility to primaquine

antirelapse therapy at population levels.

• All these factors impose great complexity in considering estimates of burdens of P.

vivax and access to effective mitigation of the harm caused. The conventional diagnos-

tics underpinning epidemiological and clinical understanding of vivax malaria may be

inadequate to the biology of this parasite.AU : Anabbreviationlisthasbeencompiledforthoseusedinthemaintext:Pleaseverifythatallentriesarecorrect:

IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
The global burden of malaria is often reported as a single value that combines the malarias

caused by the 5 species of plasmodia that naturally infect humans [1]. The vast majority of this
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burden is attributable to Plasmodium falciparum and Plasmodium vivax malarias, which have

only recently begun to be reported separately in the World Malaria Report [2]. The estimated

annual burden of P. vivax malaria (14.3 million [13.7 to 15.0 million]) is an order of magnitude

lower than that of P. falciparum (193.5 million [142.0 to 254.7 million]) [3,4]. Infections with

Plasmodium ovale or Plasmodium malariae are geographically widespread but only rarely

prevalent at detectable ranges, whereas the zoonosis caused by Plasmodium knowlesi of South-

east Asian macaques occurs only in forested areas of that region. The contributions of these 3

minority malarias to the global burden of acute malaria have not been credibly estimated but

are likely to be<5%.

Authoritative estimates of burdens of P. falciparum and P. vivax refer specifically to events

of clinical illness associated with patent parasitemia [3,4]. The incidence of infection per se is

not accounted, despite asymptomatic carriers of infection representing an important and often

dominant state of infection with regard to either species [5,6]. Semi-immune older children

and adults through much of endemic sub-Saharan Africa, who greatly outnumber vulnerable

young children and pregnant women, are very often infected at high rates of prevalence but

only rarely suffer attacks of acute malaria [7]. Nonetheless, so-called asymptomatic infections

may not be considered benign because chronic malaria carries substantial health consequences

[8–10]. This naturally acquired immunity associated with chronic malaria has long been attrib-

uted to very high rates of exposure to repeated infections occurring almost exclusively in Africa

[11]. However, recent work across the endemic globe demonstrates dominance of asymptom-

atic, microscopically subpatent infections even with relatively low levels of endemic transmis-

sion [12–17]. Estimates of global burdens based on clinical attacks likely miss far broader and

more subtle indicators of infection and the harm done in often impoverished communities

facing myriad other challenges to good health.

A recent study from Indonesia offers important insights regarding that question applied to

P. vivax. Dini and colleagues reported a retrospective analysis of 37,168 patients diagnosed

with P. falciparum and 22,209 with P. vivax over a period of nearly 10 years [18]. Whereas a

diagnosis of P. falciparum came with a higher risk of death within 14 days of diagnosis, over

the longer term, greater numbers of repeated attacks and hospitalizations among P. vivax
patients came with risk of death that was nearly twice that among patients with P. falciparum.

As expressed by those authors in conclusion, “Whilst the acute management of malaria is para-

mount to prevent early death, our analysis highlights the importance of preventing recurrent

malaria.” Repeated attacks of vivax malaria carried elevated risk of malaria morbidity and mor-

tality by any cause. Renal, circulatory, and cognitive harm is done by chronic malaria infec-

tions [19–24]. Harm is not limited to a single attack of acute malaria but logically extends to

the varied insults to health repeatedly endured by many residents living under endemic

malaria transmission. So-called silent reservoirs of infection may thus carry subtle but impor-

tant burdens of illness and death not captured in global estimates of acute attacks of malaria.

