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Abstract

EFSA was asked for a partial risk assessment of Spodoptera frugiperda for the territory of the EU
focussing on the main pathways for entry, factors affecting establishment, risk reduction options and pest
management. As a polyphagous pest, five commodity pathways were examined in detail. Aggregating
across these and other pathways, we estimate that tens of thousands to over a million individual larvae
could enter the EU annually on host commodities. Instigating risk reduction options on sweetcorn, a
principal host, reduces entry on that pathway 100-fold. However, sweetcorn imports are a small
proportion of all S. frugiperda host imports, several of which are already regulated and further regulation
is estimated to reduce the median number entering over all pathways by approximately 10%. Low
temperatures limit the area for establishment but small areas of Spain, Italy and Greece can provide
climatic conditions suitable for establishment. If infested imported commodities are distributed across the
EU in proportion to consumer population, a few hundreds to a few thousands of individuals would reach
NUTS 2 regions within which suitable conditions for establishment exist. Although S. frugiperda is a
known migrant, entry directly into the EU from extant populations in sub-Saharan Africa is judged not
feasible. However, if S. frugiperda were to establish in North Africa, in the range of thousands to over two
million adults could seasonally migrate into the southern EU. Entry into suitable NUTS2 areas via
migration will be greater than via commercial trade but is contingent on the establishment of
S. frugiperda in North Africa. The likelihood of entry of the pest via natural dispersal could only be
mitigated via control of the pest in Africa. If S. frugiperda were to arrive and become a pest of maize in
the EU, Integrated Pest Management (IPM) or broad spectrum insecticides currently used against
existing pests could be applied.
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Summary

Following a request from the European Commission, the EFSA Panel on Plant Health conducted a
partial pest risk assessment of Spodoptera frugiperda for the territory of the European Union (EU).
S. frugiperda is an economically important lepidopteran pest in the Americas and following reports of
its first occurrence in Nigeria and Sao Tome and Principe in 2016 (Goergen et al., 2016) it is now
reported as a major pest of Zea mays and Sorghum and as damaging many other crops in
sub-Saharan Africa (Cock et al., 2017; Abrahams et al., 2017).

A first phase assessment (pest categorisation) for the EU concluded that S. frugiperda could
establish in a small area of the southern EU although there were uncertainties (EFSA PLH Panel,
2017). As requested in the Terms of Reference (ToR) from the European Commission, this second
phase risk assessment focused on the main pathways for entry, factors affecting establishment, risk
reduction options and pest management. S. frugiperda is a strong seasonal migrant in the Americas
(Johnson, 1987; Nagoshi et al., 2012). The Panel therefore interpreted the main pathways for entry
into the EU to be (i) imports of infested plant products from the Americas and sub-Saharan Africa, and
(ii) natural migration from Africa. The ToR did not request an assessment of pest spread or impact,
were the pest to establish in the risk assessment area. The Panel therefore understood that the ToR
requested a partial pest risk assessment (EFSA PLH Panel, 2018).

Entry via trade in five plant commodities was assessed using pathway modelling in @Risk for Microsoft
Excel. The five commodities were selected based on the importance of the host (Zea mays, sweetcorn)
and the history of interceptions associated with the trade: eggplant/aubergine (Solanum melongena),
peppers (Capsicum spp. and Pimenta spp.), asparagus and rose cut flowers (Rosa sp.). These
commodities also well reflect a range of crop husbandry techniques, e.g. crops grown outdoor and crops
grown under protection; intensively managed and less intensive; ongoing exposure to pests and short-
term exposure to pests.

Information and data were collected using conventional literature searches and hand searching and
was compiled into ‘evidence dossiers’ to support the expert elicitation necessary to estimate model
input values for each substep of each pathway model. Stakeholder information sources were contacted
to try and fill remaining knowledge gaps.

The partial risk assessment followed the framework provided in recent guidance (EFSA PLH Panel,
2018). The conceptual assessment models for entry pathways are described in detail using flow charts
and formalised with algebra.

An estimate for the value of each parameter in each model was determined following EFSA’s
guidance on expert knowledge elicitation (EFSA, 2014). Elicitations for the 1st, 25th, 50th (median),
75th and 99th percentile were made on the basis of the evidence dossiers and expert knowledge and
used a shortened approach based on the Sheffield method (EFSA, 2014).

The risk assessment considered two scenarios. The first scenario (A0) is a baseline scenario
representing the regulatory conditions applied to each of the studied pathways when this assessment
was initiated in January 2018. At that time Capsicum, S. melongena and Rosa cut flowers were
regulated, although not specifically with respect to S. frugiperda. Consignments from third countries
were subject to phytosanitary inspection on arrival in the EU. Sweetcorn and asparagus were not
regulated and consignments were allowed to enter without phytosanitary checks.

The second scenario (A1) is an imagined future situation where the pathways are all specifically
regulated with respect to S. frugiperda. In principle, a variety of phytosanitary measures, also known
as risk reduction options, are available to lower the likelihood that S. frugiperda enters the EU on host
commodities traded internationally. For example, commodities could be sourced from a pest free area,
a pest free place of production or a pest free production site. Prior to export a commodity could be
officially inspected to certify that it is free from S. frugiperda or has been subjected to treatment to
ensure freedom from the pest. In order to guarantee pest freedom within a crop, place of production,
place of production and buffer zone, or area, it is necessary to fulfil the requirements outlined in ISPM
No. 4 (FAO, 2017) and ISPM No. 10 (FAO, 2016). This would be very challenging for a pest such as
S. frugiperda that is highly mobile and highly polyphagous. The Panel is not aware of any countries in
the Americas or sub-Saharan Africa that could claim such area freedoms for S. frugiperda. Given that
host commodities such as peppers and eggplant are chill sensitive (CargoHandbook.com, 2012b,
2017b), cold treatments that would be lethal for S. frugiperda are not appropriate for such
commodities. The possibility that pre-export visual inspection could guarantee consignments are pest
free was the remaining risk reduction option evaluated.
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Although not a favoured host, outputs from the Scenario A0 pathway model indicate that peppers are
by far the most likely pathway for entry of S. frugiperda among the five pathways quantified. The 90%
probability interval (i.e. the range between the 5th and 95th percentile) for entry via this pathway ranges
from a lower estimate of just under 2,000 to an upper estimate of approximately 525,000 infested
peppers per year. A less extreme range to consider is the 50% probability interval (i.e. the range between
the 25th and 75th percentile). For peppers in A0, the 50% probability interval ranges from 10,000 to just
under 100,000 infested peppers per year. (Recognise that in the order of 40 million peppers are imported
into the EU annually from core America and sub-Saharan Africa.)

After peppers, eggplant is the next most important commodity responsible for the largest influx of
S. frugiperda into the EU. An estimated 4,200 to 210,000 infested eggplant fruit enter the EU each year
(90% probability interval (5–95%)). For other pathways, the 95th and 5th quantiles are at least a factor
of 10 lower than for the peppers pathway. For example, the 90% probability interval for mean annual
number of infested sweetcorn entering the EU ranges from a lower estimate of less than 500 to around
18,000.

Regulating S. frugiperda on peppers reduces the extreme upper limit of infestation by approximately
20%, falling from around 525,000 to around 440,000, although these levels of infestation are unlikely.
However, regulation has little effect on lowering the 50% probability interval for the number of infested
peppers entering the EU annually (A0 = 10,000–98,000; A1 = 10,000–90,000). This can be explained
because there are already regulations in place for peppers, including import inspection, and S. frugiperda
is already a quarantine organism. Explicit measures for S. frugiperda in peppers are therefore projected
to have only minor consequences. In contrast, instigating risk reduction options on sweetcorn reduces
entry on that pathway 100-fold. Nevertheless, sweetcorn imports are a small proportion of all
S. frugiperda host imports, several of which are already regulated. Further regulation reduces pest entry
at the extreme upper levels of entry that were generated by the stochastic simulations in @Risk.

Infested imported goods that escape detection at the EU border are assumed to be distributed
across the EU in relation to human population. When distributed within the EU NUTS 2 regions, many
regions are expected to receive fewer than 50 infested units per year. However, median estimates
suggest that for a few NUTS 2 regions, there may be between 1,000 and 4,000 infested units per year.

Older instar larvae of S. frugiperda are cannibalistic (Chapman et al., 1999; Andow et al., 2015). It
was assumed that any infested transfer units (e.g. individual sweetcorn cob, individual pepper)
entering the EU would be infested by a single late instar larvae.

As a seasonal migrant, entry from Africa through migration was assessed. The closest S. frugiperda
populations to the EU are approximately 3,000 km distant, with the Sahara Desert and Mediterranean
Sea posing very significant ecological barriers. There is no evidence that S. frugiperda can traverse this
distance in a single continuous flight without extraordinarily favourable wind conditions at the appropriate
altitude, nor is there a plausible pathway for sequential nocturnal flights across the Sahara, i.e. a realistic
scenario in which adults locate parts of the Sahara that are sufficiently vegetated to allow sporadic
occurrence of multiple night flights by moths, interrupted by stayovers during daytime in such putative
areas. Given the current state of knowledge, entry of S. frugiperda directly into the EU from populations
in sub-Saharan Africa is therefore judged not feasible and was not quantified.

However, there are multiple examples of Lepidoptera species that migrate from North Africa to
Europe on a seasonal basis. Establishment of permanent populations in North Africa in maize and
sorghum growing areas would place S. frugiperda within a single night flight of the EU, with regional
wind patterns conferring a high probability of periodic migration into Europe. Informed by the HYSPLIT
trajectory model (Stein et al., 2015), we estimate that from a few hundred individuals to around two
million adults could migrate into the southern EU annually (90% probability interval), particularly into
Andalucia and Sicily. The wide range around of this estimate indicates the uncertainty of the estimate
which is contingent on S. frugiperda establishing in North Africa.

Potential for establishment in the EU was carefully considered and drew on evidence from multiple
species distribution models. S. frugiperda does not diapause and frosty/cold winters are an important
limitation on its distribution. Depending on the sensitivity threshold selected, an ensemble model
identifies pockets of climatic suitability in Spain (e.g. Andalucia), Italy (e.g. Sicily) and Greece totalling
around 94,000 ha; areas in Portugal may also be identified as suitable depending on the threshold
selected (Early et al., 2018). Independently, CLIMEX modelling using weather station data identifies
points in the same regions where climatic conditions support establishment (i.e. CLIMEX eco-climatic
indices are positive). However, when the weather station data are interpolated to provide gridded data
over the landscape, CLIMEX ecoclimatic indices are reduced within grid cells such that when projected
onto maps for Europe, establishment does not appear possible (du Plessis et al., 2018). Climatic
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conditions in Europe are currently at the boundary for S. frugiperda to establish. Accurately
determining boundaries of a species’ potential geographical distribution is often the most challenging
aspect of species distribution modelling and further data regarding the presence and especially the
absence of the organism in the Americas and Africa would help refine all forecasts.

Spatially combining the results of entry and establishment allows comparisons to be made between
entry of S. frugiperda via trade and natural migration from North Africa. If S. frugiperda were to
establish in North Africa, three to thirty times more S. frugiperda are likely to migrate into parts of the
southern EU than enter their via infested commodities distributed in trade. The most promising option
for mitigating the risk of entry of the pest via natural dispersal is via control of the pest in Africa.

If S. frugiperda were to arrive and become a pest of maize in the EU, broad spectrum insecticides
currently used against existing pests could be applied to control it but may impact on natural enemies
and disrupt existing IPM.
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1. Introduction

1.1. Background and Terms of Reference as provided by the requestor

This pest risk assessment for Spodoptera frugiperda, the fall armyworm, was requested from EFSA
by the European commission DG SANTE, as per a letter to EFSA’s director, dated 10 January 2018,
reference SANTE.Gl/as Ares (2017) 7158801. The terms of reference were specified as cited below.
The opinion had a deadline of 6 months after the request date.

‘EFSA is requested, pursuant to Article 29(1) of Regulation (EC) No 178/2002, to provide a scientific
opinion in the field of plant health.

EFSA is requested to prepare and deliver a pest risk assessment (step 2 analysis) for
Spodoptera frugiperda. The opinion should address entry, establishment and risk reduction options.
Elaboration on main pathways of entry in the EU territory, the climatic conditions affecting its
establishment in the EU, together with an analysis of available control methods is anticipated’.

1.2. Interpretation of the Terms of Reference

The Terms of Reference (ToR) specify that the requested opinion should address entry, establishment
and risk reduction options, but it does not cover spread and impact. The Panel therefore understands that
a partial risk assessment is being sought in which spread and impact, including impact of any transient
populations that spread within the European Union (EU) during seasonal migration, are interpreted to be
out of scope. Due to the rapidly developing situation in Africa, where S. frugiperda has spread widely in a
relatively short time (Abrahams et al., 2017), the Panel determined that a 5-year time horizon was
appropriate. Extending the time horizon beyond five years was considered too speculative.

There have been interceptions of S. frugiperda in the EU on plant products from the Americas and
Africa, and the pest occurs only in these continents. S. frugiperda is a strong seasonal migrant in the
Americas (Johnson, 1987; Nagoshi et al., 2012). The Panel therefore interpreted the main pathways for
entry into the EU to be (i) imports of infested plant products from the Americas and sub-Saharan Africa,
and (ii) natural migration from Africa. Recognising that entry of S. frugiperda into Africa likely occurred on
at least two occasions (Goergen et al., 2016) and that the pathways for entry of S. frugiperda into Africa
have not been identified, other pathways can be envisaged but are not considered the main pathways for
entry into the EU. The baseline scenario, against which future scenarios can be compared, was taken to
be the regulatory conditions applied to each of the studied pathways when this assessment was initiated
in January 2018.

The Panel selected to examine factors affecting establishment through species distribution modelling.
To link pest entry with establishment potential, the distribution of infested plant material entering the EU
was to be delineated using NUTS 2 spatial resolution. As S. frugiperda is primarily a pest of field crops,
establishment in protected cultivation was not assessed.

Phytosanitary measures that may be used to reduce likelihood of pest entry was evaluated by
comparing scenarios with and without additional measures in place. Methods for the control of
S. frugiperda, should it become established in the EU, are to be assessed.

Emergency measures were introduced against S. frugiperda on 23 April 2018 (European Commission,
2018b). Scenario A1 (a future scenario which is compared against the baseline A0) has similarities to the
emergency measures but the emergency measures were not explicitly assessed in this opinion.

2. Data and methodologies

2.1. Data

Pest information, on host(s) and distribution, was retrieved from the EPPO Global Database (EPPO,
2017a,b) and the CABI Crop Protection Compendium (CABI, 2017b) and further updated with reports
compiled in Abrahams et al. (2017). For this opinion the following data were needed:

Data on EU imports of host commodities from third countries. As a highly polyphagous pest,
aggregate data using HS/CN customs codes containing key hosts were downloaded from EUROSTAT.

Data on production areas of maize (green maize and grain maize), sorghum, rice and cotton. These
data were extracted from EUROSTAT and represented at the Nuts-2 level.

Data on interceptions of S. frugiperda and other pests in trade from the Americas and from Africa.
This data was sourced from Europhyt (Europhyt, 2018). Additional data were sourced from the
Netherlands Food and Consumer Product Safety Authority.
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Data on the biology of the pest, in particular its flight behaviour in relationship to weather, was
extracted from the scientific literature.

Data and information regarding the transport of commodities were provided by two stakeholders
organisations (Freshfel and Union Fleurs) and obtained from CargoHandbook.com.

Data on the ecological requirements of the pest, to map its area of potential establishment in
relation to climate factors, was obtained from the scientific literature.

Data on human population at NUTS 2 level was extracted from EUROSTAT.

2.2. Methodologies

Entry via trade in five plant commodities was assessed using pathway modelling in @Risk for
Microsoft Excel. These commodities were selected by expert judgement on the basis of host suitability
(sweetcorn) or size of the trade and history of interceptions (capsicum, eggplant, rose cut flowers and
asparagus) (Table 1). Expert elicitation was used to estimate model input values for each substep of
each pathway model. Total entry over the five pathways was calculated.

S frugiperda is a very polyphagous insect that can occur on a vast range of species, including a
range of vegetables and ornamental flowers (Appendix C). A multiplier was elicited to account for the
contribution of pathways that were not quantitatively assessed in detail.

The trade entry pathways are broken down into substeps and quantitative judgements are made
regarding each substep with and without interventions, such as phytosanitary inspection prior to
export and on arrival in the EU. The effectiveness of such measures is then assessed by comparing the
projections of the pathway model with and without such interventions in place.

Entry via natural dispersal of moths by flight was assessed using data sets on the frequency of
weather patterns suitable for long-distance movement of moths from Africa to Europe. While compiling
information into an evidence dossier, no studies provided evidence that suggested S. frugiperda could
migrate across the Sahara in a single flight. Experts agreed that direct entry to the EU from
S. frugiperda populations migrating from sub-Saharan Africa is not feasible and quantification of this
route was therefore not carried out.

Although S. frugiperda is not present in North Africa, the potential for migration from North Africa
was assessed taking into account data sets on the frequency of weather patterns and estimates of
potential pest distribution and population size based on crop distributions at two potential source
locations in North Africa (Morocco and Tunisia). Expert elicitation was used to calculate the number of
migrant adults of S. frugiperda reaching the EU territory during suitable weather events. Consideration
of the distribution of potentially suitable areas within NUTS 2 regions and the main host crops was
used to inform establishment. No interventions are possible for the migration pathway other than
supporting pest management in source areas.

The potential for establishment of S. frugiperda in Europe was modelled using ensemble predictions
generated with a platform encompassing eight species distribution model (SDM) techniques that
assessed the effects of climate and habitat on the distribution of the pest (Early et al., 2018). SDMs
are a statistical approach to calculate the environmental conditions suitable for a population of the
study species to survive. SDMs use data on the locations where populations of a species do and do not
occur. SDMs also use data on the environmental conditions that are thought to affect where the
species can and cannot form populations. The relationship between environmental conditions and
the species’ distribution is calculated. This can also be thought of as distinguishing between the
environmental conditions that are found where the species can and cannot live. The result is a map
that ranks each site in a geographical region by the relative suitability for the species, based on the
combined effects of all environmental variables. The ensemble map of relative suitability was
converted to maps of the areas where environment is suitable for S. frugiperda populations to
establish year-round using multiple suitability thresholds. No single threshold can be said to be most
accurate, so four thresholds are presented, which summarise different levels of confidence.

Results of this modelling activity were contrasted with results obtained using meteorological station
data in CLIMEX (Kriticos et al., 2015) and the parameters that were used in du Plessis et al. (2018). du
Plessis et al. (2018) present maps of S. frugiperda potential geographical distribution based on CLIMEX
parameters applied to interpolated climate data. Here we present maps for the point source
meteorological station data. The assessment of establishment was therefore based on three lines of
evidence (ensemble predictions, CLIMEX with gridded/interpolated climate data and CLIMEX with point
source climate data).
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The assessment of spread of S. frugiperda within the EU, and of subsequent potential impacts was
outside the scope of this opinion.

The consequences of phytosanitary regulation were assessed by re-estimating relevant model
substep inputs where regulation could have an effect in the pathway model that was developed for
entry with trade in plant products. Pest management control options in farmer practice in the EU
territory were described in a narrative way.

The commodities selected for detailed analysis represent a range of crop husbandry techniques,
e.g. outdoor crops (sweet corn, asparagus, some peppers and eggplants that are grown outdoors) and
crops under protection (roses, and some peppers and eggplants), intensively managed (rose) and less
intensive (sweetcorn), ongoing exposure to pests (sweet corn) and short-term exposure to pests
(asparagus).