The asymptomatic, microscopically subpatent reservoir of blood stage P. vivax has been

described [25–28], and the latent reservoir of hepatic hypnozoites has long been known [29–

32]. In both instances, however, understanding of their very significant contributions to both

on-going transmission and acute attacks is only recent [33–35]. Yet another reservoir may also

prove relevant to this epidemiology: infection of the extravascular spaces of the marrow and

spleen [36–44]. This pathophysiology has only very recently been understood, and it trans-

forms how P. vivax may be viewed biologically, clinically, and epidemiologically. Transferrin

receptor CD71 occurs only on erythroblasts and the youngest (stage I of V) reticulocytes, and

it is required for P. vivax merozoite invasion of those cells [45,46]. This points to an infection

seated in deep hemopoietic tissues where CD71 naturally occurs in great abundance relative to

its near absence among cells within vascular sinuses. Moreover, hematopoietic niches of
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plasmodial asexual schizogony (and gametocytogenesis) may be less sensitive to blood schi-

zontocides like artemisinin [47]. Plasma-derived extracellular vesicles specific to P. vivax
malaria cause up-regulation of P. vivax-adhesive molecules (ICAM-1) on spleen fibroblasts

[48]. This fundamental biology of P. vivax—tropisms favoring the tissues of marrow and

spleen rather than peripheral blood circulation—may often place the infection beyond the

reach of conventional diagnosis, upon which global burden estimates are ultimately based.

These biological intricacies of P. vivax malaria are thus important to consider in weighing esti-

mates of its clinical burden and prevalence of infection ranges.

Important host factors further complicate those considerations of burden and countermea-

sures against them. Overwhelming predominance of Duffy-negative phenotype in most of

sub-Saharan Africa has long been considered the basis of the relative paucity of endemic P.

vivax in that region [49]. Nonetheless, travelers to that continent often acquire P. vivax infec-

tion, and recent work demonstrates widespread infection of Duffy-negative residents [50–53].

Two other host factors—glucose-6-phosphate dehydrogenase (G6PDd) mutations and cyto-

chrome P450 isozyme 2D6 (CYP2D6) polymorphisms—may also impact burdens of P. vivax.

While only G6PDd may interfere with parasite development in the host [54–57], both of these

factors directly impact successful therapy of latent vivax malaria. The only therapeutic options

against hepatic latency of malaria are the 8-aminoquinolines, and these compounds are both

invariably toxic to G6PDd patients (causing a threatening acute hemolytic anemia) and appear

dependent on CYP2D6 metabolic processing to generate the therapeutically active derivative

[58–60]. A study from Brazilian Amazonia described primaquine-induced acute hemolytic

anemia as the dominant cause of blood transfusion [61], and some endemic nations have pro-

hibited primaquine therapy for fear of such harm [62]. A survey of CYP2D6 genotypes in

endemic Cambodia showed 29% of residents likely to have significantly impaired CYP2D6

activity phenotypes (predicted by genotype) at high risk of primaquine treatment failure [63].

This review considers the estimated global burdens of vivax malaria against this backdrop

of great biological, clinical, and public health complexity. Aspiration for the elimination of

endemic P. vivax transmission from much of Asia and the Americas within a few short years

[64–66] imposes the necessity of understanding burdens of infection, in addition to those of

both direct and indirectly linked morbidity and mortality. Numbers of diagnosed clinical

attacks as a measure of direct morbidity very likely represent a minority of infections and their

health consequences.

Vector biology

Human infection by the plasmodia requires the presence of anopheline mosquitoes, and their

distributions and abundance bear directly upon global burdens of malaria. Plasmodium vivax
is known to be transmitted by over 70 Anopheles species with diverse bionomics. In a previous

review, it was found that all Anopheles species that were incriminated to transmit P. falciparum
could also transmit P. vivax [67]. However, the converse is not true—not all vectors that can

transmit P. vivax can also naturally transmit P. falciparum. The minimal temperature at which

sporogonic development occurs is lower for P. vivax than for P. falciparum. That biology,

along with hepatic latency, largely explains the reach of endemic P. vivax transmission into

temperate zones where P. falciparum only rarely occurs [68].

The bionomics of the dominant vector species in the parts of the world where P. vivax pre-

dominates are known to be more diverse than those that transmit P. falciparum in Africa [69].