2.2.1. Conceptual models

The conceptual model expresses the key concepts underlying the calculations made to assess a
quantity. In this opinion, modelling is used to assess two variables:

1) the yearly number of entries of the pest with trade resulting in infested commodity being
distributed to NUTS2 regions where climate is suitable for establishment;

2) the yearly number of entries of the pest via migration from sub-Saharan Africa to NUTS2
regions that are suitable for establishment;

3) which NUTS2 regions in Europe are suitable for establishment.

2.2.1.1. Conceptual model for entry with trade

The central variable in the entry model with trade is the ‘transfer unit’. A transfer unit is a unit of
product that goes to the consumer as a whole. In the case of S. frugiperda, interceptions have occurred
on a number of commodities. e.g. asparagus (Asparagus officinalis), peppers (Capsicum spp.),
eggplant/aubergine (Solanum melongena) and rose cut flowers (Rosa) (See also Appendix D). These
commodities have individual CN customs codes allowing import volumes to be determined. Interceptions
have also occurred on other commodities such as bitter melon (Momordica charantia) but the import
volumes are aggregated into CN codes that are shared with other commodities. It is difficult to assess
trade flows for an individual commodity for which no specific CN code is publically available.

In the case of asparagus, the transfer unit is a bunch of 10 asparagus spears, while in the other
three cases, the transfer unit is the single fruit (corn cob, pepper, aubergine (eggplant)) or flower stem
(for roses). The total number of transfers in the European territory depends on:

• the total trade flow;
• the proportion of the transfer units in the trade that are infested with the pest;
• the probability of pest survival during trade and processing by consumers.

Total trade flow is estimated from EUROSTAT data. The proportion of infested transfer units, the
probability of pest survival are estimated by expert elicitation.

Table 1: Pathways and scenarios assessed

Pathway Scenario A0 (baseline)
Scenario A1

(with measures)

Plant products from the Americas and sub-
Saharan Africa

U U

Sweetcorn (Zea mays) U U

Peppers (sweet peppers and other Capsicum) U U

Asparagus (Asparagus officinalis) U U

Eggplant/aubergine (Solanum melongena) U U

Rose cut flowers (Rosa) U U

Natural migration from sub-Saharan Africa Migration direct from Sahel judged
not feasible

–

Natural migration from North Africa(a) U –

(a): This pathway is speculative because as of June 2018 S. frugiperda is not known to have established in North Africa.
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The trade flow is apportioned to NUTS2 regions to assess how many infested units of plant product
arrive in regions that contain areas potentially suitable for establishment. Transfer to hosts within a
NUTS 2 region is not considered.

The climatic suitability for pest establishment in each NUTS2 region is assessed using separate
models. The apportioning of imported plant products to NUT2 regions is done on the basis of human
population in each region, on the assumption that consumer demand is proportional to population size.
Human population data were sourced from EUROSTAT.

The entry model with trade is made in detail for five commodities. Furthermore, for each
commodity, five regions or origin are considered: core America and sub-Saharan Africa, where the pest
is present, north Africa and the Middle East, where the pest is currently absent, but where it may
establish in the foreseeable future, and the rest of the world, where the pest is absent and not
expected to establish within the time horizon of this assessment (Figure 1). Core America is defined as
all of the Americas except Canada and the USA in the Northern hemisphere and Chile, Argentina and
Uruguay in the southern hemisphere. The entry model with trade of one commodity is summarised in
a graphic (Figure 2).

Figure 1: Regions of interest in this assessment. Immediate sources of S. frugiperda occur in ‘core
America’ and ‘core Africa’ (sub-Saharan Africa). The EU 28 is the risk assessment area.
North Africa and the Middle East are future potential sources of S. frugiperda spreads from
core Africa. The focus of this partial assessment is on plant products from core-America and
sub-Saharan Africa

Spodoptera frugiperda partial risk assessment
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In Figure 2, grey boxes and solid arrows indicate the flow of the commodity and any associated
pests. The flows are calculated using @Risk in Excel. Blue boxes and broken arrows represent model
parameters that were obtained by expert knowledge elicitation.

2.2.1.2. Conceptual model for entry by migration

Other than supporting pest management in source areas, no interventions are possible for the
migration pathway and a different approach to that used when assessing trade pathways was
adopted. First information was gathered concerning long-distance migration of S. frugiperda and
related Lepidoptera. Information regarding spread of Lepidoptera from Africa to Europe was also
collected. The information in the dossier, together with input from expert opinion was used during an
expert elicitation to estimate what would be the average annual number of S. frugiperda that arrive in
a NUTS 2 region suitable for establishment were S. frugiperda to establish in North Africa, specifically
Morocco or Tunisia.

Number of infested transfer 
units in NUTS 2 regions 

no establishment potential 

Leaving third 
country

Numbers of transfer units

Number of infested transfer 
units in NUTS2 regions 

with  establishment potential

Map of potential establishment  
by NUTS 2 

Number of infested transfer 
units in each NUTS 2 region

Number of 
transfer units infested

Apportion into NUTS 2 
by human density 

Entering EU

Number of infested 
transfer units post-sorting

Weight of a transfer unit (kg)

Post-harvest treatments 
(including export inspections)

Post-harvest sorting

Proportion of infested product
in fields at origin

Processing in EU

Number of infested exported 
transfer units post-treatments

EU import inspection

Number of infested 
transfer units imported

Number of infested 
transfer units for distribution

Trade volume
(hundreds kg)

Figure 2: Graphical depiction of an example entry model pathway of Spodoptera frugiperda via
sweetcorn trade. Such a pathway model was made for five commodities. Results were
summed to obtain total entry over five pathways. Furthermore, expert knowledge elicitation
was used to account for entry via pathways that were not quantitatively assessed
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The Panel considered evidence regarding the migration of butterflies and moths from sub-Saharan
Africa to the European territory (Appendix L). While there is evidence that some lepidoptera species
can make this long-distance migration, the available evidence indicates that such migration is not
possible for S. frugiperda because of the presence of the Sahara as a barrier for successful migratory
flight. Details are given in the evidence dossier. Because of the lack of evidence that the moth can
cross the Sahara directly into the EU, this pathway was not quantitatively assessed. On the other
hand, were S. frugiperda to be introduced in northern Africa in the future, then entry by flight would
be a realistic possibility (Appendix M). This pathway was quantitatively assessed to obtain quantitative
estimates of the number of moths arriving per year and to compare the size of this entry with the size
of entry by trade pathways. The pathway model is visualised in the flow chart as Figure 3.

Assessment of S. frugiperda migratory potential was based on seasonal wind patterns and projections
of air transport trajectories. Wind vector maps were generated from monthly average wind velocity
(vector mean wind speed and wind direction) using the 1981–2010 base period derived from NCEP-NCAR
reanalysis of monthly zonal (i.e. westerly) and meridional (i.e. southerly) wind velocity components at a

Figure 3: Graphical depiction of the entry model of Spodoptera frugiperda by migratory flight from
northern Africa (contingent on S. frugiperda establishing in northern Africa)
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pressure-height of 925 mb (hPa) (source: National Oceanic and Atmospheric Administration (NOAA) and
the National Centers for Environmental Prediction (NCEP)). The analysed maps were obtained online
from the International Research Institute for Climate and Society (Earth Institute, Columbia University,
New York, NY; http://iridl.ldeo.columbia.edu/maproom/Global/Climatologies/Vector_Winds.html).

Air transport trajectories for various locations in North Africa were estimated using the Hybrid Single
Particle Lagrangian Integrated Trajectory Model at the Air Resources Laboratory (ARL) READY web site
run by NOAA (http://ready.arl.noaa.gov/HYSPLIT.php; (Stein et al., 2015). Potential sources for
S. frugiperda migration into Europe were identified based on host plant availability and geographical
proximity. Morocco source locations were Kenitra (34.26101, -6.5802), El Jedidah (33.25492, -8.50602)
and Beni Mellal (32.33725, -6.34983). Tunisia source site was at Bizerte (37.26442, 9.87391). Projections
were made for the 150-day period from April to August, 2017, which based on the agricultural growing
season should encompass the highest S. frugiperda populations. Because S. frugiperda migrates
nocturnally, the duration of continuous flight is limited. Estimation of maximum flight time was based on
length of night during the April–August time frame in North Africa, which ranged from 9 to 11 h with an
average of 10.3 h. In addition, there are indications that moth flights over water can be extended for a
limited time into the day period, presumably due to the absence of landing sites (Mikkola, 1970). Based
on these observations HYSPLIT projections used 12-h flight durations beginning at 18:00 h. Daily
trajectories were calculated for starting altitudes of 500 m AGL and 1,500 m AGL, then displayed as a
frequency distribution with percentages reflecting the proportion of trajectories entering a given grid.

2.2.1.3. Conceptual model for establishment

Species distribution modelling informed the assessment of whether and where establishment of
S. frugiperda in the EU is possible based on climatic conditions. As S. frugiperda is primarily a pest of field
crops, establishment in protected cultivation was not assessed. Results were adapted from Early et al.
(2018). Initially host distribution was not considered because the host range of S. frugiperda is very wide,
and establishment at the NUTS2 region level is not likely constrained much by the presence of hosts.

Environmental data

Annual minimum temperature is important for S. frugiperda, as the species cannot enter diapause
and so die below a certain temperature. The minimum temperature for development was variously
reported as 13.8°C (Hogg et al., 1982), 9.5–10.9°C (Busato et al., 2005) and 10°C (Wood et al., 1979).
Growing degree days have an important effect on S. frugiperda population growth rate (Wood et al.,
1979; Isenhour et al., 1985; Busato et al., 2005). Unfortunately, the number of growing degree days is so
strongly correlated with annual minimum temperature that both variables could not be included in models
together. Minimum temperature was chosen, as this has the more direct effect on S. frugiperda survival.

Precipitation and excessive irrigation have a direct negative effect on larval and pupal survival by
causing drowning. However, indirect effects of moisture are likely more important for S. frugiperda
population sizes than direct effects. Abundance tends to peak during rainy seasons, particularly in drier
sites, possibly because of increased host plant growth (Silvain and Ti-A-Hing, 1985). There is
considerable variation in the length and timing of rainy seasons across Africa (Leff et al., 2004).
Several precipitation variables were therefore chosen to accommodate variation in the timing and
length of the rainy season, or even multiple rainy seasons.

The following climatic variables were selected:

• SumWet, total amount of precipitation in wettest 3 months of year (intensity of rainy season,
when most food available and population growth is fastest);

• LenWet, number of months when rain is greater than average (length of rainy season, when
most food available and population growth is fastest);

• SeasPpn, seasonality of precipitation (difference in rainfall between rainy and dry season);
• MinTemp, mean temperature of the coldest month of the year (the lowest limit for growth).

Climatic variables were calculated from monthly averages for the period 1961–1990, derived from
the climatic research unit (CRU) data set at 10 arc-minute resolution (New et al., 2002).

In addition to climatic variables ‘Forest’ was also used, the proportion of each 10-minute grid cell
that is covered by trees. This is because S. frugiperda is only reported from agricultural areas, though
there may be many areas covered by forest that are climatically suitable for the species, but from
which it is not reported, or is absent due to a lack of host plant. We would therefore expect a negative
relationship between Forest and probability of S. frugiperda occurrence. Forest was used, rather than
crop or pasture land, as forest is relatively easier to delineate than grassland using satellite data.
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Forest cover was drawn from the European Space Agency’s Global Land Cover 2000 project at 1 km
(https://www.esa-landcover-cci.org/) and aggregated to 10-arc minute resolution.

Spodoptera frugiperda distribution data

The presence records of S. frugiperda for the Americas were obtained from three sources: (1) Global
Biodiversity Information Facility (www.gbif.org) in November 2016. Records that did not have coordinates
but did have location descriptions were georeferenced with accuracy equal to the climatic grid data. (2) A
review of literature on S. frugiperda in the region. (3) CABI and local experts in Colombia. In the southern
USA, occurrences from south of 27 degrees in Florida and south of 31 degrees in Texas were considered
to be year-round populations and were included as presence data points. Other USA populations were
considered to be seasonal/transient migratory populations and were not included as presence data
points. A total of 876 presence locations were found. Distribution data for Africa were obtained from four
sources: (1) a survey of farming households in Ghana and Zambia, conducted in July 2017 (Abrahams
et al., 2017). The countries were stratified into geographical regions, within which survey locations were
chosen randomly. Surveys yielded 466 incidences of farming households experiencing S. frugiperda
infestation. (2) Published literature (Goergen et al., 2016; Nagoshi et al., 2017a,b). (3) Infestations of
S. frugiperda reported to CABI’s Plantwise clinics from July 2016 to June 2017. (4) Seven pheromone
traps managed by the USAID Agricultural Development and Value Chain Enhancement (ADVANCE)
project, from April 2017 to July 2017.

Distribution data were filtered so that only one presence was recorded in each climatic grid cell
resulting in 240 presences in Africa and 167 presences in the Americas.

The majority of SDMs operate by contrasting environmental conditions at sites from which the species
is present and absent. Exhaustive surveys are required to ascertain if a species is absent, so in most
situations true absence is not known. Instead, pseudo-absences can be randomly assigned to grid cells
from which the species is not recorded. It is prudent to fit the models using several independently
generated sets of pseudo-absence data, in order to be confident that results are not driven by unusual
conditions in the randomly generated locations. The placement of pseudo-absences was repeated 20
times, and the number of pseudo-absences was the same as the number of presences used.

Pseudo-absences should be drawn from a background region within which the species could
reasonably be expected to disperse naturally and establish if the regional was suitable for establishment
(Van Der Wal et al., 2009). The geographical background from which S. frugiperda pseudo-absences
were drawn is all of South and Central America, and the lower 48 states of the USA. American countries
were excluded from the backgrounds if they did not have records of S. frugiperda but S. frugiperda is
known to be present (determined using CABI’s Crop Protection Compendium, https://www.cabi.org/cpc/
about/, and internet searches), or if the country is surrounded by countries in which S. frugiperda is
recorded. Pseudo-absences were randomly placed in climatic grid cells within the background region, but
outside occupied grid cells.

Species distribution modelling

An ensemble SDM was created, which included eight modelling techniques: artificial neural networks
(ANN), classification tree analysis (CTA), flexible discriminant analysis (FDA), generalised additive models
(GAM), generalised linear models (GLM), multivariate adaptive regression splines (MARS), random forest
(RF) and surface range envelope (SRE, note this does not use pseudo-absence data in model calibration
but does in validation). The CLIMEX technique (Kriticos et al., 2015) was not included in the ensemble of
SDM techniques. Although CLIMEX uses distribution data, the model uses data in a different way and
provides a different format of output than SDMs (see below). Maxent was not used due to time
constraints. Results from CLIMEX and Maxent have been shown to not differ systematically from results
from other SDM techniques used here, and there is no evidence that CLIMEX and Maxent perform better
than other SDMs in any given situation (Shabani et al., 2016).

The accuracy of S. frugiperda predictions globally can be assessed by calculating how accurately
SDMs constructed with a subset of distribution data predict the presence and pseudo-absence in the rest
of the distribution data (‘internal validation’). The statistics used to do this are the area under receiver
operating curve (AUC) and true skill statistic (TSS) (Allouche et al., 2006). Each of the 20 distribution data
sets were split randomly so that 70% of the presence and pseudo-absence points were used to calibrate
the models. These models were used to predict the suitability at the 30% remaining validation
distribution data points.

No single SDM technique is thought to be most accurate. Instead, it is thought that each technique
gives a different and potentially valid representation of the relationship between species and
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environment. It is tempting to select the single model that is found to have the most accurate cross-
validation score. However, a high internal validation score can mean that a model fits only the precise
conditions in the species’ observed distribution and cannot be generalised to make predictions for
other places. Additionally, because pseudo-absence data are randomly placed, no single data set will
represent locations where S. frugiperda does and does not occur entirely accurately. Therefore, an
ensemble of a representative range of model types and 20 pseudo-absence data sets was used
(Shabani et al., 2016). An ensemble forecast was therefore constructed for the global terrestrial
surface. Ensembles were made using models (from the eight modelling technique 9 20 distribution
data sets) for which validation TSS > 0.4. Models with TSS ≥0.4 are considered to have ‘moderate’
performance (greater than ‘fair’, but less than ‘substantial’, Landis and Koch, 1977). All presence and
pseudo-absence points in each of the 20 data sets were used to calculate the final models to be
included in the ensemble (i.e. not just the 70% of the data used in calibration). To construct
ensembles, the selected models were rescaled so that projections were on the same numerical scale,
and the mean suitability predicted by all retained models was calculated, weighted by the accuracy
(TSS) of each model. This method has been shown to be the most accurate of the ‘traditional’
ensembling methods that could be applied to these data (Gritti et al., 2013). In order to visualise the
uncertainty of the prediction in any given grid cell, the variance between models in the ensemble was
calculated.

The ensemble map of relative suitability was converted to maps of the areas where environment is
suitable for S. frugiperda populations to establish year-round. This was done by comparing the relative
suitability map against presence and pseudo-absence data, and selecting suitability thresholds where a
certain proportion of presence and pseudo-absence data were accurately predicted to be suitable or
unsuitable, respectively. No single threshold can be said to be most accurate (Liu et al., 2005;
Jim�enez-Valverde and Lobo, 2007; Nenz�en and Ara�ujo, 2011), and we present the results of four
thresholds that summarise different levels of confidence.

To calculate the thresholds, 407 presences were used and 100 sets of 407 pseudo-absences were
generated, using the same technique as for constructing SDMs. ‘Sensitivity’ is the percentage of
presences predicted to be in a suitable environment. ‘Specificity’ is the percentage of pseudo-absences
predicted to be in an unsuitable environment. The first threshold was set to be the suitability value at
which sensitivity was 95%. The second threshold was set to be the suitability value at which sensitivity
was 90%. The third threshold was the suitability value that maximises the sum of sensitivity and
specificity. The fourth threshold was the suitability value that minimised the difference between
sensitivity and specificity.

The importance of environmental variables determining the range for S. frugiperda range was
calculated using all of the distribution data in a given data set, and using all models, regardless of TSS
score. For any given environmental variable, that variable was randomised; an SDM was made with
the shuffled data set. The Pearson’s correlation (r) calculated between the SDMs with original data and
shuffled data for each variable. Importance is calculated as 1-r, so a value 0 indicates the variable has
no influence on the SDM.

2.2.2. Formal models

Formal models are provided in Appendix A.

2.2.3. Specification of the scenarios

Two scenarios were elaborated:
Scenario A0, the baseline. It is the situation representing the regulatory conditions applied to each

of the pathways when this assessment was initiated in January 2018.
Scenario A1, is an imagined future situation where the pathways are all specifically regulated with

respect to S. frugiperda, i.e. risk reduction options (RROs) (pre-export inspection and EU import
inspection) are applied to regulated pathways.

Scenario A1 presumes the introduction of additional regulations of pest freedom from consignments
in specific commodities, such as sweetcorn, whereas such a regulation was not present previously.
Such a regulation would have direct and indirect effects. Direct effects would include increases in
inspection effort for those commodities that were not previously subject to inspection requirements,
such as sweetcorn. Indirect effects would result from the deterrent effect of such requirements and
inspections on producers. To safeguard their market, they are expected to make all feasible
adjustments in the production system, including improved control of the pest in the field, as well as
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pre-export sorting, grading and treatments (e.g. cold treatment of harvested product where this is
compatible with the cold hardiness of the product) to try and ensure that the product meets the
standards before export. Effectiveness of measures was parameterised at the level of substeps in the
pathway models. Experts evaluated the evidence and discussed the effectiveness of the measures
using expert knowledge elicitation. Effects on entry were calculated using the pathway model in
@Risk. The calculations in @Risk show the total effect of all actions resulting from a regulation of pest
freedom in consignments of pathways of S. frugiperda.

No interventions are possible for the migration pathway other than supporting pest management in
source areas; hence, migration from North Africa is only modelled within Scenario A0.

2.2.4. Definitions

2.2.4.1. Definition of the pathways

Currently, S. frugiperda is confirmed as present (established year round) in the USA and Mexico
and in several countries in Central and South America and in sub-Saharan Africa (Abrahams et al.,
2017). Within the USA S. frugiperda has a limited year-round distribution in southern Florida and
southern Texas. However, the exact overwintering locations are uncertain. Small populations may exist
in coastal pockets of southern US states bordering the Gulf of Mexico (Louisiana, Mississippi and
Alabama). Two types of pathway are quantified for these areas of pest presence: (i) import via trade
in fresh host commodities, and (ii) natural migration from Africa.

Trade pathways are further elaborated. Because trade data is available on a country scale and
S. frugiperda has only a limited distribution year round in USA, exports from USA are not included in the
analysis. Recognising the recent introduction and rapid expansion in Africa, it is feared that the pest may
extend its geographical range further to include regions in northern Africa and/or the Middle East. If this
happened, there would be additional pathways. As of 1 June 2018, S. frugiperda was not known to have
established in Africa north of the Sahara in countries bordering the Mediterranean nor in the Middle East.
These potential pathways are therefore hypothetical. Nevertheless, the consequences of a geographical
range extension into North Africa will be considered in the light of these possible future pathways and
following feedback from the European Commission during a presentation of interim findings (PLH Plenary
meeting 16–17 May 2018).

2.2.4.2. Definition of different units used

Trade is expressed in units of plant products. Depending on the product, the units are hundreds of
kg of commodity (consistent with how EUROSTAT provides data). These can be converted to individual
pieces using standard European conversion factors (EFSA unpublished data).

Dispersal by flight is expressed in numbers of moths migrating from a source area to a target area
during a single dispersal event.

2.2.4.3. Definition of abundance of the pest

The abundance of the pest is expressed as the proportion of traded units that are infested, starting
in the field and progressing along the pathway (Figure 2).

2.2.4.4. Potential RROs of the steps and identification of the RROs for the substeps

In principle a variety of phytosanitary measures, also known as risk reduction options, or RROs, are
available to lower the likelihood that S. frugiperda enters the EU on host commodities traded
internationally. For example, commodities could be sourced from a pest free area (PFA), or a pest free
place of production (PFPP) or a pest free production site (PFPS). Prior to their export a commodity could
be officially inspected to certify that it is free from S. frugiperda or had been subjected to treatment to
ensure freedom from the pest. PFA, PFPP and PFPS are among the measures listed in the EU emergency
measures (European Commission, 2018a,b) but were not considered feasible by the EFSA PLH Panel. In
order to guarantee pest freedom within a crop, place of production, place of production and buffer zone,
or area, it is necessary to fulfil the requirements outlined in ISPM No. 4 (FAO, 2017) and ISPM No. 10
(FAO, 2016). Considering the biology of the pest (multivoltine, polyphagous, highly mobile adults), it
would be very challenging for any NPPO to fulfil the requirements necessary. The Panel is not aware of
any countries in core America or sub-Saharan Africa that could claim such area freedoms.

Another possible RRO option is to produce (grow) the hosts liable to be infested with S. frugiperda
in complete physical protection, e.g. in glasshouses or polytunnels with appropriate screens over
vents. It is not economic to grow field crops such as sweetcorn under such conditions. High value
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crops such as cut flowers are already grown under protection in Africa and the Americas and are
therefore already considered within the baseline scenario (A0). Given that host commodities such as
peppers and eggplant are chill sensitive (CargoHandbook.com, 2012b, 2017b), cold treatments that
would be lethal for S. frugiperda are not appropriate for such commodities. A remaining RRO is
consignment freedom, based on pre-export visual inspection. Recognising that pre-export official
inspection would occur within Scenario A1, with potential loss of market access if consignments were
found infested, scenario A1 also assumed growers would implement additional pest control within
production sites, e.g. additional scouting for pest symptoms and subsequent additional chemical
treatments where necessary.

2.2.4.5. Ecological factors and conditions in the chosen scenarios

Evidence dossiers for commodity pathways describe relevant ecological factors and pathway
conditions (Appendices E–I).

2.2.4.6. Temporal and spatial scales

Due to the rapidly developing situation in Africa, where S. frugiperda has spread widely in a
relatively short time (Abrahams et al., 2017) the Panel considered that a 5 year time horizon was
appropriate. The quantitative model uses an annual time step.

Establishment is considered within NUTS 2, the spatial scale at which commodities entering the EU
are apportioned into. SDM uses a finer scale with grid cells of 10-arc minutes (approximating to
14 km2 each).

2.2.5. Summary of the different scenarios

Scenario A0 is a baseline scenario representing the regulatory conditions applied to each of the
pathways when this assessment was initiated in January 2018. At that time, Capsicum,
Solanum melongena and Rosa cut flowers were already regulated (although not specifically with respect
to S. frugiperda) and consignments from third countries were subject to phytosanitary inspection on
arrival in the EU. Sweetcorn (Zea mays) and Asparagus were not regulated and they were allowed to
enter without phytosanitary checks.

Scenario A1 is an imagined future situation where the pathways are all specifically regulated with
respect to S. frugiperda (see Section 2.2.3).

3. Assessment

3.1. Pest biology

The biology and life cycle of S. frugiperda is summarised in the first phase assessment (a pest
categorisation) by EFSA PLH Panel (2017). A summary is provided here for ease of use. S. frugiperda
(Smith, Lepidoptera: Noctuidae) is a polyphagous pest with hosts in 27 plant families. Favoured hosts
include maize, rice and sorghum (Poaceae). Hosts also include crops within the Brassicaceae,
Cucurbitaceae, Rutaceae, Solanaceae and other families (de Silva et al., 2017). S. frugiperda is native
to tropical and subtropical regions of the Americas where winter temperatures rarely fall below 10°C
(Sparks, 1979; Ashley et al., 1989; Nagoshi and Meagher, 2008). It migrates to temperate regions in
North and South America during the relevant hemispheres summer. In southern Florida, S. frugiperda
can breed year round (Abrahams et al., 2017). There are continuous generations in Central and South
America (Johnson, 1987) where there can be four to six generations per year (CABI, 2017b).

In 2016, S. frugiperda was reported for the first time in Africa with outbreaks in Benin, Nigeria, Sao
Tome and Principe and Togo (Goergen et al., 2016; IITA, 2016). Subsequent reports suggest that it
spread rapidly across Africa.

Eggs are usually laid on the underside of hosts’ leaves although at high population densities
oviposition can occur on almost any surface. Eggs are laid in clusters of 100–300 and are protected
with a covering of abdominal scales (CABI, 2017a,b). 1,000 eggs being laid per female (Johnson,
1987). Eggs hatch in 2–4 days at 21–27°C (Sparks, 1979). First and second instar larvae feed together
on the host where eggs were laid (Pannuti et al., 2015). Young leaves and tender growing tips of
hosts are preferred. Third instar larvae disperse away from each other but generally do not go far
unless they are at a high larval density and hosts are depleted (Pannuti et al., 2016). In such
circumstances, larvae will ‘march’ in search of food. There are five or six larval instars. Mature larvae
burrow into the soil to pupate. Overall, egg to adult development takes around 66 days at 18.3°C and
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18 days at 35.0°C (Barfield et al., 1978). A threshold temperature of 10.9°C and 559 day-degrees
above the threshold is required for development of the complete life cycle. Adult females are relatively
short-lived (13–19 days at 26.8°C) (Johnson, 1987). All stages are usually killed by freezing
temperatures (Smith et al., 1997; CABI, 2017a,b).

3.1.1. Assessment of entry via plant commodities under given scenarios

3.1.1.1. Summary – Entry into the EU in Scenario A0 (baseline)

Table 2 presents the results of model outputs under Scenario A0. Results have been rounded to
avoid the impression of very great precision. Outputs from the pathway models indicate that peppers
(Capsicum and Pimenta) are by far the most likely pathway for entry of S. frugiperda among the five
pathways quantified (Table 2). The 90% probability interval for entry via this pathway ranges from a
lower estimate of just under 2,000 to an upper estimate of approximately 525,000 infested peppers
per year. After peppers, eggplants provide the next highest numbers of infested commodities, with the
90% probability interval between approximately 4,200 and 210,000 infested transfer units (i.e.
individual peppers). For other pathways, the 95th and 5th quantiles are at least a factor of 10 lower
than for the peppers pathway.

Older instar larvae of S. frugiperda are cannibalistic (Chapman et al., 1999). It was assumed that
any infested transfer units (e.g. individual sweetcorn cobs, individual peppers) entering the EU would
be infested by a single late instar larvae; hence, the number of infested units entering the EU equates
to the number of S. frugiperda larvae entering the EU.

3.1.1.2. Summary – Entry into the EU in Scenario A1 (all pathways regulated)

Table 3 presents the results of model outputs under Scenario A1. Like Table 2, the results have
been rounded to avoid the impression of very great precision. Measures against S. frugiperda, such as
a requirement for inspection against this pest, are anticipated to have an effect at the upper end of
the level of infestation. Overall, there are minor effects on entry for the three out of the five pathways
that are already regulated. For peppers, eggplant and cut roses there are already requirements against
other quarantine pests and on entry into the EU these consignments are inspected; some at a reduced
frequency, e.g. rose cut flowers from Kenya. The similarity of quantiles for these pathways in Table 2
(current regulations) and Table 3 (with specific measures for S. frugiperda) attests to the limited
effects of further regulation.

In contrast, specific measures for S. frugiperda would result in a substantial reduction in the entry
via the sweetcorn pathway (Figure 4), because under current regulations, there is no requirement for
inspection of this commodity. Inspection is expected to increase the pressure on importers to produce
pest free product at origin and is expected to therefore likely lead to several improvements in the
operations before export to ensure product quality.

Table 2: Outputs (rounded) of pathway models for entry of S. frugiperda into the EU via the trade
in peppers, sweetcorn, eggplants, cut roses and asparagus. Calculations with the pathway
model were made assuming current regulations as at January 2018 (Scenario A0)

Percentile(a) 5th 25th
Median
(50th)

75th 95th
90%

Prob interval(b)
50%

Prob int(c)

Peppers 1,800 10,000 30,500 98,000 525,000 523,200 88,000

Eggplant 750 4,200 13,500 42,000 210,000 210,000 38,000
Sweetcorn 150 1,000 2,500 6,000 18,000 17,850 5,000

Cut roses 50 200 500 1,200 4,500 4,450 1,000

Asparagus > 0 50 100 500 3,200 3,200 450

(a): Descending cumulative probability.
(b): 90% probability interval between 95th and 5th percentile.
(c): 50% probability interval between the 75th and 25th percentile.
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Details on the data and parameters that underlie these modelling results are given in the
Appendices E–I. Individual pathways are considered further below.

3.1.2. Assessment of entry via sweetcorn

With regulation, scenario A1 shows a marked shift of the distribution to the left, representing a
reduction in projected entry of infested cobs. The 5th percentile of this distribution (i.e. the level of
entry that is exceeded with a 5% chance) is reduced from a value of about 17,000 sweetcorn cobs per
year for the whole of the EU to less than 1,000 cobs per year. Only a few of these cobs would end up
in regions with potential for establishment (see Section 3.2).

3.1.3. Assessment of entry via peppers

In Scenario A0, the mean rate of entry of infested peppers has a 90% probability interval of
between 1,800 and 525,000 peppers per year, whereas in Scenario A1 the 90% probability interval is
from 1,800 to 440,000 (Tables 2 and 3). Hence with further regulation of peppers, it is the extreme

Table 3: Outputs (rounded number of infested fruits/flowers) of pathway models for entry of
S. frugiperda into the EU via the trade in peppers, sweetcorn, eggplants, cut roses and
asparagus. Calculations with the pathway model were made assuming specific measures
against S. frugiperda (Scenario A1)

Percentile(a) 5th 25th
Median
(50th)

75th 95th
90%

prob int(b)
50%

prob int(c)

Peppers 1,800 10,000 30,500 90,000 440,000 438,200 80,000

Eggplant 900 4,500 13,500 40,000 190,000 190,000 35,500
Sweetcorn > 0 50 100 200 600 600 150

Cut roses 50 200 500 1,200 4,500 4,450 1,000

Asparagus > 0 50 100 450 2,800 2,800 400

(a): Descending cumulative probability.
(b): 90% probability interval between 95th and 5th percentile.
(c): 50% probability interval between the 75th and 25th percentile.

Figure 4: Descending cumulative probability distributions for the entry of S. frugiperda with trade in
sweetcorn under two scenarios A0 (current measures- hatched lines) and when regulated
(A1, solid line)
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upper levels of infestation that may be reduced although such levels of infestation are expected to
occur less often than lower levels.

Figure 5 plots the descending cumulative probability distributions for the entry of S. frugiperda in
peppers for both scenarios. In the central region of the distribution, between the 25th and 75th
percentile, there is little difference between the two distributions. This can be explained because there
are already regulations in place for peppers, including import inspection, and S. frugiperda is already a
quarantine organism. Explicit measures for S. frugiperda in peppers are therefore projected to have
only minor consequences for entry of the insect.

3.1.4. Assessment of entry via asparagus

Asparagus is not regulated in Scenario A0 yet regulation of the pathway in Scenario A1 appears to
have little effect (Figure 6), perhaps because of the difficulty in detecting what is already low levels of
infestation. Entry on the asparagus pathway is two orders of magnitude smaller than entry on the
pepper pathway.

Figure 5: Descending cumulative probability distributions for the entry of S. frugiperda with trade in
peppers under two scenarios: (A0) current measures (hatched lines) and (A1) specific
requirements for S. frugiperda in peppers
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3.1.5. Assessment of entry via eggplants

It is clear that in Figure 7 there is little difference between the two distributions. This is because
there are already regulations in place for eggplant, including import inspection, and S. frugiperda is
already a quarantine organism. Explicit measures for S. frugiperda in eggplant are therefore projected
to have only minor consequences for entry of the insect. As in the case of peppers, further regulation
of eggplants has an effect at the extreme upper levels of mean infestation rate reducing it from
approximately 220,000 to 190,000 infested fruit per year. Such levels of entry are thus expected less
frequently. Entry on this pathway is approximately half that of entry on the pepper pathway.

Figure 6: Descending cumulative probability distributions for the entry of S. frugiperda with trade in
asparagus under two scenarios: (A0) current measures (hatched lines) and (A1) specific
requirements for S. frugiperda in asparagus
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3.1.6. Assessment of entry via rose cut flowers

Following what is seen with the other commodities that are already regulated, there is almost no difference
between the distributions of mean rate of entry via rose cut flowers in Scenarios A0 and A1 (Figure 8). Explicit
measures for S. frugiperda in cut roses are therefore projected to have only minor consequences for entry of
the insect. Entry on this pathway is two orders of magnitude smaller than entry on the pepper pathway.

Figure 7: Descending cumulative probability distributions for the entry of S. frugiperda with trade in
eggplant under two scenarios: (A0) current measures (hatched lines) and (A1) specific
requirements for S. frugiperda

Figure 8: Descending cumulative probability distributions for the entry of S. frugiperda with trade in
rose cut flowers under two scenarios: (A0) current measures (hatched lines) and (A1)
specific requirements for S. frugiperda
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3.1.7. Aggregate assessment of entry (detailed pathways)

Figure 9 shows the descending cumulative probability distributions for the entry of S. frugiperda
with aggregate trade in the five commodities detailed above. Further regulation appears to reduce
likelihood of the mean number of annual entries of infested commodities. At the 75th percentile it
reduces from approximately 38,000 to 32,000 and at the 25th percentile from approximately 190,000
to 165,000 (Figure 9). At the 95th percentile regulation reduces mean entry by around 150,000 from
approximately 735,000 to 585,000 (the long tails of each distribution are not shown in Figure 9).

The explanation for this projection is a combination of the component pathways. Three pathways
are already regulated in A0 (peppers, eggplant and rose cut flowers). Thus, exporters already have an
incentive to produce product that is pest free, and hence free from S. frugiperda. Additional specific
measures for S. frugiperda would not change this situation by much. Additional specific measures
against the pest in these commodities were therefore judged to have only minor consequences for the
entry process. There is a significant reduction in sweetcorn but the significance is lost in the aggregate
trade due to the much larger volumes of peppers imported.

Details on the data and parameters that underlie these modelling results is given in the
Appendices E–I.

3.1.8. Assessment of entry with other commodities

Recognising that other vegetable and cut flower hosts could provide pathways, Table 4 indicates
the estimated range in mean number of infested transfer units entering on pathways represented in
Appendix K. While Appendix K lists additional potential pathways and associated import quantities,
Appendix D indicates interceptions of S. frugiperda notified on Europhyt to May 2018.

In Scenario A1 there is approximately 50% 
probability that the mean number of 

infested units annually entering the EU is 
between 32,000 and 165,000

In Scenario A0 there is approximately 50% 
probability that the mean number of 

infested units annually entering the EU is 
between 38,000 and 190,000

Figure 9: Descending cumulative probability distributions for the entry of S. frugiperda with
aggregate trade in the five commodities detailed above under two scenarios: (A0) current
measures (hatched lines) and (A1) specific requirements for S. frugiperda
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Many of the commodities listed in Appendix K are not regulated in either Scenario A0 or A1. The
reduction in mean number of infested commodities in Table 4 is a reflection of the estimated changes
between A0 and A1 in the detailed pathway analyses where there is also little regulatory change
although greater awareness of pathways and inspection efforts pre-export and post EU entry could
reduce the number of infested items entering the EU.

3.1.9. Combined assessment of entry via trade (detailed pathways plus other
vegetables and cut flowers)

Combining entry via the pathways assessed in detail (Appendices E–I) and other vegetable and cut
flower pathways (Section 3.1.8; Appendix K), Table 5 and Figure 10 indicates the estimated range in
mean number of infested transfer units entering on all trade pathways considered for each scenario.

Eggs or larvae entering the EU on host commodities would be able to complete their development
if environmental conditions were suitable.

Table 4: Outputs (rounded) of pathway models for entry of S. frugiperda into the EU via the trade
in other vegetable and cut flower hosts

Percentile(a) 5th 25th
Median
(50th)

75th 95th
90%

prob int(b)
50%

prob int(c)

Scenario A0 6,000 18,000 45,000 120,000 600,000 595,000 100,000

Scenario A1 4,000 15,000 38,000 100,000 500,000 495,000 85,000

(a): Descending cumulative probability.
(b): 90% probability interval between 95th and 5th percentile.
(c): 50% probability interval between the 75th and 25th percentile.

Table 5: Outputs (rounded) of pathway models for entry of S. frugiperda into the EU via the trade
in all vegetable and cut flower hosts considered

Percentile(a) 5th 25th
Median
(50th)

75th 95th
90%

Prob int(b)
50%

Prob int(c)

Scenario A0 25,000 75,000 160,000 385,000 1,560,000 1,535,000 310,000

Scenario A1 20,000 61,000 142,000 338,000 1,230,000 1,210,000 277,000

(a): Descending cumulative probability.
(b): 90% probability interval between 95th and 5th percentile.
(c): 50% probability interval between the 75th and 25th percentile.
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3.1.10. Entry across the EU specified at NUTS2 level

Although the majority of fruit and vegetables enters the EU via the Netherlands and Germany, all
host commodities, including infested hosts that escape detection at the EU border, are assumed to be
distributed across the EU in relation to human population. Working at a spatial resolution of NUTS 2
(see Section 2.2.4.6), fresh produce for consumption was distributed across the EU is proportion to
the number of consumers in NUTS 2 regions. While food consumption does vary regionally, Blandford
(1984) found the differences in food consumption between OECD countries were decreasing,
suggesting diets were converging and are become increasingly similar in the overall structure of their
diet. When comparing diets within Europe, Elsner and Hartmann (1998), Mauracher and Valentini
(2006) and Schmidhuber and Traill (2006) found European diets were also converging. Within the EU
diets have become more homogeneous, there has been increased intakes in Mediterranean countries
of saturated fats, cholesterol and sugar, while there has been reductions in saturated fat and sugar in
Northern European countries (Schmidhuber and Traill, 2006). Figure 11 delineates the apportionment
by NUTS 2 regions (Appendix L). It is noteworthy that Andalucia is among the NUTS 2 regions
receiving the higher amounts of commodities (50% probability interval that 1,200–6,400 infested units
enter annually; median value 2,600 infested units enter annually) (see also Section 3.2 establishment).