The African region was identified to have 7 dominant vector species, most of them being

within the Anopheles gambiae species complex. In the Asia-Pacific (where more than 80% of

the global P. vivax burden is found), there are 19 described species in at least several species
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complexes [70,71]. Transmission of P. vivax by these diverse vectors defines varied endemic

malaria ecologies: forest, coastal, plantation, paddy, hillside, and urban to name a few. Bio-

nomic heterogeneity among the dominant vector species in P. vivax–endemic areas requires

equally diverse vector control strategies extending well beyond mass net campaigns and

emphasis on acute case management [72–74]. Bed nets are less effective against Asian anophe-

lines because, unlike indoor and late night feeding African vectors, those mosquitoes tend to

favor feeding outdoors early in the evening [74–76].

Parasite biology

Whereas in P. falciparum infectious gametocytes emerge only after several days of asexual

parasitemia, in P. vivax, the asexual and sexual forms emerge together [77]. In a humanized

liver rodent model, P. vivax gametocytes emerged directly from hepatic schizogony [78].

Transmission to mosquitoes may therefore occur before onset of symptoms, during early ill-

ness, and thus before treatment is obtained. Indeed, gametocytogenesis without prior blood

schizogony would infer an ability to sustain wholly silent infection and transmission. Com-

pared to P. falciparum, ordinary levels of parasitemia in uncomplicated acute attacks by P.

vivax are very often an order of magnitude lower. That contrast has been attributed to the

indiscriminate invasion of red blood cells of any age by P. falciparum versus the obligate pref-

erence of P. vivax for reticulocytes. This phenomenon also underpinned the spurrious idea

that P. vivax is inherently unable to cause serious illness [79]. The bulk of harmful infectious

biomass of P. vivax appears to lie beyond diagnostic reach in the extravascular spaces of deep

hemopoietic tissues or splenic sinusoids. This biology imposes conspicuous diagnostic chal-

lenges, making both microscopic and immunochromatographic antigen detection (by rapid

diagnostic tests (RDTs)) inherently less sensitive for infection by P. vivax relative to P. falcipa-
rum. Numerous studies bear this out [6,14,80]. It is a significant problem compounded by a

presumably naturally acquired (or innate in the instance of Duffy negativity) immunity rou-

tinely suppressing asexual parasitemias below the limits of practical diagnosis by microscope

or RDT [81, 82]. In any given survey of peripheral blood for the plasmodia by these means, the

actual prevalence of P. vivax may be considerably higher than that detected, and perhaps

higher still when including infections involving only the extravascular spaces of other tissues.

There is an inverse correlation between prevalence of microscopically patent parasitemia as a

proportion of all detectable (by PCR) parasitemias, i.e., vascular subpatency among the

infected becomes more frequent as prevalence declines [6,83].

Latency in P. vivax involves dormant stages in hepatocytes called hypnozoites that awaken

over the weeks, months, and few years following inoculation by a feeding mosquito. A single

such event may seed the liver with any number of hypnozoites, but somewhere between 1 and

12 may be typical. The sporozoites that immediately develop to hepatic schizonts (tachysporo-

zoites) simultaneously launch invasive merozoites into the blood to initiate symptomatic

blood schizogony a week or two later. Sporozoites becoming latent hypnozoites (bradysporo-

zoites) awaken to launch those attacks after variable (geographic location- and strain-depen-

dent) intervals [32,84]. Latent infection may persist as long as several years and through a

series of independent clinical attacks. This biology logically aligns with the estimated propor-

tion of clinical attacks of vivax malaria originating from hypnozoites rather than recent mos-

quito bites being about 80% [85]. Untreated latent infections cause most patent attacks, and

latency cannot now be detected by any diagnostic means.

Known features of the biology of P. vivax point to a relatively deep obscurity of presence.

The actual prevalence of infection may substantially exceed that which is routinely detected by

conventional means, with each of the following biological traits contributing to that character:
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(1) tropisms for extravascular spaces of deep organs like marrow and spleen; (2) sharply lim-

ited asexual multiplication in peripheral circulation; (3) naturally acquired or innate immune

suppression of asexual blood stages; and (4) prolonged hepatic latency as a dominant state of

infection.