In Scenario A0 there is 75% probability 
that < 385,000 infested units enter the 

EU; in A1 < 340,000

Figure 10: Descending cumulative probability distributions for the entry of S. frugiperda with trade in
all hosts considered under two scenarios: (A0) current measures (hatched lines) and (A1)
specific requirements for S. frugiperda
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3.1.11. Assessment of entry via natural migration from sub-Saharan Africa

After considering the information in the evidence dossier (Appendix M) and taking expert knowledge
into account, the entry of S. frugiperda directly into the EU from populations in sub-Saharan Africa is
judged not feasible and was therefore not quantified.

3.1.12. Potential for entry via migration from northern Africa

Assuming S. frugiperda were to establish in North Africa, Figures 12 and 13 represent potential
trajectories from source host crop growing regions in Morocco and Tunisia. There is considerable
uncertainty regarding the number of moths that could reach the EU each year from North Africa, with
estimates ranging from a few hundred individuals to around two million although it is more likely that
in the range of tens to hundreds of thousands would enter each year, many arriving into Andalucia
(Table 6 and Figure 14).

Figure 11: Allocation of median values of all infested vegetable and cut flower host commodities
entering the EU via trade then apportioned to NUTS 2 region in relation to human
population
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Figure 12: HYSPLIT trajectory projections for a 12-h flight at 500 m. Origins in Morocco are marked
1, 2, 3; in Tunisia 4. Different colours indicate the percentage of trajectories originating in
the source area that cross the coloured zones. For instance: yellow areas are crossed by
more than 10% of the 1,500 m height wind trajectories that originate in the source areas
during a travel time of 12 h. Blue areas are crossed by 1–10% of those wind trajectories,
etc. Further information is given in Stein et al. (2015)

Figure 13: HYSPLIT trajectory projections for a 12-h flight at 1,500 m. Origins in Morocco are
marked 1, 2, 3; in Tunisia 4
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Small pockets in isolated areas north of the Sahara, even if not in the maize or primary host areas,
provide sources from which populations can spread to reach maize, and then subsequent populations
can spread further afield, including into the EU, where further spread could occur.

Details on the data and parameters that underlie these modelling results is given in Appendix N.

3.1.13. Uncertainties affecting the assessment of entry

3.1.13.1. Entry via trade

S. frugiperda is highly polyphagous (CABI, 2017a,b). Within the constraints dictated by the
resources available for this assessment, the assessment focussed on five broad pathways, aggregating
each individual commodity to core-America and sub-Saharan Africa. There are differences between
production systems within and between countries. Appendices E–I try to capture such variation. Other
host commodities can also provide pathways for the entry of S. frugiperda. Europhyt interception data
to May 2018 are shown in Appendix D.

For modelling purposes commodities entering the EU were apportioned into NUTS 2 regions by
human population. However, noting historical and cultural links between some source countries and
individual EU MS some consignments may be destined to be distributed within only a limited area of
the EU (Dyke et al., 2013).

Table 6: Distribution of estimated mean annual number of adult S. frugiperda migrating into the EU
from NorthAfrica. This pathway is contingent on S. frugiperda establishing in Africa, north
of the Sahara, specifically in Morocco and Tunisia

Percentile(a) 5th 25th
Median
(50th)

75th 95th
90%

prob int(b)
50% pro bint(c)

Scenario A0 100 4,000 32,000 200,000 2,400,000 2,400,000 195,000

(a): Descending cumulative probability.
(b): 90% probability interval between 95th and 5th percentile.
(c): 50% probability interval between the 75th and 25th percentile.

Figure 14: Descending cumulative probability distributions for mean number of S. frugiperda
reaching the EU via natural migration from locations in North Africa each year. No
phytosanitary measures are anticipated against this pathway; hence, only one curve
appears
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3.1.13.2. Entry via migration

HYSPLIT trajectories used Morocco and Tunisia as possible sources for S. frugiperda were it to
establish in North Africa. Alternative locations for possible sources include Egypt, particularly from
along the Nile and irrigated lands around it. Migration from North Africa to the EU first requires
S. frugiperda to be introduced into the region. There is variation between establishment models
regarding the extent to which S. frugiperda could establish north of the Sahara (see Section 3.2).

3.1.13.3. Other pathways

Although the pathway(s) that S. frugiperda took to enter Africa have not been identified, genetic
analysis of populations show that it was introduced into Africa on at least two occasions (Goergen
et al., 2016). This assessment of entry focussed on entry via trade in host plant material from the
Americas and sub-Saharan Africa. Entry via migratory flights from North Africa is contingent on future
establishment there. However, other potential pathways could be considered. This is because although
egg masses are normally laid on host plants, they can be laid on other surfaces indiscriminately,
particularly when populations are high (Sparks, 1979; Thomson and All, 1984). Hence, egg masses
could conceivably enter on a wide range of articles that move internationally if exposed at to adult
S. frugiperda seeking an oviposition site. Egg masses of Lymantria dispar have been found on shipping
containers (Gray, 2010). Porter and Hughes (1950) reported that 0.86% of surveyed aircraft entering
Miami from the Caribbean and South America had at least one lepidopteran egg mass attached.
S. frugiperda egg masses were the most common individual species. Larvae that emerge from
introduced egg masses would need to fairly quickly locate a food source. Hence articles carrying egg
masses would need to be close to, or upwind from, S. frugiperda host plants so that larvae could
transfer (Cock et al., 2017).

Entry on material in passenger baggage or with military hardware moved internationally is also
possible additional pathways for entry.

3.1.14. Conclusion on the assessment of entry for the different scenarios

S. frugiperda can enter the EU via traded host plant commodities. Interceptions have been
reported from core America and sub-Saharan Africa. Expert knowledge elicitation was used to inform
inputs to quantitative pathway models so as to estimate mean numbers of infested units of host
commodities that could enter the EU over the next 5 years.

Although not a favoured host, more S. frugiperda are likely to enter the EU on peppers than on
other commodities. The 90% probability interval (i.e. the range between the 5th and 95th percentile)
for entry via this pathway ranges from a lower estimate of just under 2,000 to an upper estimate of
approximately 525,000 infested peppers per year. A less extreme range to consider is a 50%
probability interval such as the range between the 25th and 75th percentile. For peppers in A0, this
50% probability interval ranges from 10,000 to just under 100,000 infested peppers per year.
(Recognise that in the order of 40 million peppers are imported into the EU annually from core
America and sub-Saharan Africa.) Regulating S. frugiperda on peppers reduces the extreme upper limit
of infestation by approximately 20%, falling from around 525,000 to around 440,000, although these
levels of infestation are unlikely. However, regulation has little effect on lowering the 50% probability
interval for the number of infested peppers entering the EU annually (A0 = 10,000–98,000;
A1 = 10,000–90,000). This can be explained because there are already regulations in place for
peppers, including import inspection, and S. frugiperda is already a quarantine organism. Explicit
measures for S. frugiperda in peppers are therefore projected to have only minor consequences.

After peppers, eggplant is the commodity likely to be responsible for entry. In Scenario A0, the
90% probability interval is that the mean number of infested eggplants entering the EU is from less
than 1,000 to 210,000 per year; in Scenario A1, the upper limit is reduced by just under 10% to
190,000. Like peppers, eggplants are regulated in both A0 and A1, and additional regulation has a
limited effect. In contrast, instigating risk reduction options on sweetcorn reduces entry on that
pathway approximately 100-fold (A0 90% probability interval = approximately 150 to 18,000 infested
sweetcorn cobs per year, median = 2,500; A1 90% probability interval = less than 50 to 600 infested
sweetcorn cobs per year, median = 100).

When distributed within the EU NUTS 2 regions, many regions are expected to receive less than 50
infested units per year. However, median estimates suggest that for a few NUTS 2 regions, there may
be between 1,000 and 10,000 infested units per year (Figure 11). Model outputs indicate that
Andalucia is one of the NUTS 2 regions that receive the most infested commodities. Being close to
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Morocco, Andalucia is also the NUTS 2 region where S. frugiperda migrating from North Africa could
enter the EU. The 90% probability interval for entry via migration is between 100 individuals and
2.4 million individuals. The wide range around this estimate indicates the uncertainty of the estimate
which is contingent of S. frugiperda establishing in North Africa.

3.2. Establishment

3.2.1. Assessment of establishment

3.2.1.1. SDM and ensemble modelling

Using SDM and ensemble modelling, the suitability threshold that maximises the sum of sensitivity
and specificity, 67 10 arc-minute grid cells (each approximately 14 km2) in Europe are classed as
suitable for year-round S. frugiperda populations. These grid cells are found in Spain, Italy, and Greece
(Appendix O) and collectively represent approximately 94,000 ha or approximately 0.5% of the EU
maize area. However, the areas suitable for establishment do not occur in the same locations as the
main maize growing regions of the EU, which lies further north. In 2016, maize was harvested from
approximately 17.7 million ha (FAOSTAT, 2018) (Figure 15).

The areas on the Iberian Peninsula that are found suitable in the SDM ensemble predictions
(Figures 15 and 16) are not contiguous. This is due to differences between those regions in the
explanatory factors that drive the ensemble prediction, i.e. rainfall in the three wettest months of the
year, length of the rainy season, difference in rainfall between the wet and dry season, minimum
temperature in the coldest month of the year, and land cover (Section 2.2.1.3). Suitable areas show
greater contiguity when a lower threshold is chosen for the establishment index. However, choosing a
lower threshold increases the rate of false positives (Appendix O.3). Furthermore, the possible effects
of averaging of weather variables over space should be considered. This can result in inaccuracies near
the sea where weather gradients are steep.

Figure 15: SDM ensemble model result showing locations of 10 arc-minute grid cells suitable for
establishment of S. frugiperda. These grid cells are found in Spain, Italy and Greece
(Appendix O) and collectively represent approximately 94,000 ha

Spodoptera frugiperda partial risk assessment

www.efsa.europa.eu/efsajournal 31 EFSA Journal 2018;16(8):5351



In presenting Figure 15, a trade-off is made between under-representing locations where climate is
suitable for establishment and over-representing locations where SDM suggests establishment is
possible when it is not (see Section 3.2.2 Uncertainties). Visualising uncertainty in maps is a challenge.
Figure 16 provides establishment likelihoods using a range of ‘thresholds’. Cells coloured red represent
climate suitability with greatest confidence.

3.2.1.2. Environmental factors affecting establishment

MinTemp (coldest annual temperature) and Forest (proportion of each 10 min grid cell that is
covered by trees) were consistently identified as the environmental variables that most affected
S. frugiperda distribution. SumWet (rainfall during the wettest 3 months), LenWet (rainy season
length) and SeasPpn (the contrast between the rainy and dry seasons) were less important than
Forest and MinTemp. S. frugiperda is most commonly found in areas with very little forest cover, a
minimum annual temperature of 18–26°C, and with 500–700 mm rainfall in the three wettest months.
The importance of ‘Forest’ is likely because it indicates the availability of crops on which S. frugiperda
feeds, but it could also be related to underreporting from forested areas because few people have
looked for S. frugiperda outside of areas of extensive agriculture. The importance of MinTemp supports
the existence of a hard poleward geographical boundary, caused by one or more months where
temperature drops below a threshold. Indeed, only 5% populations in the current range are found in
grid cells with MinTemp of 10.9°C or less, and none in grid cells with MinTemp below 3.8°C
(Figure 17).

Figure 16: SDM ensemble model result showing locations of 10 arc-minute grid cells suitable for
establishment of S. frugiperda with different thresholds (see Appendix O)
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3.2.1.3. CLIMEX modelling generating maps at point sources

Using the parameters in du Plessis et al. (2018) and with the CLIMEX irrigation scenario in place,
the climate at meteorological stations in southern Spain (Andalucia), southern Italy (including Sicily)
and Greece have a positive ecoclimatic index (EI) suggesting climatic conditions support the
establishment of S. frugiperda (indicated by blue dots in Figure 18). The larger the blue dot the more
suitable the climate. Crosses mark the location of meteorological stations where climate is not suitable
for establishment. Stations along the North African coast also appear suitable.

In interpreting CLIMEX maps, it should be recognised that maps generated using empirical weather
data from meteorological stations can reveal pockets where climate is suitable for establishment whilst
maps using interpolated data over the same area might not indicate establishment is possible,
particularly where EI is relatively low. The set of underlying meteorological observation data and
methods of interpolation can sometimes lead to differences in climatic variables (Kriticos pers comm).

In relation to S. frugiperda and the du Plessis et al. (2018) parameters, applied to the
Euro-Mediterranean area and north African coast, a study of interannual variation reveals that in some
years locations have positive EIs (Kriticos, pers comm.)

Figure 17: (a) Potential global distribution of S. frugiperda, as predicted by an ensemble of SDMs
constructed using all distribution data and with four pseudo-absence data sets. SDMs
were permitted into the ensemble if the TSS evaluated against 30% randomly selected
validation data points was ≥ 0.4. The ensemble was calculated as the mean of all
projections, weighted by the TSS of the model. (b) Uncertainty in projections, as
calculated by the variation between all SDM projections included in the SDM
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3.2.1.4. Distribution of favoured hosts in NUTS 2 regions supporting establishment

S. frugiperda is a polyphagous pest, but maize, rice and sorghum are among the favoured hosts.
These crops, to some extent, are present in all the NUTS 2 regions shown by the ensemble model to
be suitable for establishment, with the exception of Ionia Nisia and Cyprus (Table 7). However,
S. frugiperda can feed on many other Poaceae, including wild species that are commonly distributed in
all the suitable areas.

Areas of the main host crops of S. frugiperda, within the NUTS 2 regions where establishment may
be possible (suitability index higher than 0.45). NUTS2 indicated with asterisks regions contain patches
where suitability index is higher than 0.67.

Figure 18: Climate suitability for S. frugiperda in Africa and Europe modelled using CLIMEX.
Parameters from du Plessis et al. (2018) with irrigation scenario
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The area and intensity of green maize and rice grown in the EU is illustrated in Figure 19 (green
maize) and Figure 20 (rice).

Table 7: Areas of the main host crops of S. frugiperda, within the NUTS 2 regions where
establishment may be possible (suitability index higher than 0.45). NUTS2 indicated with
asterisks regions contain patches where suitability index is higher than 0.67.

Nuts 2 Grain maize (ha) Green maize (ha) Sorghum (ha) Rice (ha)

EL41 – Voreio Aigaio 0 1,000 0 0

EL42 – Notio Aigaio* 0 7,000 0 0
EL43 – Kriti* 0 1,000 0 0

EL 54 – Iperios* 6,000 5,000 – –
EL62 – Ionia Nisia* 0 0 0 0

EL63 – Dytiki Ellada* 17,000 11,000 0 1,000
EL65 – Peloponnisos 1,000 2,000 0 0

ES13 – Cantabria 0 1,000 0 0
ES11 – Galicia* 19,000 69,000 0 0

ES61 – Andaluc�ıa* 31,000 1,000 4,000 40,000
ITF3 – Campania 14,000 20,000 47,000 0

ITF6 – Calabria* 4,000 1,000 131,000 0
ITG1 – Sicilia 47,000 133,000 81,000 0

CY0 – Kypros 0 0 0 0
PT11 – Norte 30,000 40,000 0 0

PT15 – Algarve 0 0 0 0
PT16 – Centro 33,000 23,000 0 6,000

PT17 – Lisboa 2,000 1,000 0 4,000

PT18 – Alentejo 34,000 6,000 0 17,000

Figure 19: Distribution of a preferred host, maize: Zea mays
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In northern Europe, maize is mostly cultivated as non-irrigated continuous silage maize or rotated
with grass. In central Europe, non-irrigated grain maize is produced either in rotation or as a continuos
crop. In southern Europe, continuous grain maize and grain or silage maize in rotation are irrigated
(Vasileiadisa et al., 2011).

3.2.2. Uncertainties affecting the assessment of establishment

3.2.2.1. Ensemble modelling

Internal cross-validation indicated that the accuracy of SDMs were ‘moderate’ according to TSS
(mean 0.55, standard deviation 0.07) and ‘fair’ according to AUC (mean 0.81, standard deviation
0.06). This is well within the acceptable accuracy range for SDMs, and indicates it is reasonable to
make predictions of establishment potential in Europe with these models (Table 8).

Figure 20: Distribution of a preferred host, rice: Oryza sativa

Table 8: Comparison between percentage of S. frugiperda presences and pseudo-absences that are
correctly predicted by four different thresholds. (See Section 2.2.1.3 for further
explanation of ‘sensitivity’ and ‘specificity’)

Threshold
number

Rationale Threshold

% of known
S. frugiperda
presences

predicted to be
suitable, i.e.

sensitivity (�SD)

% of
S. frugiperda

pseudo-absences
predicted to be
unsuitable, i.e.

specificity (�SD)

No. of EU 10
arc-minute grid
cells predicted to
be suitable for
establishment

1 Predicts all but 5% of
S. frugiperda presences
to be suitable

0.452 95% 67% (�0.02) 291

2 Predicts all but 10% of
S. frugiperda pseudo-
absences to be suitable

0.572 90% 76% (�0.02) 171
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Each of the four different thresholds that the panel applied resulted in limited areas in Europe being
suitable for S. frugiperda establishment. Thresholds 1 and 2 result in grid cells being suitable in
Portugal as well as in Spain, Italy and Greece. Thresholds 3 and 4 are supported by research as
making the most ‘accurate’ predictions (Liu et al., 2005; Jim�enez-Valverde and Lobo, 2007). Therefore,
it is possible that thresholds 1 and 2 overestimate the extent of S. frugiperda establishment. However,
‘accuracy’ is a result of predicting both suitable and unsuitable locations accurately. There are two
reasons this might not be appropriate. First, the pseudo-absences used to indicate unsuitable locations
are not real observations but are instead randomly generated. The presences used to indicate suitable
locations are real observations. As the real observations are more accurate it can be argued that they
should be weighted more highly, and so a threshold that results in more presences being correctly
predicted could be preferable (i.e. thresholds 1 or 2). Second, the consequences of decision-making
based on an overestimate of threat may not be equal to the consequences of decision-making based
on an underestimate.

In order to inform the most appropriate threshold, it is instructive to compare results with
predictions for Texas and Florida, the parts of the native range where temperatures are most similar to
Europe and where the species distribution is fairly well known. All thresholds result in the environment
being classed as suitable for establishment at the sites of Florida populations. Only threshold 1
classifies the environment as suitable for establishment at the sites of Texas populations. However, this
threshold also classifies a strip of land along the gulf coast as suitable, and there is anecdotal evidence
that S. frugiperda can overwinter in some of these locations.

The lower suitability threshold predicts a large portion of the Sahara desert to be suitable, whereas
expert opinion firmly agrees that climate there is too dry for S. frugiperda to establish year round. This
erroneous prediction appears to be because S. frugiperda occupies some areas that are climatically hot
and dry in Peru, but these sites are irrigated using rivers flowing from the Andes. These sites are in
the Sechura desert north of Lima. As the SDMs were not supplied with irrigation data, the models
interpreted hot, dry sites as having a low, but non-trivial, level of suitability. This does not suggest
concern for the predictions in EU as precipitation levels in EU are much higher, similar to precipitation
in several parts of the American and African distribution, and the EU distribution is instead limited by
cold temperatures.

The agreement among results generated by eight SDM techniques and 20 data sets that
contributed to the ensemble prediction, i.e. the variation between predictions from multiple SDM
techniques and data sets) is shown in Figure 15b). This figure can be thought of as illustrating the
uncertainty that the ensemble accurately represents environmental favourability for S. frugiperda
population growth, given the results from different data sets and models. In Europe, all the grid cells
classed as suitable using the lower threshold of 0.452 are in the 40th–90th percentile of uncertainty
values, i.e. they are among the 40–90% most uncertain in the world. All the grid cells classed as
suitable using the higher threshold of 0.572 are in the 40–70th percentiles of uncertainty values, i.e.
they are among the 40–70% most uncertain in the world. So it should be remembered that the level
of suitability in the grid cells identified as suitable for establishment could reasonably be expected to
be higher or lower than predicted (See also Appendix O).

Threshold
number

Rationale Threshold

% of known
S. frugiperda
presences

predicted to be
suitable, i.e.

sensitivity (�SD)

% of
S. frugiperda

pseudo-absences
predicted to be
unsuitable, i.e.

specificity (�SD)

No. of EU 10
arc-minute grid
cells predicted to
be suitable for
establishment

3 Maximises the sum of
sensitivity and
specificity

0.674 88% (�0.02) 80% (�0.02) 67

4 Minimises the
difference between
sensitivity and
specificity.

0.625 83% (�0.02) 83% (�0.01)
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3.2.2.2. Comparisons among different modelling approaches for establishment, including
CLIMEX with station weather data and interpolated weather data

CLIMEX with gridded weather data did not predict establishment in Europe or North Africa (du
Plessis et al., 2018). Elsewhere in the world, the predictions were very similar to the SDM ensemble
forecast. This suggests that models based purely on distribution data (SDMs), and models that
integrate distribution data with some expert estimates on physiological parameters (CLIMEX) capture
similar effects of the environment on S. frugiperda distribution. However, there are some key
differences between the SDM ensemble and the CLIMEX approach.

First, CLIMEX can be considered a single modelling technique using a single data set, akin to one of the
many models that is included in the SDM ensemble. The CLIMEX map should not then be compared directly
to the ensemble map, but instead it should be asked whether CLIMEX is within the range of estimates
produced by the many SDM techniques. Visual comparison of the two maps suggests this is the case.

Second, CLIMEX uses physiological parameters drawn from literature or suggested by expert
opinion, and then moderates the parameters so that the map visually matches the known distribution
(no formal assessment of accuracy is done, so a table like Table 8 cannot be made). CLIMEX’ forecast
of the European range is limited by the cold stress temperature threshold, which was set to 12°C for
S. frugiperda. There is a broader range of measurements of minimum temperature for S. frugiperda
development reported in literature: 8.7°C, 13.8°C, 9.5–10.9°C and 10°C (Vickery, 1929; Wood et al.,
1979; Hogg et al., 1982b; Barfield and Ashley, 1987; Busato et al., 2005; Valdez-Torres et al., 2012).
The true cold stress threshold may then be lower than 12°C (or indeed higher), in which case CLIMEX
may well classify European areas as suitable for establishment.

Third, the CLIMEX results did not use populations in Texas to moderate parameter values, and only
predicted a very small area in Texas to be suitable although large populations of S. frugiperda are
present in a wider area of Texas (and possibly along the Gulf coast). Additionally, known populations in
Argentina are not predicted to be suitable by CLIMEX. Argentina and Texas are at the margins for cold
tolerance of S. frugiperda, and are the parts of the current range that have temperatures most similar
to Europe. As these points are excluded from the CLIMEX model and predictions, it is possible that
CLIMEX underestimates S. frugiperda cold tolerance, which would underestimate the potential for
establishment in Europe.

Along the North African coast, empirical weather data from meteorological stations reveal pockets
where climate is suitable for establishment (Figure 18) although when interpolated, the subsequent
gridded data results in model results that indicate that establishment is not possible (see du Plessis
et al., 2018). Where EI is relatively low, different climatologies may indicate differences in patterns of
establishment potential due to idiosyncrasies in the manner in which they were generated. The set of
underlying meteorological observation data and methods of interpolation can sometimes lead to
differences in climatic variables (D. Kriticos, pers comm.). A study of interannual variation of gridded
data used in du Plessis et al. (2018) reveals that in some years locations along the North African coast
have positive EIs (Kriticos pers comm.) However, this does not indicate establishment is possible but it
shows where, and under what conditions, transient populations could occur.

The ensemble SDM shown in Figure 17 and the point station CLIMEX model shown in Figure 18
used monthly 1961–1990 climatic data whereas du Plessis et al. (2018) used 1950–2000 data (CliMond
1975H historical climate data set, Kriticos et al. 2012). Ensemble SDM and du Plessis et al. (2018)
interpolated the data to provide gridded maps. Using a more recent data set such as 1975–2017 (JRC
– Agri4Cast Data) could allow an improved assessment of establishment and provide greater
confidence in identifying current areas where climatic conditions would and would not support the
establishment of S. frugiperda in the EU.

While acknowledging the uncertainties, the predictions from the SDM model ensemble and two
CLIMEX models do indicate that Europe is at the margin of potential S. frugiperda distribution based
on its cold tolerance. It is certainly more difficult for S. frugiperda to establish in Europe than in
sub-Saharan Africa, but pockets of the Mediterranean have climatic conditions where it is reasonable
to expect establishment is possible.

3.2.2.3. Comparison with other Spodoptera species

When seeking to reduce uncertainty, risk assessors can inform their judgements by drawing on
relevant information from related species (ISPM 11). Table 9 provides summary information allowing
comparisons to be made between S. frugiperda and two other Spodoptera species regarding aspects
of their biology and occurrence in Africa.
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Note that S. littoralis has been measured to have a development threshold of 13°C, and has
established in southern Europe. This threshold is higher than many values reported for S. frugiperda,
suggesting that S. frugiperda would not be limited in the EU by the lower temperature threshold for its
development.

3.2.3. Conclusions on establishment

S. frugiperda is native to tropical and subtropical regions of the Americas where it is established in
regions where temperatures rarely fall below 10°C (Sparks, 1979; Ashley et al., 1989; Nagoshi and
Meagher, 2008), i.e. the regions remain free from frosts. Its northern limit of distribution in the USA
corresponds to areas where winter frosts are infrequent. The results from an ensemble of SDM
indicate that a key factor affecting establishment is the lowest temperatures in the coldest months are
therefore consistent with what is reported in nature. The other key factor is area of forest, indicating
the absence of host (assuming S. frugiperda field crop hosts do not occur in forested areas).
Depending on the sensitivity threshold selected, pockets of habitat a few NUTS 2 regions in Spain,
Italy and Greece, and possibly Portugal, have climatic conditions where it is reasonable to expect
S. frugiperda can establish year-round populations. The NUTS regions in which such areas occur are
highlighted in Figure 21, which also indicates the median number of infested commodity units traded
into the NUTS regions.

CLIMEX modelling also indicates that cold stress (low temperatures) limit the distribution of
S. frugiperda in Europe.

Table 9: Comparing threshold temperatures for development, distribution and hosts between
Spodoptera species

Distribution in
Africa, Near
East and
Europe
(Source: CABI
Invasive
Species
Compendium)

Common name: Fall armyworm Black armyworm Cotton leaf worm

Development
threshold:

9.5°C–10.9°C (Busato et al.,
2005); Complete life cycle:
10.9°C (Ramirez Garcia et al.,
1987); 10°C (Wood et al.,
1979) 13.8°C (Hogg et al.,
1982)

Eggs: 10–12°C
Larva & pupa: 13–14°C
(CABI, Invasive Species
Compendium, 2017)

Eggs and pupae: 13°C
(Baker and Miller, 1974)

Comment on
distribution:

Northern limit of distribution in
USA corresponds to areas
where winter frosts are
infrequent. The species has no
diapause (similar to S.
littoralis)

Widespread in Africa south
of the Sahara; most
prevalent in the east, also
the Arabian Peninsula, SE
Asia and Oceania (CABI
Invasive Species
Compendium, 2017)

Northern limit of distribution in
Europe corresponds to areas
where winter frosts are
infrequent. The species has no
diapause (Miller, 1976; Sidibe
and Lauge, 1977)

Hosts: Prefers Poaceae, but highly
polyphagous

Preferred hosts are grasses
(Poaceae) although during
high-density outbreaks, non-
host plants are eaten (CABI
Invasive Species
Compendium, 2017)

Highly polyphagous with hosts
in 40 families; 87 host species
are of economic importance
(CABI, Invasive Species
Compendium, 2018)
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3.2.4. Number of potential transient generations

As noted in Section 1.2 (interpretation of ToR), pest spread within the risk assessment area (EU)
was outside the scope for this partial assessment; nevertheless, the PLHP thought it would be
informative to indicate where transient populations could occur within the EU.

S. frugiperda is well known as a seasonal migrant, able to disperse hundreds of km (Johnson,
1987). Adult migrations lead to it expanding gradually northwards from its area of core occurrence in
Central America and southern USA generally spreading up to approximately 300 miles before settling
to reproduce the next generation. Prevailing winds and host availability influence the rate and direction
of migrations (Hogg et al., 1982; Johnson, 1987). Triggers for migration are not well understood
(Abrahams et al., 2017). If S. frugiperda does establish in the Mediterranean region of the EU, there is
potential for it to undertake spring and summer migrations, similar to those reported in the USA, so
that there could be seasonal spread to more temperate areas of the EU. Based on accumulated
temperature (threshold 10.9°C), Figure 22 shows the number of transient generations potentially
possible across the EU. However, the map must be interpreted with great caution; whether there will
be sufficient factors causing migration of large numbers of moths, such as large areas infested, high
population pest densities or deterioration of the host, resulting in pressure for S. frugiperda to disperse
widely over the EU is unknown. The map in Figure 22 does not integrate S. frugiperda phenology and
potential migration with temperature sum for each grid cell hence the map is liable to overestimate the
number of generations possible. An assessment of impact was outside the scope of this assessment;
nevertheless, large migrations reaching into less mature crops would result in higher impacts than
migrations into crops that were further advanced.

Figure 21: Amount of infested commodities entering NUTS2 regions containing patches where
climatic conditions support establishment (Threshold 0.67 suitability index)
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4. Pest control methods

As requested in the ToR, methods for the control of S. frugiperda that could be used if the pest
established in the EU, are to be assessed.

There are two genetically distinct strains of S. frugiperda, the corn strain and the rice strain
(Cano-Calle et al., 2015; Dumas et al., 2015; Hanninger et al., 2017). Although the strains are
reported to have host preferences, laboratory experiments have not shown consistent host
performance or preference differences between the strains and there are high rates of hybridisation
(Ju�arez et al., 2012; Ju�arez et al., 2014). Both strains occur in Africa (Nagoshi et al., 2018) with severe
impacts being reported on maize (Abrahams et al., 2017).

4.1. Arthropod pests of maize in Europe

Maize is one of the most important crops in Europe, covering a production area of approximately
17.7 million hectares in 2016 (FAOSTAT, 2018). In northern EU maize growing regions, maize is mostly
cultivated as non-irrigated continuous silage maize or rotated with grass. In central Europe,
non-irrigated continuous grain maize, or grain maize grown in rotation e.g. with winter wheat and
oilseed rape, are dominant maize systems. In southern Europe, continuous and irrigated grain maize,
as well as irrigated grain and silage maize/winter wheat rotations, are prevalent (Vasileiadisa et al.,
2011). Crop protection is mainly pesticide-based with different levels of IPM implementation within
Europe (Meissle et al., 2010). Naturally occurring predators and parasitoids contribute to biological
control of maize pests in Europe and can be harmed by broad spectrum insecticides. However, natural
enemies can be promoted on farmland through landscape manipulation, e.g. by providing
overwintering habitat and managing field margins to encourage floral resources (Landis et al., 2000;
MacLeod et al., 2004). Biological control with pathogens is not currently economically important within
European maize production (Meissle et al., 2010).

The most important arthropod pest of maize in Europe is the European corn borer, Ostrinia nubilalis
(Figure 23a). In the infested areas, O. nubilalis occurs in a large proportion of fields ranging from 20%

Figure 22: Number of potential transient generations of S. frugiperda across the EU per year (note
caveats within text)
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in Hungary to 60% in Spain and estimated yield losses between 5% and 30% are typical without
control measures. In France and Spain, the Mediterranean corn borer Sesamia nonagrioides causes
additional economic damage (Figure 23b). Other species causing damage to corn are S. cretica in
southern Europe (CABI, 2017a,b) and D. virgifera in eastern Europe (Figure 23c). Between two and
four million ha of maize in Europe suffer from economic damage due to these corn pests (Brookes,
2009). In several European countries, corn borers remain untreated in spite of economic losses.

In European maize production, the European corn borer and other arthropod pests are often
controlled with broad-spectrum insecticides including pyrethroids and organophosphates. Spraying is
effective only when timed shortly after the eggs hatch and before the larvae bore into the maize stem.
This requires frequent scouting and often several treatments.

4.2. Control methods applicable to S. frugiperda

In general, chemical insecticides are economical and growers are equipped and experienced in
using them. Foliar application of insecticides on high maize stands, however, requires special and
expensive spray equipment. The spectrum of activity is usually broad, which allows the control of
several arthropod pests simultaneously. This, however, is also the major drawback, as deleterious
effects on valued non-target organisms are frequent. These include species that fulfil important
ecosystem services, such as predators, parasitic wasps, pollinators and decomposers.

Lepidoptera pests in maize are also controlled with the biological control agent Trichogramma sp., a
wasp that parasitises eggs of O. nubilalis. In Europe, the small wasps are released on about
150,000 ha per year, with the largest area in France (Meissle et al., 2010). Under optimal conditions,
efficacy can be comparable with chemical insecticides. Appropriate scouting, forecast systems and
efficient logistics ensure optimal timing, which is crucial for success.

Spodoptera frugiperda eggs and larvae can be parasitised (e.g. Dequech et al., 2013). Sisay et al.
(2018) report five species of parasitoids recovered from S. frugiperda eggs and larvae in Ethiopia,
Kenya and Tanzania. The dominant parasitoid species varied between countries as did the rates of
parasitism. Natural enemies in Europe may be able to adapt and exploit S. frugiperda, thereby
contributing to its control.

The use of virus-based insecticides for Lepidoptera control is advancing rapidly in the Americas and
Australia and could soon be an important option in Europe.

O. nubilalis and S. nonagrioides are controlled with Bt maize in Spain. In certain areas, it is
economically viable and adopted. Bt maize is not authorised for use in most European countries.

The same control practices used for O. nubilalis and S. nonagrioides largely function for the control
of S. frugiperda. If this pest were to arrive and become a pest of maize in Europe, it is likely that the
existing available tools could be used to control it effectively. Some additional applications might be
necessary to control S. frugiperda in addition to pests that are already managed, such as O. nubilalis,
S. nonagrioides and S. cretica, and additional scouting may be needed. These increased costs may
jeopardise the economic viability of maize production in certain areas for certain uses. The presence of
S. frugiperda in European maize production would likely motivate the registration of innovative
products, such as biopesticides and spur discussions about policies regarding the authorisation of GM
maize.

Figure 23: Distribution of the three main maize pests in Europe. (a): European corn borer (Ostrinia
nubilalis); (b): Mediterranean corn borer (Sesamia nonagriodes) (c): western corn
rootworm (Diabrotica virgifera virgifera). From https://www.cabi.org/cpc/
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5. Conclusions

Following the first report of S. frugiperda in Africa by Goergen et al. (2016), the pest has now been
reported in all sub-Saharan countries. A first phase assessment (pest categorisation) for the EU
concluded that the organism could establish in a small area of the southern EU although there were
uncertainties (EFSA PLH Panel, 2017). As requested, this second phase partial risk assessment has
focused on the main pathways for entry and used SDMs to identify factors affecting establishment.

This risk assessment considers two scenarios. The first scenario (A0) is a baseline scenario
representing the regulatory conditions applied to each of the studied pathways when this assessment
was initiated in January 2018. At that time, Capsicum, S. melongena and Rosa cut flowers were
regulated, although not specifically with respect to S. frugiperda. Sweetcorn and asparagus were not
regulated and consignments were allowed to enter without phytosanitary checks. In the second
scenario assessed (A1), regulated commodities must be certified free from S. frugiperda following
pre-export inspection.

Of five trade pathways studied in some detail, peppers contribute most to the numbers of
S. frugiperda likely to be transported into the EU over the next 5 years in both scenarios. Peppers are
already regulated and are inspected on entry to the EU. As peppers are chill sensitive, cold treatments
to disinfest the commodity are not appropriate. Further regulation (inspection) is anticipated to have a
marginal affect except in the most extreme circumstances of levels of infestation. Bringing sweetcorn
into phytosanitary regulation will substantially reduce the likelihood of pest entry on Z. mays.

Accurately determining the boundaries of a species climatic envelope is one of the most challenging
aspects of SDM and further data regarding the presence and especially the absence of the organism in
the Americas and Africa would help refine all forecasts. Furthermore, inclusion of irrigation data in SDM
could improve predictions, but data were lacking at the time of this assessment. Depending on the
sensitivity threshold selected, an ensemble model identifies pockets of habitat totalling around
94,000 ha, across a few NUTS 2 regions in Spain, Italy and Greece that have climatic conditions that
would support establishment. Independently, CLIMEX modelling identifies points in the same regions
where establishment may be possible. Low temperature is a key factor that limits the area of
establishment.

Entry by extant populations migrating directly from sub-Saharan Africa into the EU is judged not
feasible. However, if S. frugiperda continues to spread within Africa and establishes north of the
Sahara, then in the range of tens to hundreds of thousands of adults could seasonally migrate from
North Africa into southern EU, particularly Andalucia and Sicily. The likelihood that substantial numbers
of S. frugiperda enter by migrating into NUTS 2 regions where small pockets are climatically suitable
for establishment is therefore much greater than via commercial trade but is contingent on the
establishment of S. frugiperda in North Africa. The most promising option for mitigating the risk of
entry of the pest via natural dispersal from Africa is via control of the pest in Africa. There are no
possibilities for preventing entry via natural dispersal through phytosanitary measures in the EU.

Spatially combining the results of entry and establishment allows comparisons to be made between
entry of S. frugiperda via trade and natural migration from North Africa (Table 10). The 50%
probability interval (25th–75th percentile) of the mean annual number of infested commodity units
entering Andalucia and Sicily where establishment of S. frugiperda may be possible is two orders of
magnitude lower than the mean annual number of adult S. frugiperda migrating into southern EU
(mainly Andalucia and Sicily) were S. frugiperda to establish in Morocco and Tunisia. Given the
cannibalistic nature of S. frugiperda larvae, each infested transfer unit is assumed to sustain one
individual immature larvae.