Human genetic factors

People lacking expression of Duffy factor on the surface of red blood cells, as occurs in most

of sub-Saharan Africa, has been linked to the relative scarcity of P. vivax infection in that

region [86]. Several lines of evidence, however, point to endemic low-level transmission of P.

vivax across much of Africa [87–89]. Among Duffy-negative individuals, infections by P.

vivax have been confirmed at African sites [90–94]. Several surveys reported prevalent sero-

logical positivity to specific P. vivax antigens in areas where P. vivax malaria in patients or

cross-sectional surveys of blood is exceedingly rare or unknown [95–97]. Another study in

peer review indicates expression of Duffy factor by erythroblasts in marrow despite Duffy-

negative genotype and an absence of Duffy factor in circulating red blood cells [98], raising

the possibility of endemic subpatent infections of hemopoietic tissues. If so, Duffy negativity

may not protect from infection by P. vivax but would profoundly impact the character and

detectability of that infection, i.e., limiting it to extravascular spaces of marrow (excepting

transient gametocytemia). Endemic transmission of P. vivax may occur across Africa but is

obscured by this host genetic factor and obligate parasite tropism for extravascular spaces of

deep tissues.

G6PDd is the most common human inherited abnormality, affecting more than 400 million

people and occurring at an average prevalence of 8% in malaria-endemic countries [99]. Many

dozens of distinct single nucleotide polymorphisms (SNPs) are known, each being associated

with variably impaired enzymatic function [100]. These variants tend to occur within distinct

ethnic/geographic groups and are classified according to level of residual enzymatic activity

compared to normal. The WHO classification is most often applied, where most variants are

either Class II or III, representing phenotypes of<10% or >10% of normal activity, respec-

tively [101]. One of the most conspicuous physiological distinctions between those classes may

be G6PD activity phenotypes across red blood cells of increasing age. Whereas reticulocytes of

the archetypical Class III A- variant of G6PDd of Africa exhibit nearly normal G6PD activity

(which more sharply declines with red blood cell age compared to normal), those of archetypi-

cal Class II Mediterranean variant have almost none [102]. This biochemistry bears on global

distributions of P. vivax and this inherited abnormality.

G6PDd is among the inherited blood disorders believed to have been selected by survival

advantages against endemic malaria [54–57,103,104]. As already explained, P. vivax exhibits

profound tropisms of infection and anatomic location anchored upon CD71 as an essential

molecule of invasion. Severely impaired G6PD activity in reticulocytes of Class II variants may

thus have great impacts on the parasitism of P. vivax but almost none in the nearly G6PD-nor-

mal reticulocytes of Class III variants, e.g., Mahidol variant in Thailand and A- in Africa [105].

In South and Southeast Asia, where most endemic P. vivax transmission occurs, Class II vari-

ants predominate over those of Class III [106], suggesting a selection pressure at work. Popula-

tions residing within endemic zones most likely to benefit from 8-aminoquinoline therapies

against latent P. vivax may also be the most likely to suffer harm caused by them. Rational fear

of 8-aminoquinoline toxicity protects the hypnozoite reservoir from aggressive exposure to

those drugs in clinical and public health practice [106].

Likewise, poor efficacy of 8-aminoquinolines due to natural polymorphisms of CYP2D6

may also bear upon global burdens of P. vivax. Initial demonstrations of CYP2D-dependent
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therapeutic activity of primaquine against hepatic plasmodia in murine malaria models has

been similarly observed in humans infected by P. vivax [60,107]. CYP2D6 polymorphisms

associated with null or relatively poor enzymatic activity occurred in patients experiencing fail-

ure of directly supervised high-dose primaquine therapy against relapse by P. vivax [59,107].

The most common allele of CYP2D6 in Asian populations is impaired �10. There may be rela-

tively high risk of therapeutic failure of antirelapse therapies in as many as 40% of Asians

exposed to risk of P. vivax infection [63,108].

Complex human genetic factors exert impacts on the global distribution of burdens of P.

vivax infection, both directly (Duffy negativity and G6PDd) and indirectly through 8-amino-

quinoline toxicity (G6PDd) or therapeutic activity (CYP2D6) problems. The direct effects of

Duffy negativity may no longer be construed as wholly preventing infection by P. vivax but

profoundly impacting the ability to detect the infection by conventional examinations of

peripheral blood. Endemic infection and transmission may occur where Duffy negativity pre-

vails and measures of prevalence of vascular patency seem vanishingly low, as across sub-Saha-

ran Africa (Fig 1).