Table 10: Numbers of immature S. frugiperda entering into Andalucia and Sicily on infested
commodities vs numbers of adults migrating into southern EU (mainly Andalucia and
Sicily) from North Africa were S. frugiperda to establish in Morocco and Tunisia

Percentile(a) 75th Median (50th) 25th 50% prob int(b)

Andalucia 1,200 2,600 6,400 5,200

Sicily 700 1,600 3,800 3,100

Migration into EU 4,000 32,000 200,000 196,000

(a): Descending cumulative probability.
(b): 50% probability interval between 75th and 25th percentile.
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If S. frugiperda were to arrive and become a pest of maize in Europe broad spectrum insecticides
currently used against existing pests could be used to control it.
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CRU climatic research unit
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EI ecoclimatic index (an index of climatic suitability used by CLIMEX)
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FAW Fall armyworm (Spodoptera frugiperda)
FDA flexible discriminant analysis
GAM generalised additive models
GLM generalised linear models
HS Harmonized System (6-digit World Customs Organization system to categorize goods)
IPM Integrated Pest Management
IPPC International Plant Protection Convention
MARS multivariate adaptive regression splines
MS Member state (of the EU)
NOAA National Oceanic and Atmospheric Administration
NCEP National Centers for Environmental Prediction
PFA pest free area
PFPP pest free place of production
PFPS pest free production site
PLHP EFSA Panel on Plant Health
RF random forest
RRO risk reduction option
SDM species distribution model/modelling
SRE surface range envelope
ToR Terms of Reference
TSS True Skill Statistic
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Appendix A – Model formulation and formalisation

Here the conceptual models for entry are elaborated as formal models.

A.1. Formal model for entry via trade

Pathway model for entry of Spodoptera frugiperda into the EU

Ei ¼ u� ai �
X
j

 
Tj � 100

wj
� e1j �

�
1�m1

j

�
�
�
1�m2

j

�
�
�
1�m3

j

�
�
�
1�m4

j

�!

Ei Entry into NUTS2 region i. Entry is expressed in number of units of product (transfer units)
infested with one or more individuals of S. frugiperda entering into a NUTS region. The end point of
the pathway model is pre-market, pre-consumer.

u Multiplier expressing the contribution of other pathways, resulting in a u times greater entry than
calculated from the five pathways that were quantified and modelled.

ai Proportion of the population of EU living in NUTS region i. The trade flow is apportioned to NUTS
regions in proportion to the number of people (consumers) living in them.P

j Summation symbol indicating that entry is the sum of all entry over different pathways j.
j Index representing the pathway (j = 1: sweetcorn, j = 2: peppers, j = 3: asparagus, j = 4:

eggplants, j = 5: cut roses).
Tj Total trade in commodity j into EU from core America and sub-Saharan Africa. Units: 100 kg

(consistent with EUROSTAT).
wj Weight of a single transfer unit (kg).
e1j Proportion of transfer units that are infested with S. frugiperda following harvest of the product

in the field.
m1

j Proportion of infested transfer units that is removed in the region of origin during sorting and
grading of the harvested product (efficacy of sorting and grading for pathway j).

m2
j Effectiveness of treatments carried out in the region of origin before the product is shipped to

the EU (includes export inspections).
m3

j Effectiveness of import inspection; proportion of transfer units infested with the pest that are
removed from the trade at import.

m4
j Effectiveness of treatments carried out in the receiving EU country after import inspection and

before the product is marketed to consumers.
Ten years of EU import data, 2007–2016, for sweetcorn (CN code: 0709 9960 and 0709 9060 for

years prior to 2012), peppers (CN code: 0709 6010 for sweet peppers (Capsicum annum) and 0709
6099 for other peppers (fruits of other Capsicum or Pimenta)), eggplant (CN code: 0709 3000),
asparagus (CN code: 0709 2000) and fresh cut roses (CN code: 0603 1100) were retrieved from
EUROSTAT, and an estimate of future trade for 2019–2023 was made using regression. Parameter wj

for the weight of a unit of product destined for consumer was retrieved from EFSA sources (EFSA
unpublished). Parameters e1j , m1

j , m2
j , m3

j , and m4
j were elicited by experts independently for each

pathway, both for a baseline scenario A0 of the current situation, and also for a scenario A1 with
specific measures for S. frugiperda. A single parameter u was elicited to account for the contribution of
pathways that were not quantified. Elicitations were made on the basis of evidence dossiers, following
EFSA’s guidance on expert knowledge elicitation. The experts used a shortened approach based on the
Sheffield method (EFSA 2014). Information supporting the estimations are found in Appendices E–I.
The pathway model is illustrated in Figure 2 and was implemented in @Risk for Excel.

Entry was mapped on the European territory in two ways: (1) distributing goods across the EU in
accordance to population density (NUTS 2) not taking into account suitability of establishment within a
NUTS 2 regions, and (2) showing entry only for those regions where establishment is potentially
possible.

A.2. Formal model for migration from North Africa

The model for entry via migration has five substeps, and uses five elicited parameters. It starts with
statistical information on maize area in Morocco and wheat area in Tunisia, both are suitable hosts
although maize is preferred. These countries were chosen because the mapping of potential for
establishment showed pockets of area that were potentially suitable for establishment (including winter
survival) in those countries. The first parameter (p1) represents the proportion of the crop area (maize
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in Morocco and wheat in Tunisia) in which S. frugiperda produces new generations, either because it
can overwinter in the local area, or it can migrate to these areas from areas within the country
suitable for overwintering. The second parameter (p2) represents the density of the insect in host
crops. The third parameter (p3) is the proportion of adults engaging in long-distance flight. The fourth
parameter (p4) is related to the weather systems that can transport the moth from northern Africa to
Europe and is based on simulations with the HYSPLIT model (Stein et al., 2015), the probability of
aerial trajectories starting in source locations reaching Europe within the maximum flight duration of
the moth (not more than 12 h as it is a night flier). The last substep (p5) is the proportion of moths
surviving flight.

The resulting model is formalised in the following equation:

Eby flight ¼ Ahost crops � 10; 000� p1 � p2 � p3 � p4 � p5

where
E by flight is the total number of moths arriving in the European territory each year from selected

host crops (maize and wheat) in the selected northern African countries (maize in Morocco, wheat in
Tunisia) as a result of migration by flight.

Ahost crops is the area of host crops (maize and wheat) in the selected northern African countries
(maize in Morocco, wheat in Tunisia) (ha).

10,000 is a conversion factor from ha to m2.
p1 is the proportion of the areas of maize (Morocco) or wheat (Tunisia) acting as a source for

migrating adults.
p2 is the density of S. frugiperda in the maize or wheat area acting as a source for migrating adults

(#/m2).
p3 is the proportion of S. frugiperda adults that engage in long-distance flight.
p4 is the proportion of trajectories that originate in the selected source areas in northern Africa that

connect to sinks in southern Europe.
p5 is the proportion survival during flight.
The pathway model is visualized in the flow chart as Figure 3.
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Appendix B – Parameter estimates for the formal model

B.1. Entry

B.1.1. Assessment of entry via trade for the different scenarios

Estimates for the values of model parameters are shown below for each entry substep, pathway and
scenario. Scenario A0 is the baseline (i.e. the situation when the assessment began) and does not account for
the emergency measures that were published in April 2018 (European Commission, 2018a,b). Scenario A1 is a
scenario with additional phytosanitary measures in place. Estimates were based on the information reviewed
and discussed during expert knowledge elicitation and summarized in the evidence dossiers in Appendices E–I.

Substep Pathway Scenario
Percentile

1 25 50 75 99

1 Infestation at origin

Average percentage of
infested product in
export production
fields in the area of
origin

e1

1: Sweetcorn A0 0.01 0.1 0.3 1.0 10.0

A1 0.01 0.1 0.3 1.0 3.0
2: Peppers A0 0.005 0.05 0.15 0.5 5.0

A1 0.005 0.05 0.15 0.5 2.0
3: Asparagus A0 0.001 0.01 0.03 0.1 1.0

A1 0.001 0.01 0.03 0.1 0.4
4: Eggplant A0 0.005 0.05 0.15 0.5 5.0

A1 0.005 0.05 0.15 0.5 2.0
5: Roses A0 0.0001 0.0005 0.001 0.002 0.01

A1 0.0001 0.0005 0.001 0.002 0.01
2 Effectiveness of post-

harvest sorting

Average percentage of
infested material
removed.

m1

1: Sweetcorn A0 80.0 90.0 95.0 97.0 99

A1 95 97.5 99 99.5 99.9
2: Peppers A0 15 30 40 55 80

A1 15 30 40 55 80
3: Asparagus A0 90 93 95 97 99

A1 90 93 95 97 99
4: Eggplant A0 15 30 40 55 80

A1 15 30 40 55 80
5: Roses A0 70 85 90 91.5 95

A1 75 85 90 91.5 95
3 Effectiveness of post-

harvest treatments
(includes storage and
shipping)

Average percentage of
infested material
removed.

m2

1: Sweetcorn A0 30 43 50 57 70

A1 50 63 70 77 90
2: Peppers A0 0 0 0 0 0

A1 0 0 0 0 0
3: Asparagus A0 75 88 95 97 99

A1 75 88 95 97 99
4: Eggplant A0 0 0 0 0 0

A1 0 0 0 0 0
5: Roses A0 75 88 95 98 99

A1 75 88 95 98 99
4 Effectiveness of import

inspections (peppers,
eggplant and roses
already inspected in
A0, sweetcorn and
asparagus are not)

Percentage infested
removed.

m3

1: Sweetcorn A0 0 0 0 0 0

A1 1 6 10 15 25
2: Peppers A0 1 6 10 15 25

A1 1 6 10 15 25
3: Asparagus A0 0 0 0 0 0

A1
4: Eggplant A0 1 6 10 15 25

A1 1 6 10 15 25
5: Roses A0 0 0 0 0 0

A1 0 0 0 0 0
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Substep Pathway Scenario
Percentile

1 25 50 75 99

5 Processing in EU

Average percentage of
infested material
removed

m4

1: Sweetcorn A0 0.1 0.3 1 2 5

A1 0.1 0.3 1 2 5
2: Peppers A0 0 0 0 0 0

A1 0 0 0 0 0
3: Asparagus A0 0 0 0 0 0

A1 0 0 0 0 0
4: Eggplant A0 0 0 0 0 0

A1 0 0 0 0 0
5: Roses A0 0 0 0 0 0

A1 0 0 0 0 0
6 Multiplier u expressing

the contribution of
other pathways,
resulting in a u times
greater entry than
calculated from the
five pathways that
were quantified and
modelled

A0 1.5 1.7 2 2.5 3

A1 1.5 1.7 2 2.5 3

Future trade volumes (2018–2022) were projected using a linear regression of log transformed
trade on year, using EUROSTAT data for the years 2007–2016. The projections were generated taking
into account both uncertainty about the regression line parameters and the residuals around the line,
i.e. in statistical terminology they are predictions for future years with associated prediction intervals
(https://en.wikipedia.org/wiki/Prediction_interval; Upton and Cook, 2008). Calculations in @Risk were
initiated with the average projected future trade over the years 2018–2022.

B.1.2. Assessment of entry via migration from North Africa

Estimates for the values of model parameters are shown below for each migration substep.

Percentile

Substep 1st 25th
Median
(50th)

75th 99th

1 Area of host crop Fixed/constant (FAO stat)

2 Proportion of crop acting as a source for migrating
adults

0.10 0.55 1.00 1.00 1.00

3 S. frugiperda density in source crops 0.1 0.4 1.0 2.5 10.0

4 Proportion of adults engaging in migration 0.1 0.35 0.5 0.65 0.9
5 Proportion of trajectories that connect source

populations to the EU
0.0001 0.0003 0.001 0.003 0.01

6 Proportion of adults surviving migration to reach EU 0.001 0.01 0.1 0.3 0.9

Appendix N provides the information reviewed and discussed during expert knowledge elicitation
that informed the estimates above.
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Appendix C – Spodoptera frugiperda hosts

Source: CABI Spodoptera frugiperda datasheet (2017)

Preferred hosts

Family Binomial Common name
Poaceae Zea mays Maize

Poaceae Zea mays subsp. mays Sweetcorn
Poaceae Zea mays subsp. mexicana Teosinte

Poaceae Oryza sativa Rice
Poaceae Sorghum bicolor Sorghum

Poaceae Panicum miliaceum Millet

Other hosts

Poaceae Agrostis Bentgrasses
Poaceae Agrostis gigantea Black bent

Poaceae Andropogon virginicus Broomsedge
Poaceae Avena sativa Oats

Poaceae Cenchrus incertus Spiny burrgrass
Poaceae Chloris gayana Rhodes grass

Poaceae Echinochloa colona Junglerice
Poaceae Hordeum vulgare Barley

Poaceae Pennisetum clandestinum Kikuyu grass
Poaceae Pennisetum glaucum Pearl millet

Poaceae Phleum pratense Timothy grass
Poaceae Poa annua Annual meadowgrass

Poaceae Poa pratensis Smooth meadowgrass
Poaceae Saccharum officinarum Sugarcane

Poaceae Secale cereale Rye
Poaceae Setaria italica Foxtail millet

Poaceae Setaria viridis Green foxtail
Poaceae Sorghum caffrorum

Poaceae Sorghum halepense Johnson grass
Poaceae Sorghum sudanense Sudan grass

Poaceae Triticum aestivum Wheat
Poaceae Turfgrasses

Poaceae Urochloa
Amaranthaceae Amaranthus Amaranth

Apiaceae Eryngium foetidum
Apocynaceae Plumeria Frangipani

Asteraceae Chrysanthemum morifolium Chrysanthemum (florists’)
Asteraceae Chrysanthemum Daisy

Asteraceae Dahlia pinnata Garden dahlia
Asteraceae Lactuca sativa Lettuce

Asteraceae Xanthium strumarium Common cocklebur
Brassicaceae Brassica oleracea Cabbages, cauliflowers

Brassicaceae Brassica rapa subsp. rapa Turnip
Brassicaceae Cruciferous crops

Brassicaceae Brassica oleracea var. capitata Cabbage
Brassicaceae Brassica oleracea var. viridis Collards

Brassicaceae Brassica rapa subsp. oleifera Turnip rape
Caryophyllaceae Dianthus caryophyllus Carnation

Chenopodiaceae Beta vulgaris var. saccharifera Sugarbeet
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Chenopodiaceae Spinacia oleracea Spinach

Chenopodiaceae Beta
Chenopodiaceae Beta vulgaris Beetroot

Chenopodiaceae Chenopodium quinoa Quinoa
Chenopodiaceae Chenopodium album Fat hen

Convolvulaceae Ipomoea batatas Sweet potato
Convolvulaceae Convolvulus Morning glory

Convolvulaceae Ipomoea purpurea Tall morning glory
Cucurbitaceae Cucumis sativus Cucumber

Cucurbitaceae Cucurbitaceae Cucurbits
Cucurbitaceae Citrullus lanatus Watermelon

Cyperaceae Cyperus rotundus Purple nutsedge
Cyperaceae Carex Sedges

Ericaceae Vaccinium corymbosum Blueberry
Euphorbiaceae Codiaeum variegatum Croton

Euphorbiaceae Hevea brasiliensis Rubber
Fabaceae Arachis hypogaea Groundnut

Fabaceae Glycine max Soya bean
Fabaceae Medicago sativa Lucerne

Fabaceae Phaseolus Beans
Fabaceae Phaseolus vulgaris Common bean

Fabaceae Trifolium Clovers
Fabaceae Cicer arietinum Chickpea

Fabaceae Mucuna pruriens Velvet bean
Fabaceae Pisum sativum Pea

Fabaceae Trifolium pratense Purple clover
Fabaceae Trifolium repens White clover

Geraniaceae Pelargonium Pelargoniums
Iridaceae Gladiolus hybrids Sword lily

Juglandaceae Carya Hickories
Juglandaceae Carya illinoinensis Pecan

Liliaceae Allium
Liliaceae Allium cepa Onion

Liliaceae Asparagus officinalis Asparagus
Malvaceae Gossypium Cotton

Malvaceae Alcea rosea Hollyhock
Malvaceae Gossypium herbaceum Short staple cotton

Malvaceae Hibiscus cannabinus Kenaf
Musaceae Musa Banana

Platanaceae Platanus occidentalis Sycamore
Polygonaceae Fagopyrum esculentum Buckwheat

Portulacaceae Portulaca oleracea Purslane
Rosaceae Fragaria ananassa Strawberry

Rosaceae Fragaria chiloensis Chilean strawberry
Rosaceae Malus domestica Apple

Rosaceae Prunus persica Peach
Rutaceae Citrus aurantium Sour orange

Rutaceae Citrus limon Lemon
Rutaceae Citrus reticulata Mandarin

Rutaceae Citrus sinensis Navel orange
Solanaceae Capsicum annuum Bell pepper
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Solanaceae Nicotiana tabacum Tobacco
Solanaceae Solanum lycopersicum Tomato

Solanaceae Solanum melongena Aubergine
Solanaceae Solanum tuberosum Potato

Solanaceae Capsicum Peppers
Solanaceae Atropa belladonna Deadly nightshade

Solanaceae Solanum Nightshade
Violaceae Viola Violet

Vitaceae Vitis Grape
Vitaceae Vitis vinifera Grapevine

Zingiberaceae Zingiber officinale Ginger
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Appendix D – Evidence of entry provided by interceptions

S. frugiperda has been intercepted in the EU on a range of produce and cut flowers from the
Americas (EUROPHYT, 2017), and since late 2017 has also been intercepted on plant products from
Africa. For the period January 1995 to May 2018, there are 76 records of interceptions of
S. frugiperda. Fifty per cent of all interceptions are on Capsicum and Solanum melongena.

Table D.1: Hosts and country of origin for EU interceptions notified on EUROPHYT to May 2018.
Hosts examined in a specific pathway analysis are marked with an asterisk
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Capsicum sp.* 5 2 19 1

Solanum melongena* 11
Asparagus sp.* 4

Rosa* 1 2 1
Abelmoschus esculentus 1

Coriandrum sativum 1
Eryngium sp. 2

Eustoma grandiflorum 1
Imperata cylindrica 1

Momordica charantia 5
Momordica sp. 1 3

Pisum sp. 2
Solanum aculeatissimum 1

Solanum aethiopicum 1
Solanum macrocarpon 8

Solanum sp. 1
Tillandsia sp. 1

Vigna unguiculata

Xanthosoma sagittifolium 1

Figure D.1: Interceptions through time. Note the emergence of Africa as a source beginning in 2017
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Appendix E – Evidence dossier: Trade pathway – sweetcorn (Zea mays)

E.1. Mean trade volume of sweetcorn into the EU from countries
where Spodoptera frugiperda occurs over the next 5 years

EUROSTAT data was extracted to determine the amount of imports and EU intracommunity trade
for sweetcorn over the most recent 7 years (2010–2016) (CN 0709 9060 in 2010 and 2011, then CN
0709 9960 from 2012 to 2016). Because of the widespread occurrence of S. frugiperda in the
Americas and in Africa, import data were grouped into five regions (Map 1).

Table E.1: EU imports of sweetcorn (CN 0709 9060 and CN 0709 9960) from Third countries and
intra-EU trade 2010–1016 (Source: EUROSTAT)

2010 2011 2012 2013 2014 2015 2016 Mean

Intra-EU 306,651 411,705 361,459 275,847 349,313 325,281 342,524 338,969

Core America 313 79 207 100 171 106 161 162
Sub-Saharan Africa 85,102 120,186 92,581 33,742 46,142 146,119 213,049 105,274

North Africa 74,295 64,548 51,591 74,383 69,374 128,140 126,043 84,053
Middle East 151 0 11 0 15 0 12 27

other 66,501 60,449 59,086 66,296 80,228 73,741 74,356 68,665
Sum Third country 226,362 245,262 203,476 174,521 195,930 348,106 413,621 258,183

Intra EU + Third
country

533,013 656,967 564,935 450,368 545,243 673,387 756,145 597,151

Table E.2: Sweetcorn annual imports from third country regions expressed as a %

2010 2011 2012 2013 2014 2015 2016

Core America 0.1 0.0 0.1 0.1 0.1 0.0 0.0

Sub-Saharan Africa 37.6 49.0 45.5 19.3 23.6 42.0 51.5
North Africa 32.8 26.3 25.4 42.6 35.4 36.8 30.5

Middle East 0.1 0.0 0.0 0.0 0.0 0.0 0.0
other 29.4 24.6 29.0 38.0 40.9 21.2 18.0

Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Other considerations to take into account:

1) No extensive literature search was performed for this parameter.
2) Only EUROSTAT data were collected and assessed.
3) No trade body/industry information was obtained to verify EUROSTAT.
4) The data indicates that imports and intra-EU trade have fluctuated over the past 7 years.
5) The region from which the EU sources most fresh sweetcorn most often is sub-Saharan

Africa.
6) Demand for sweetcorn in Europe has grown in recent years (Freshplaza, June 20181)

(imports may rise in the future).
7) S. frugiperda is affecting yield and destroying maize crops in sub-Saharan Africa (Abrahams

et al., 2017) (imports may decline in future).
8) Well organised NPPOs in Africa supporting significant exports to the EU may be able to cope

with S. frugiperda. Conversely, weaker NPPOs, or those with smaller exports where the
export horticulture sector is less developed could find it problematic (Abrahams et al.,
2017).