Geographic distribution

TheAU : PleasenotethatthesentenceThedormantliverstageandabilitytodevelopinits:::hasbeenedited:Pleasecheckandconfirmthattheeditsdidnotaltertheintendedthoughtofthesentence:dormant liver stage and an ability to develop in its invertebrate host at lower temperatures

allow P. vivax to be the most widely distributed cause of human malaria. Plasmodium vivax
extends across the endemic tropics, subtropics, and well into temperate climates where the

hypnozoite may lie in wait for the seasonal reappearance of feeding anophelines. Keeping in

mind the challenges of detection described above, observed prevalence of patent parasitemia

values vary greatly across endemic zones, very rarely exceeding 10% prevalence (Fig 1).

A century ago, the global distribution of endemic P. vivax transmission included most of

North America, Europe, and northern Asia and Australia. All of these areas remain receptive

to P. vivax transmission by numerous competent and seasonally abundant vectors. Outbreaks

of P. vivax malaria sporadically occur in these regions, typically in association with migrant

human populations [110–113]. The latency of P. vivax—which is not now possible to diagnose

—makes the prevention of imported malaria particularly difficult.

Fig 1. The global prevalence of patent Plasmodium vivax in 2017. The mean predicted parasite rate of P. vivax is in people 1 to 99 years of age based on the analysis

from Battle and colleagues is shown on a scale of low prevalence (blue) to high (red) with very low prevalence in light grey and nonendemic regions in white [3]. Global

national shapefile obtained from the Malaria Atlas Project (MAP; https://malariaatlas.org/) and available for download through the malariaAtlas R package [109].

https://doi.org/10.1371/journal.pmed.1003799.g001
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Populations at risk

Accepting prevalent P. vivax as evidence of endemic transmission, whether stable or unstable,

well over one-third of world’s population (3.3 billion people) were estimated to be living at

risk of P. vivax transmission in 2017 [3]. Of that population, 1.6 billion were in the Southeast

Asian WHO region (SEARO), with 80% of the total population in that region being considered

at risk. Following SEARO, the Western Pacific (WPRO) and African (AFRO) regions had 661

and 629 million people at risk, respectively. The Eastern Mediterranean Region (EMRO) has

nearly half of the population at risk of these regions (311 million), but it disproportionately

contributes to the global burden of clinical cases as shown in Fig 2.

The countries with the largest populations at risk are India (SEARO), Pakistan (EMRO),

and Ethiopia (AFRO). In much of the P. vivax–endemic world, urban areas are not considered

to be areas of transmission (though there may be incident infections due to relapses or travel).

However, in and around the Indian subcontinent, urban areas were not excluded from the

populations at risk because of the occurrence of Anopheles stephensi, a notoriously competent

vector of malaria singularly able to thrive in urban settings [71]. Recent evidence demonstrates

that An. stephensi also occurs on the Horn of Africa, including Ethiopia [113]. The range of

this dangerously capable and adaptable vector thus includes a very substantial segment of the

population living at risk with stable P. vivax transmission. Among the predicted 14.3 million

cases in 2017, 15% were estimated to have been acquired in urban settings [3AU : Pleasenotethatnumber4attheendofthesentenceAmongthepredicted14:3millioncasesin2017; 15%:::hasbeenlinkedtoreferenceno:4:Pleaseconfirmthatthischangeiscorrect:]. The near suc-

cess but ultimate failure to eliminate malaria from India during the 1960s and 1970s has been

attributed to the neglect of control in urban areas serving to reseed already cleared rural areas

[114]. Plasmodium vivax malaria remains predominantly a disease of rural settings; of the 85%

A B

POPULATION AT RISK of P. vivax CLINICAL ATTACKS of P. vivax

Fig 2. Relative burdens of risk (A) and estimated illness (B) due to P. vivax malaria among the WHO regions: WPRO is Western Pacific; SEARO is Southeast Asia;

EMRO is Eastern Mediterranean; AFRO is Sub-Saharan Africa; and PAHO is the Americas.

https://doi.org/10.1371/journal.pmed.1003799.g002
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of cases occurring beyond urban centers, 64% (7.7 million) cases are estimated to have

occurred in rural settings.

Burdens of infection and disease

Estimates of burden refer to the annual incidence of clinical (symptomatic) infections. The

largest burden of these acute attacks occurs on the Indian subcontinent and the Horn of Africa

[3], as shown in Fig 3. As discussed above, this metric may narrowly represent broader bur-

dens of morbidity and mortality occurring in connection with chronic infection but more sub-

tly than with a successfully diagnosed and reported event of clinical malaria. Chronic

subpatency and latency are examples of this subtlety. While not every individual infected by P.

vivax will experience multiple relapses, it very commonly occurs [30] with “remarkable period-

icity,” which varies geographically [84]. The presence of the parasites in the liver is overdis-

persed—not every infection will lead to the formation of hypnozoites, but those individuals

with hypnozoites are more likely to carry at least several more, and, absent specific therapy,

will go on to experience multiple relapses within 2 or more years [35]. Infection with P. vivax
in Indonesia, where P. vivax has a frequent and rapid relapse periodicity, has been shown to

have chronic impacts on individuals leading to rehospitalizations with malaria and even early

death [18]. In contrast, P. vivax in India tends to relapse infrequently and at long intervals

after infection. Graphic representations of clinical burdens like that of Fig 3 may thus be insen-

sitive to broader health impacts of endemic P. vivax malaria.

What is true for the burden of clinical disease is also true for infection prevalence. Measured

and modeled prevalence estimates like those in Fig 1 refer to infections patent by microscopy

or RDT. Low-density subpatent infections are common with P. vivax, and, as already dis-

cussed, subpatency very likely includes infection of extravascular spaces of some deep organs.

Standard diagnostic methods are unable to detect vascular or extravascular subpatency. That is

Fig 3. National clinical burdens of P. vivax malaria. The mean estimated clinical burdens of P. vivax malaria are shown on a scale of blue (very low burden) to red

(high clinical burden) [3]. Global national shapefile obtained from the Malaria Atlas Project (MAP; https://malariaatlas.org/) and available for download through the

malariaAtlas R package [109].

https://doi.org/10.1371/journal.pmed.1003799.g003
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also true of the vitally important hypnozoite reservoir. Prevalence of patent infection only nar-

rowly represents broader and probably dominant states of infection, and conventional diag-

nostics-dependent estimates of burdens of infection are very likely to be minimally

representative of true burdens of infection.

Credible vivax malaria diagnostics may require joining the list of human infections reliably

diagnosed primarily or solely by serological means. Serological evidence of recent exposure to

P. vivax could prompt therapy without regard to symptoms or conventional diagnostic out-

comes. Serological surveys across sub-Saharan Africa, for example, suggested a true prevalence

of P. vivax infection in the range of 11% to 60%, whereas by conventional diagnostics, it

appears almost wholly absent [94–96]. This contrast—highly prevalent versus absent—high-

lights the gravity of diagnostic approach in striving to assess the extent to which P. vivax infects

human communities. Assessments of P. vivax global burdens of infection will likely require

recalibrations based on validated serological diagnostic approaches. Work on those techniques

is in progress [115,116].

Conclusions

Endemic P. vivax transmission occurs across the tropics and reaches into subtropical and tem-

perate climates. Since 2000, the estimated number of patent P. vivax clinical cases as fallen

from 24.5 (22.5 to 27.0 95% CI) million to 14.3 (13.7 to 15.0 95% CI) million in 2017. However,

malaria control has seen stagnated progress since 2015, and this holds true for P. vivax specifi-

cally (Fig 4) [3,117]. There has been little change in the estimated burden of acute disease in

recent years, and a few countries carry more than 80% of the global case load, i.e., India, Paki-

stan, and Ethiopia. Addressing case counts alone, however, overemphasizes densely populated

endemic countries. InfectionAU : PleasenotethatthesentenceInfectionprevalenceratesarehighestinlesspopulatedpartsof :::hasbeenedited:Pleasecheckandconfirmthattheeditsdidnotaltertheintendedthoughtofthesentence:prevalence rates are highest in less populated parts of the world,

likely driven by environmental suitability as well as high relapse rates, like those seen in Papua

New Guinea and the Solomon Islands [83] as examples. Areas in South America, specifically

Venezuela where prevalence rates have been increasing in recent years, also exhibit much

higher infection rates than those seen in the countries with highest burden (Figs 1 and 3).