9) For scenario A1, phytosanitary measures will add costs and may reduce volume of trade.

Other factors discussed and input from external experts:

• Only a very small fraction (< 0.1%) of sweetcorn is imported from core America.
• The majority of sweetcorn from sub-Saharan Africa comes from Senegal (87%). Kenya,

Mozambique and Ghana are the other main exporters (Europhyt data).
• Operators in Senegal appear well organised and operate quality control systems. Additional

measures are not anticipated to impact exports.
• To maintain high value export markets, producers are expected to apply additional pesticides.
• Additional measures are not anticipated to significantly alter the amount of exports to EU over

the next 5 years.

Following discussion, it was agreed that past import data best informed likely future imports and a
regression was performed to estimate mean annual future imports over the next 5 years, i.e. until the
time horizon of the opinion.

No difference in imports was anticipated in a scenario A1.

E.2. Weight of a transfer unit (sweetcorn cob)

A standard conversion factor for an individual sweetcorn cob (0.215 kg, EFSA unpublished data)
was used to convert mass of imports into an estimate of the number of pieces of sweetcorn. This
standard conversion factor was used to estimate the number of transfer units imported on the
pathway.

Other uncertainties and factors to take into account:

1) No extensive literature search was performed for this parameter.
2) Only a small number of UK supermarkets were sampled.
3) The sampled sweetcorn may not have originated in sub-Saharan Africa.
4) At some times of year, sweetcorn is available with and without husks; cobs with husks

would be heavier.

Table E.3: Estimated range of mean sweetcorn imports into the EU from the regions sub-Saharan
Africa and core America over the next 5 years (time horizon for assessment) based on
regression of previous import (hundreds of kg)

Quantile (Percentile)
Lower
(1%)

Q1
(25%)

Median
(50%)

Q3
(75%)

Upper
(99%)

Scenario A0
(baseline)

106,682 193,663 248,556 322,165 657,877

Scenario A1
(with measures)

106,682 193,663 248,556 322,165 657,877

1 http://www.freshplaza.com/article/190353/Greek-producer-sees-increased-European-demand-for-sweet-corn

Spodoptera frugiperda partial risk assessment

www.efsa.europa.eu/efsajournal 62 EFSA Journal 2018;16(8):5351

http://www.freshplaza.com/article/190353/Greek-producer-sees-increased-European-demand-for-sweet-corn


5) Husks can be partially or completely removed at prepacking, and the cob trimmed reducing
weight by up to 35%, hence reducing transport costs (cited in Showalter, 1964).

6) Some trimming and packing may take place in Africa, some may take place in the EU at
packing houses.

7) Importers and customer preferences for the size of sweetcorn may change over the next
five years leading to heavier, or lighter sweetcorn cobs.

E.3. Proportion of export production fields infested; effectiveness of
post-harvest sorting and post-harvest treatments

Factors to take into account:

1) Zea mays is a favoured host of S. frugiperda and larvae can cause serious damage to
maize foliage, stems and ears.

2) S. frugiperda is spreading and damaging maize in sub-Saharan Africa.
3) Eggs masses are usually laid on the underside of leaves so will not normally be associated

with harvested sweetcorn.
4) Young larvae on maize tend to feed on the foliage and will also generally not be associated

with harvested sweetcorn.
5) If attacked early in the growing season, maize plants may fail to produce cobs and hence

there will be a lack of harvested product to export.
6) Late instar larvae that attack more developed maize can chew through the protective leaf

bracts into the side of the cob where they feed on the developing kernels (Abrahams
et al., 2017) and could potentially be shipped with harvested cobs for export.

7) Sweetcorn is harvested for fresh market consumption when the pollination silks are dried
and the kernels are still immature making the ear firm and turgid (Szymanek et al., 2006).

8) A short video showing production and processing of sweetcorn in Senegal is available at
https://www.youtube.com/watch?v=-xURItme4Uo

9) The quality of fresh market sweetcorn is judged by its fresh, uniform appearance, uniform
and well filled rows, plumpness of kernels, milky kernel contents, and freedom from
damage and defects such as discoloration, harvest injury, pest damage, the presence of
live insects, decaying silks or kernels (CargoHandbook.com, 2012a).

10) Smallholders growing sweetcorn are less likely to be able to manage S. frugiperda than
larger growers.

11) Smallholder farmers’ access to European export markets is often impeded by their having
to meet strict food safety standards, industry quality standards and sometimes
phytosanitary standards (Hellin et al., 2011).

12) Between 2010 and 2016, 99.2% of sweetcorn exported into the EU from sub-Saharan
Africa came from Senegal (87.1%), Mozambique (4.3%), Kenya (3.1%), Ghana (2.0%),
Zambia (1.5%) and South Africa (1.2%). As of March 2018, S. frugiperda was not
confirmed as being present in Senegal although it was suspected to be there.

13) S. frugiperda occurs year round in sub-Saharan Africa with overlapping generations.
14) Exports from sub-Saharan Africa occur year round although most exports occur during the

European winter, spring and early summer months.
15) There are no records of S. frugiperda interceptions on Zea mays in the Europhyt

interceptions database.
16) Takahashi et al. (2003) reported S. frugiperda being intercepted on Z. mays at Narita

Airport in Japan (most likely cobs although only the host name was listed).
17) Noctuid quarantine pests have previously been intercepted on sweetcorn entering the EU

from Africa (see table below; Source Europhyt, extracted 10 April 2018).

Year Source EU MS Pest intercepted Date of interception

1998 Morocco Spain Helicoverpa zea 12/08/1998

2006 Senegal United Kingdom Helicoverpa armigera 3/2/2006
2006 Senegal United Kingdom Helicoverpa armigera 12/5/2006

2006 Morocco Spain Helicoverpa sp. 16/6/2006
2008 Uganda United Kingdom Helicoverpa armigera 19/6/2008

2011 Uganda United Kingdom Helicoverpa armigera 21/6/2011
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18) To maintain quality, harvested sweetcorn is cooled shortly after harvest, for example being
submerged into cold water (1°C) for an hour (Barfoot, 2018).

19) Sweetcorn is not chill sensitive and is stored as cold as possible without freezing. To avoid
quality loss, sweetcorn varieties are seldom stored for more than a few days.

20) Fresh sweetcorn in husks are graded by hand prior to export.
21) Larval damage to corn cobs can reveal infested ears; frass can be seen at the tip of a cob

by the silks and holes at the base of the cob, near the bract where larger larvae enter also
indicate infested ears that can be graded out (removed from export).

22) Fresh sweetcorn for consumption is not regulated by the Plant Health Directive 2000/29 EC.
23) Although not covered by specific EU horticultural marketing standards, sweetcorn marketed

in the EU must still meet general marketing standards including being clean and practically
free from pests and practically free from damage caused by pests (Anon, 2017b).

Other factors discussed and input from external experts:

• Finding larvae of S. frugiperda in the ears of corn is much more common in Africa than in the
Americas. Consequently, direct feeding damage by S. frugiperda in Africa is very destructive.

• To save transport costs cobs are de-husked/shucked. A mature larva would very likely be seen
and the cob rejected at this stage.

• Density of maize in Africa is much lower than in Europe or the Americas (perhaps 5 m�2)
• Within a crop of maize, S. frugiperda will be clumped (not evenly distributed) within a field.
• In Africa, early instar larva penetrate to eat the tassels, post-harvest treatment submerging

cobs in cold water for an hour will be effective at removing such larvae.
• In high value export crops, additional pest management measures (more chemical sprays) will

be applied to ensure quality control, and maintain market access.

For scenario A1 (with phytosanitary measures in place)

In a scenario where phytosanitary measures are in place against S. frugiperda, additional factors
need to be taken into account when estimating the mean annual proportion of transfer units infested
with S. frugiperda on sweetcorn exports.

A variety of phytosanitary measures are available to lower the likelihood that S. frugiperda enters
the EU on hosts traded internationally. For example, hosts, such as sweetcorn, could be sourced from
a pest free area, or pest free place of production, or prior to their export have been officially inspected
and found free from S. frugiperda or subjected to treatment to ensure freedom from the pest.

Spodoptera frugiperda partial risk assessment

www.efsa.europa.eu/efsajournal 64 EFSA Journal 2018;16(8):5351



In order to guarantee pest freedom within a crop, place of production, place of production and
buffer zone, or area, it is necessary to fulfil the requirements outlined in ISPM No. 4 (FAO, 2017) and
ISPM No. 10 (FAO, 2016). This would be very challenging for a pest such as S. frugiperda that is
highly mobile and highly polyphagous. Ultimately, sweet corn would need to be inspected prior to
export and found free of S. frugiperda so that a phytosanitary certificate could be issued. The question
to consider then is how likely is an infested sweetcorn to escape detection taking into account existing
crop protection practices, processing measures and quality control efforts.

Factors to take into account:

1) There is no survey information measuring the performance of export inspections.
2) ISPM 31 provides guidance for minimum sample sizes that provides either 95% or 99%

confidence according to lot size and level of detection.
3) It is unknown how many inspections follow ISPM 31.
4) During an audit carried to evaluate the system of official controls for the export of plants and

plant products to the EU in Ghana by DG Sante, EU officials found that sampling for export
inspections was inconsistent and in some cases inadequate, and that there was not always
enough time available to carry out effective inspections (European Commission DG Sante, 2016).

5) During a similar audit in Kenya in 2013, EU officials found a significant weakness in the
system of official export checks, with insufficient time available for effective inspections
although the risk arising from this was mitigated by the biosecurity and pest prevention
measures applied by producers (European Commission DG Sante, 2013a).

Other factors discussed and input from external experts:

6) Major exporting countries, such as Senegal, have such good practices any infestation is at
such a low level that visual inspection is not going to make a material difference on the
level of infestation.

Estimation: Taking the above information into account, the following estimates were made:

• Mean percentage of infested product in export production fields in the area of origin over the
next 5 years;

• Mean percentage of infested material removed by post-harvest sorting;
• Mean percentage of infested material removed by post-harvest treatments.

Sweetcorn pathway Scenario
Percentile(a)

1 25 50 75 99

1. Infestation at origin: Average
percentage of infested product in
export production fields in the
area of origin

A0 0.1% 0.3% 0.5% 0.7% 1%

A1 0.01% 0.03% 0.05% 0.07% 0.1%
2. Effectiveness of post-harvest
sorting
Average percentage of infested
material removed.

A0 1% 3% 5% 10% 20%

A1 20% 35% 45% 50% 60%
3. Effectiveness of post-harvest
treatments
(includes storage and shipping)

A0 30% 43% 50% 57% 70%

A1 50% 63% 70% 77% 90%

(a): Judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.

In scenario A0 (baseline, without phytosanitary measures) infested sweetcorn arriving at the EU
border are assumed to remain infested.

E.4. Proportion of infested units detected at EU border

As of February 2018, fresh sweetcorn for consumption is not regulated by the Plant Health
Directive 2000/29 EC and does not need to be inspected for plant health purposes on arrival in the EU.
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Infested corn ears are assumed to remain infested. However, in a scenario where sweetcorn becomes
regulated, consignments would be subject to official inspection on arrival in the EU.

Factors to take into account:

1) There is little published evidence reporting the efficiency of effectiveness of plant health
import inspections.

2) Analysing data relating to plants for planting, Liebhold et al. (2012) estimated about 72% of
infested plant shipments passed through US ports undetected.

3) ISPM 31 provides guidance for minimum sample sizes that provides either 95% or 99%
confidence according to lot size and level of detection

4) It is unknown how many inspections follow ISPM 31
5) The analysis by Liebhold et al. (2012) considered plants infested by any pest taxa, including

pathogens. Detecting relatively large S. frugiperda larvae could be easier so the 28%
success rate estimated by Liebhold et al. (2012) could be higher.

6) Work et al. (2005) estimated that inspectors detected 19–28% of pests in non-refrigerated
maritime cargo and 30–50% of pests in cargo crossing the US–Mexico border.

Other factors discussed and input from external experts:

• Rejection of infested sweetcorn cobs when de-husked at origin leads to such low levels of
infested cobs when exported that inspection of such material on arrival is not going to make a
difference to the overall average level of infested sweetcorn that arrive.

Estimation: Taking the above information into account, the following estimates were made:

• Estimated range of mean annual proportion of infested sweetcorn cobs (transfer units)
detected during phytosanitary inspections of sweetcorn from core America or sub-Saharan
Africa at the EU border over the next 5 years (time horizon for assessment).

Sweetcorn pathwayEffectiveness of import inspections Scenario
Percentile(a)

1 25 50 75 99

In Scenario A0, this substep has no effect as sweetcorn is not
inspected in this scenario.

A0 0% 0% 0% 0% 0%

Percentage infested material removed at import A1 1% 6% 10% 15% 25%

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.
EU supermarkets require suppliers to be accredited and to maintain rigorous quality standards.

E.5. Proportion of infested units rejected during post entry handling or
processing

Sweetcorn that arrives in EU with husks are unloaded and de-husked, cut to size and packaged at
packing plants. Any larvae arriving with sweetcorn are not likely to survive the processing procedures.
Processing waste is shredded and can be used to feed anaerobic digesters to provide energy
(Lancaster University, 2018). A proportion of imported sweetcorn may be sold with the husk on. This
could provide an opportunity for any larvae infesting such cobs to remain protected until the consumer
prepared the sweetcorn for consumption.

• Estimated range of mean annual proportion of infested sweetcorn rejected during postharvest
handling or processing over the next 5 years (time horizon for assessment)

Sweetcorn pathway Scenario
Percentile(a)

1 25 50 75 99

Average proportion of infested material remaining (i.e. this
percentages represent the survival of larvae on/in infested
sweetcorn).

A0 0.1% 0.3% 1% 2% 5%

A1 0.1% 0.3% 1% 2% 5%

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.
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Appendix F – Evidence dossier: Trade pathway – peppers (Capsicum spp.)

F.1. Mean trade volume of peppers into the EU from countries where
Spodoptera frugiperda occurs over the next 5 years

EUROSTAT data was extracted to determine the amount of imports and EU intracommunity trade
for Capsicum and other peppers over the most recent 7 years (2010–2016) (CN 07096010). Because
of the widespread occurrence of S. frugiperda in the Americas and in Africa, import data were grouped
into five regions (Map 1).

Table F.1: Example import data for EU imports of Capsicum (CN 07096010) from Third countries
and intra-EU trade 2010–1016 (Source: EUROSTAT) (hundreds kg)

Year
Source

2010 2011 2012 2013 2014 2015 2016 Mean

Intra-EU 9,971,766 10,785,776 11,055,552 11,357,621 11,997,279 12,278,468 12,348,644 11,399,301

Core
America

13,275 15,752 16,055 17,806 19,152 15,322 10,257 15,374

Sub-
Saharan
Africa

66,645 60,742 49,546 50,202 58,506 40,152 43,210 52,715

North
Africa

625,456 619,887 637,285 776,644 893,046 916,190 1,025,708 784,888

Middle
East

1,092,659 1,132,258 1,142,945 859,524 590,800 478,835 247,183 792,029

Other 749,825 784,350 715,956 676,799 790,612 884,680 1,002,285 800,644
Sum 2,547,860 2,612,989 2,561,787 2,380,975 2,352,116 2,335,179 2,328,643 2,445,650

Intra-EU +
TC

12,519,626 13,398,765 13,617,339 13,738,596 14,349,395 14,613,647 14,677,287 13,844,951
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Other factors to take into account:

1) No extensive literature search was performed for this parameter.
2) Only EUROSTAT data were collected and assessed.
3) No trade body/industry information was obtained to verify EUROSTAT.
4) The data indicates that imports and intra-EU trade have fluctuated over the past 7 years.
5) The region from which the EU sources most Capsicum fruit most often are the Middle East,

North Africa and Other regions. Since 2012, there has been a trend showing a decrease of
imports from the Middle East and an increase from North Africa and Other. All these areas
are at the moment, not affected by S. frugiperda.

6) Total third country imports of Capsicum into the EU between 2012 and 2016 has been
stable just below approximately 250 million kg per year.

7) Although not a preferred host, S. frugiperda may affect yield or quality of Capsicum in sub-
Saharan Africa and imports may decline in future.

8) Well-organised NPPOs in Africa supporting significant exports to the EU may be able to cope
with S. frugiperda. Conversely, weaker NPPOs, or those with smaller exports where the
export horticulture sector is less developed could find it problematic (Abrahams et al., 2017).

9) For scenario A1, phytosanitary measures will add costs and may reduce volume of trade.
10) Repeated EU interceptions of Lepidopteran pests (not S. frugiperda) on Capsicum from

Uganda led to Uganda imposing a self-ban on exporting Capsicum to the EU in 2017.
(Around 30% of EU imports of Capsicum from sub-Saharan Africa 2010–2016 was sourced
from Uganda).

Following discussion, it was agreed that past import data best informed likely future imports and a
regression was performed to estimate mean annual future imports over the next 5 years, i.e. until the
time horizon of the opinion.

No difference in imports was anticipated in a scenario A1.

F.2. Weight of a transfer unit (pepper fruit)

A standard conversion factor for an individual pepper fruit (0.160 kg, EFSA unpublished data) was
used to convert mass of imports into an estimate of the number of peppers imported on the pathway.
The conversion factor is used to represent sweet and hot (chilli) peppers.

Estimation: Taking the import data and other factors noted above into account, the Panel estimated
the range in the annual mean volume (mass) of Capsicum imported into the EU from Core America
and sub-Saharan Africa over the next 5 years. Estimates are shown in Tables x and x + 1.

Table F.2: Capsicum annual imports from third country regions expressed as a %

Source 2010 2011 2012 2013 2014 2015 2016

Core America 0.5 0.6 0.6 0.7 0.8 0.7 0.4

Sub-Saharan Africa 2.6 2.3 1.9 2.1 2.5 1.7 1.9
North Africa 24.5 23.7 24.9 32.6 38.0 39.2 44.0

Middle East 42.9 43.3 44.6 36.1 25.1 20.5 10.6
other 29.4 30.0 27.9 28.4 33.6 37.9 43.0

Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table F.3: Estimated range of mean pepper imports into the EU from the region ‘core Americas’
and sub-Saharan Africa over the next 5 years (time horizon for assessment) based on
regression of previous import (hundreds of kg)

Quantile (Percentile)
Lower
(1%)

Q1
(25%)

Median
(50%)

Q3
(75%)

Upper
(99%)

Scenario A0
(baseline)

39,813 53,821 63,960 79,434 195,489

Scenario A1
(with measures)

39,813 53,821 63,960 79,434 195,489

Spodoptera frugiperda partial risk assessment

www.efsa.europa.eu/efsajournal 68 EFSA Journal 2018;16(8):5351



F.3. Proportion of export production fields infested; effectiveness of
post-harvest sorting and post-harvest treatments

Factors to take into account:

1) Capsicum annum is indicated as host of S. frugiperda and larvae can cause serious
damages to the fruit (Barlow and Kuhar, 2005).