Limited blood surveys for P. vivax malaria and the coarse resolution of routine surveillance

data make estimating subnational patterns of prevalence and incidence challenging (Box 1).

Existing data and model outputs indicate that P. vivax is primarily a rural disease affecting

populations with limited access to effective treatment. Fine-scale estimates of the distribution

of the burden of disease will continue to improve as routine data are made more readily avail-

able at the resolution at which they are collected, such as health facility or district. Finer resolu-

tion data also have the potential to disaggregate the populations most at risk of infection or

clinical disease. AgeAU : PleasenotethatthesentenceAge � specificestimatesforP:vivax;whichareimportantfor:::hasbeenedited:Pleasecheckandconfirmthattheeditsdidnotaltertheintendedthoughtofthesentence:-specific estimates for P. vivax, which are important for control planning

and commodity forecasting, are currently derived from a model originally developed for P. fal-
ciparum [118] calibrated using data from Papua New Guinea and Indonesia [119]. Updated

routine and clinical trial data would greatly increase the temporal and geographic coverage of

age-specific data to inform regional P. vivax malaria age profiles. Robust models to standardize

all-age metrics to age-specific results are imperative now that available treatment regimens

may be tailored by age. Metrics indicating transmission or endemicity of P. vivax malaria are

most commonly reported for all ages because of the challenges in detecting the parasite [120].

The global burden of infection and disease imposed by endemic P. vivax transmission is

obscured by its biology as both an active and latent infection seated in inaccessible tissues.

Complex host genetic factors like Duffy factor negativity phenotype deepen that obscurity, and

inherited G6PD deficiency may do likewise, i.e., by enhancing tropisms for those tissues. Like-

wise, due to the singular problem of 8-aminoquinoline toxicity and CYP2D6 dependency for
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activity against the latent hepatic infections, our ability to attack that important reservoir is

deeply impaired. The insidious character of the harm done by P. vivax further sheltered this

parasite from a determined assault upon it—for nearly 60 years, we neglected developing better

diagnostics and more effective therapies [121–124]. We thus inherited diagnostics, chemother-

apies, and vector control strategies and tactics optimized and validated for an African P. falcip-
arum problem that are conspicuously inadequate to endemic P. vivax anywhere. As endemic

nations press the elimination agenda by plying those tools, P. falciparum wanes, but P. vivax
has, unsurprisingly, proven more tenacious [124,125].

The conventional perspective of human malaria as an infection of peripheral blood

obscures broader and more subtle burdens of P. vivax. The microscopic diagnostic standard

for over a century (later joined by antigen capture immunochromatography) from finger stick

blood specimens defined the presence or absence of infection. This standard remains firmly in

place and underpins the global burden estimates described here, which, as a result, can only

enumerate certain aspects of P. vivax burden (i.e., patent blood-stage infection and clinical/

classically symptomatic cases). If infection beyond the vascular sinuses indeed dominates P.

vivax biomass in any given human host, we may have to accept the inadequacy of conventional

diagnostics to this biology and the epidemiology informed by it. Doing so opens promising

Fig 4. Global and region trends of P. vivax clinical incidence rate (A) and case counts (B) from 2000 to 2017 [3]. WPRO is Western Pacific; SEARO is Southeast Asia;

EMRO is Eastern Mediterranean; AFRO is Sub-Saharan Africa; and PAHO is the Americas.

https://doi.org/10.1371/journal.pmed.1003799.g004
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avenues of alternative diagnostics like serology. Expanding the scope of burden estimation to

consider (i) subpatent infection and (ii) indirect morbidity and mortality is important and

firmly on the agenda as and when understanding improves and data allow for it.
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