2) Larval densities is usually reduced to one or two per plants, due to cannibalistic behaviour
(Barlow and Kuhar, 2005).

3) S. frugiperda is spreading and damaging several crops in sub-Saharan Africa.
4) In sub-Saharan Africa Capsicum is grown in open fields although recent pressure from

Thaumatotibia leucotreta (false codling moth) is putting pressure on growers to grow
within protection.

5) In core America. Capsicum is grown outdoors and under protection.
6) Capsicum (C. annuum) is subject to EC marketing standards (EC Regulation 543/2011;

Annex 1, Part B 8: Anon, 2017b) which requires sweet peppers to be clean and practically
free from pests; free from damage caused by pests affecting the flesh; free from damage
caused by low temperature or frost. Light traps, capturing males and females, and
pheromone traps, capturing only males, can be used to detect adults in the field and in
production-, storage- and handling facilities (EPPO, 2015).

7) Harvested peppers will be graded by hand prior to export, larval damage to fruit might can be
detected and can be graded out (removed from export) (unknown detection effectiveness).

8) To maintain quality, harvested sweet pepper are stored and transported at temperature
ranging from 7 to 10°C.

9) S. frugiperda has been intercepted in the EU many times on Capsicum from the region
‘Core America’ (Table x). Some other intercepted pests include other Lepidoptera and a
weevil species (Anthonomus eugenii) that burrows into Capsicum fruit.

10) Lepidopteran pests that burrow into Capsicum fruit have been intercepted from sub-
Saharan Africa (e.g. Table Y).

11) Smallholders growing Capsicum are less likely to be able to manage S. frugiperda than
larger growers.

12) After harvest, fresh market peppers should be rapidly cooled to no lower than 7°C and
kept at 90–95% RH to reduce water loss and subsequent shrivel which would lower
quality. Peppers are subject to chilling injury when stored below 7°C. Chilling sensitivity
varies by cultivar and some are sensitive at 7°C, so a good storage temperature is 7–13°C.
Ripe (coloured) peppers are less chill sensitive than green peppers. Above 13°C, peppers
are subject to accelerated ripening and bacterial soft rot (CargoHandbook.com, 2017b).

13) Smallholder farmers’ access to European export markets is often impeded by their having
to meet strict food safety standards, industry quality standards and sometimes
phytosanitary standards (Hellin et al., 2011).

Table F.4: EU Interceptions of Lepidoptera and Coleoptera pests on Capsicum from Dominican
Republic, Mexico, Peru and Suriname (countries in core America that export the most
Capsicum from that region to the EU) 2011–2017 Source: Europhyt

Type Pest Year 2011 2013 2014 2015 2016 2017 Sum

Coleoptera Anthonomus eugenii 29 21 19 4 16 89

Lepidoptera 3 6 12 19 13 17 70
Lepidoptera by Genus

Spodoptera frugiperda 6 10 10 8 14 48
Spodoptera eridania 6 6

Helicoverpa zea 3 2 5
Heliothis sp. 3 3

Spodoptera latifascia 3 3
Other Noctuidae 3 3

Helicoverpa armigera 2 2
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Other factors discussed and input from external experts:

• S. frugiperda occurrence is likely to be patchy within a field.
• NL kindly provided the inspection data of fruit and vegetables in 2015. A summary of the

numbers of lots of Capsicum inspected from core American countries is shown.

• Note that the majority of finds were from Suriname that exports small lots (mean size of a lot
was 75 kg) compared with lot sizes of approximately 1000 kg or more from Peru, Dominican
Republic, Mexico and Cuba. Chi-square test 2.57, df = 1, p = 0.11 NSD. However, small
sample size and experts think that with more samples, a difference would be detected.

• Larvae enter fruit under the bract, making detection difficult. The larvae mature within the fruit
and symptoms are nor easily detected.

• In South America, production of peppers is relatively diffuse with many small and medium
growers. Export companies buy from them and ship to export markets. However, in Africa,
production is more sophisticated and centrally controlled.

For scenario A1 (with phytosanitary measures in place)

In a scenario where phytosanitary measures are in place against S. frugiperda, additional factors
need to be taken into account when estimating the mean annual proportion of transfer units infested
with S. frugiperda on pepper exports.

A range of phytosanitary measures are available to lower the likelihood that S. frugiperda enters
the EU on hosts traded internationally. For example, hosts, such as pepper, could be sourced from a
pest free area, or pest free place of production, or prior to their export have been officially inspected
and found free from S. frugiperda or subjected to treatment to ensure freedom from the pest.

In order to guarantee pest freedom within a crop, place of production, place of production and
buffer zone, or area, it is necessary to fulfil the requirements outlined in ISPM No. 4 (FAO, 2017) and
ISPM No. 10 (FAO, 2016). This would be very challenging for a pest such as S. frugiperda that is
highly mobile and highly polyphagous. Ultimately pepper would need to be inspected prior to export
and found free of S. frugiperda so that a phytosanitary certificate could be issued. The question to
consider then is how likely is an infested pepper to escape detection taking into account existing crop
protection practices, processing measures and quality control efforts.

Factors to take into account:

1) There is no survey information measuring the performance of export inspections.
2) ISPM 31 provides guidance for minimum sample sizes that provides either 95% or 99%

confidence according to lot size and level of detection.

Table F.5: EU Interceptions of Lepidoptera pests on Capsicum from Gambia, Ghana, Kenya,
Senegal and Uganda (countries in sub-Saharan Africa that export the most Capsicum
from that region to the EU) 2010–2017 Source: Europhyt

Pest Year 2010 2013 2014 2015 2016 2017 Sum

Thaumatotibia leucotreta 289 595 271 232 1387

Tortricidae 6 14 5 5 3 33
Helicoverpa armigera 14 8 22

Cryptophlebia leucotreta 17 17
Other Lepidoptera 4 8 12

Leucinodes orbonalis 1 1

Table F.6: NL inspection data of Capsicum lots from core America 2015

Source in core America No. lots kg Mean lot size (kg) S. frugiperda finds % of import

Peru 63 145,000 2302 0 70.4

Dominican Republic 19 22,000 1158 0 10.7
Mexico 7 7,000 1000 1 3.4

Cuba 11 10,000 909 0 4.9
Brazil 4 500 125 0 0.2

Suriname 285 21,500 75 15 10.4
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3) It is unknown how many inspections follow ISPM 31.
4) During an audit carried to evaluate the system of official controls for the export of plants and

plant products to the EU in Ghana by DG Sante, EU officials found that sampling for export
inspections was inconsistent and in some cases inadequate, and that there was not always
enough time available to carry out effective inspections (European Commission DG Sante,
2016).

5) During a similar audit in Kenya in 2013, EU officials found a significant weakness in the
system of official export checks, with insufficient time available for effective inspections
although the risk arising from this was mitigated by the biosecurity and pest prevention
measures applied by producers (European Commission DG Sante, 2013).

Other factors discussed and input from external experts:

• With additional measures, growers likely to apply more rigorous pest management practices as
detection post-harvest, during packing and sorting is expensive (more time and labour
required).

• With measures, exports would apply measures in field, such as growing under netting, better
monitoring and targeting of chemical measures, improved crop management, leading to a ten-
fold reduction in infestation, both in core America and sub-Saharan Africa.

• Examples of the effectiveness of phytosanitary measures are rare within the literature.
However, when measures were applied to orchids from Asia, the level of pests detected in the
EU dropped by about half in the 3 years after additional phytosanitary measures were in place
(MacLeod Thrips palmi example); Also, when Solidago and Gypsophila cut flowers became
regulated due to presence of Leaf miner pest interceptions fell from around 7% to 3.5% in the
6 months after regulation (MacLeod and Baker, 1998).

• There is more scope for improving conditions in pepper production (to reduce infestation)

Estimation: Taking the above information into account, the following estimates were made:

• Mean percentage of infested product in export production fields in the area of origin over the
next 5 years.

• Mean percentage of infested material removed by post-harvest sorting.
• Mean percentage of infested material removed by post-harvest treatments.

Peppers pathway Scenario
Percentile(a)

1 25 50 75 99

1. Infestation at origin: Average percentage of infested
product in export production fields in the area of origin

A0 0.005 0.05 0.15 0.5 5.0

A1 0.005 0.005 0.15 0.5 2.0
2. Effectiveness of post-harvest sorting
Average percentage of infested material removed.

A0 15 30 40 55 80

A1 15 30 40 55 80
3. Effectiveness of post-harvest treatments
(includes storage and shipping)

A0 0 0 0 0 0

A1 0 0 0 0 0

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.

F.4. Proportion of infested units detected at EU border

Fruits of Capsicum originating in the African continent are regulated by Commission implementing
directive 2017/1279 which amends Annexes I to V of 2000/29/EC. Such fruits should come from a
country, area or place of production free from Thaumatotibia leucotreta, or have been subject to a
cold treatment to ensure freedom from T. leucotreta. Peppers from Africa are therefore subject to
official inspection on arrival in the EU.

Factors to take into account:

1) There is little published evidence reporting the efficiency of effectiveness of plant health
import inspections.
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2) Analysing data relating to plants for planting, Liebhold et al. (2012) estimated about 72% of
infested plant shipments passed through US ports undetected.

3) ISPM 31 provides guidance for minimum sample sizes that provides either 95% or 99%
confidence according to lot size and level of detection.

4) It is unknown how many inspections follow ISPM 31.
5) The analysis by Liebhold et al. (2012) considered plants infested by any pest taxa, including

pathogens. Detecting relatively large S. frugiperda larvae could be easier so the 28%
success rate estimated by Liebhold et al. (2012) could be higher.

6) Work et al. (2005) estimated that inspectors detected 19–28% of pests in non-refrigerated
maritime cargo and 30–50% of pests in cargo crossing the US–Mexico border.

7) Although sometimes inspected, Capsicum from South America are not regulated officially.

Other factors discussed and input from external experts:

Estimation: Taking the above information into account, the following estimates were made:

• Estimated range of mean annual proportion of infested peppers detected during phytosanitary
inspections from core America or sub-Saharan Africa at the EU border over the next 5 years
(time horizon for assessment).

Pepper pathway Scenario
Percentile(a)

1 25 50 75 99

Effectiveness of import inspections
Percentage infested material removed at import

A0 1 6 10 15 25

A1 1 6 10 15 25

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.

F.5. Proportion of infested units rejected during post entry handling or
processing

Peppers from Africa arrive loose in cardboard boxes for wholesale markets, others came pre-
packaged ready for supermarkets. Nevertheless, there would be no further processing, simply some
storage and transport for wholesale or retail.

• Estimated range of mean annual proportion of infested peppers rejected during postharvest
handling or processing over the next 5 years (time horizon for assessment).

Pepper pathway Scenario
Percentile(a)

1 25 50 75 99

Effectiveness of post-entry handling/processing
Percentage infested material removed after import

A0 0 0 0 0 0

A1 0 0 0 0 0

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.
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Appendix G – Evidence dossier: Trade pathway – asparagus
(Asparagus officinalis)

G.1. Mean trade volume of asparagus into the EU from countries
where Spodoptera frugiperda occurs over the next 5 years

EUROSTAT data was extracted to determine the amount of imports and EU intracommunity trade
for asparagus (CN 0709 20) over the seven year period 2010–2016. Because of the widespread
occurrence of S. frugiperda in the Americas and in Africa, import data were grouped into five regions
(Figure 1).
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Table G.1: EU imports of asparagus (CN 0709 20) from Third countries and intra EU trade 2010–
1016 (Source: EUROSTAT)

2010 2011 2012 2013 2014 2015 2016 mean

Intra-EU 576,118 566,125 587,483 595,244 626,372 611,904 632,492 599,391

Core America 338,239 347,328 358,409 343,388 363,150 336,903 346,955 347,767
Sub-Saharan Africa 1,213 1,922 2,233 3,186 4,725 358 417 2,008

North Africa 19,909 16,920 12,637 7,304 3,231 2,870 1,243 9,159
Middle East 0 4 12 7 0 0 0 3

other 11,610 9,075 6,169 3,958 5,720 8,496 16,428 8,779
Sum Third country 370,971 375,249 379,460 357,843 376,826 348,627 365,043 367,717

Intra-EU + Third
Country

947,089 941,374 966,943 953,087 1,003,198 960,531 997,535 967,108

Table G.2: Asparagus annual imports from third country regions expressed as a %

2010 2011 2012 2013 2014 2015 2016

Core America 91.2 92.6 94.5 96.0 96.4 96.6 95.0

Sub-Saharan Africa 0.3 0.5 0.6 0.9 1.2 0.1 0.1
North Africa 5.4 4.5 3.3 2.0 0.9 0.8 0.3

Middle East 0.0 0.0 0.0 0.0 0.0 0.0 0.0
other 3.1 2.4 1.6 1.1 1.5 2.4 4.5

Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0

The great majority of fresh asparagus imported by the EU from third countries comes from
countries in Central and South America, the area of ‘core distribution’ of S. frugiperda.
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Other considerations to take into account:

1) No extensive literature search was performed for this parameter.
2) Only EUROSTAT data were collected and assessed.
3) No trade body/industry information was obtained to verify EUROSTAT.
4) The data indicates that imports and intra-EU trade have fluctuated over the past 7 years.
5) Fresh asparagus is growing in popularity, a global market analysis estimated demand grew

by 2% in 2017. Demand is expected to grow year on year and could be 3.1% higher by
2027. Most demand is from the USA and Europe (Future market insights, 2017).

6) There are severe limits to the area in Europe suitable for asparagus production (Freshplaza,
2018) so there is a relatively large amount of import from third countries.

7) USDA FAS GAIN (2017) report increasing demand for asparagus in US and Europe with Peru
(and Mexico) being major exporters to these markets.

8) For scenario A1, phytosanitary measures will add costs and may reduce volume of trade.

Following discussion, it was agreed that past import data best informed likely future imports and a
regression was performed to estimate mean annual future imports over the next 5 years, i.e. until the
time horizon of the opinion.

No difference in imports was anticipated in a scenario A1.

G.2. Weight of a transfer unit (pack of asparagus spears)

A standard conversion factor for asparagus (0.033 kg, EFSA unpublished data) was used to convert
mass of imports into an estimate of the number of pieces (spears) of asparagus imported. It was
assumed that on average 10 spears would constitute the size of a pack of asparagus or transfer unit,
hence a standard conversion factor of 0.33 kg was used to estimate the number of transfer units
imported on the pathway. This seems reasonable given that European supermarkets sell asparagus
spears in bunches and packs of various sizes from 150 to 500 g (MacLeod, unpublished).

G.3. Proportion of export production fields infested; effectiveness of
post-harvest sorting and post-harvest treatments

Factors to take into account:

1) Although a host, CABI Crop Protection Compendium (2017a, 2017b) does not regard
Asparagus as a main host for S. frugiperda.

2) Asparagus is a perennial crop and plants are productive for 15–20 years (USDA FAS GAIN,
2017).

3) Asparagus is imported from countries in core America into the EU every month of the year.
4) Within core America Peru is the major asparagus producer.
5) In Peru, asparagus is grown outdoors in the coastal region (mild temperatures, low

rainfall) and is irrigated, providing year round high quality asparagus (USDA FAS GAIN,
2017). (Hence ongoing exposure to S. frugiperda.)

6) Asparagus spears are harvested only a few days after emergence and so each spear is not
exposed much to a gravid S. frugiperda seeking a site for oviposition. This likely limits the
rate of filed infestation.

7) Asparagus has a high metabolic rate after harvest and is among the most perishable crops.
Harvested spears are cooled immediately to between 0° and 2°C during a process of
washing, grading and packing. After packing Asparagus is cooled to near 0°C. Freezing injury

Table G.3: Estimated range of mean asparagus imports into the EU from the region ‘core Americas’
and sub-Saharan Africa over the next 5 years (time horizon for assessment) based on
regression of previous import (hundreds of kg)

Quantile (Percentile)
Lower
(1%)

Q1
(25%)

Median
(50%)

Q3
(75%)

Upper
(99%)

Scenario A0
(baseline)

381,898 425,417 442,233 464,025 519,826

Scenario A1
(with measures)

381,898 425,417 442,233 464,025 519,826
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occurs at temperatures below �0.5°C. Maintaining a low storage temperature is critical to
delay senescence, tissue toughening and flavour loss (CargoHandbook.com, 2017a; CABI
2018b).

8) Fresh asparagus for consumption is not regulated by the Plant Health Directive 2000/29
EC. However, Commission Implementing Directive (EU) 2017/1279 updated 2000/29 EC
and added Asparagus officinalis plants for planting, other than seed, to Annex V of 2000/
29 EC. Nevertheless, fresh asparagus for consumption remains unregulated for plant
health purposes.

9) Although no longer covered by specific EU horticultural marketing standards (Anon,
2017b), Asparagus marketed in the EU must still meet general marketing standards or a
specific UNECE standard which includes being clean and practically free from pests and
practically free from damage caused by pests (UNECE, 2010; Schuster and Maertens,
2013).

10) S. frugiperda egg masses and first instar larvae have been intercepted on Asparagus
arriving in the EU (NL) from core America (Peru) (4 interceptions) (1 in 2012; 2 in 2013, 1
in 2017).

11) The amount of Asparagus imported from Peru into NL in the months when an interception
was found does not reveal any relationship between amount of Asparagus imported in a
month and the likelihood of S. frugiperda being intercepted.

12) NL kindly provided inspection data for fruit and vegetables from around the world for 1 year
(2015) which indicated that between 1 January and 31 December, there were 3,396 lots of
asparagus from Peru that were inspected, either for horticultural marketing or plant health
purposes. (It is possible that multiple lots from a single consignment were inspected). Lots
were inspected every month of the year. The number of lots ranged from 115 in May to 325 in
July. The vast majority of lots weighed less than 10,000 kg. Of those under 10,000 kg, the
median lot weighed approximately 2,170 kg (95% confidence approximately 500 kg to
5,000 kg). No S. frugiperda were found on inspected lots during 2015.

13) High level production and processing standards required by EU supermarkets dis-favour
sourcing asparagus and other horticultural products from (small-scale) producers (Schuster
and Maertens, 2013).

14) Lichtenberg and Olson (2018) model plant pest entry into the USA on fruit and vegetable
imports. Based on trade volume, country of origin, season, port of entry and tariff status,
they estimate that importing 10 shipments of asparagus per year from Peru into USA
would give between 0.24 and 0.26 probability that at least one ‘actionable pest’ would be
enter. Of course, the ‘actionable pest’ may not be S. frugiperda.

15) Lichtenberg and Olson (2018) also provide an estimate for Asparagus from Ecuador (0.15–
0.17)

16) In a scenario where phytosanitary measures are in place against S. frugiperda, additional
factors need to be taken into account when estimating values for model inputs.

17) A range of phytosanitary measures are available to lower the likelihood that S. frugiperda
enters the EU on hosts traded internationally. For example, hosts, such as Asparagus,
could be sourced from a pest free area, or pest free place of production, or prior to their
export have been officially inspected and found free from S. frugiperda or subjected to
treatment to ensure freedom from the pest.

18) In order to guarantee pest freedom within a crop, place of production, place of production
and buffer zone, or area, it is necessary to fulfil the requirements outlined in ISPM No. 4
(FAO, 2017) and ISPM No. 10 (FAO, 2016). This would be very challenging for a pest such
as S. frugiperda that is highly mobile and highly polyphagous. Ultimately Asparagus would
need to be inspected prior to export and found free of S. frugiperda so that a
phytosanitary certificate could be issued. The question to consider then is how likely is an
infested bunch of Asparagus to escape detection taking into account existing crop
protection practices, processing measures and quality control efforts.

19) There is no survey information measuring the performance of export inspections.
20) ISPM 31 provides guidance for minimum sample sizes that provides either 95% or 99%

confidence according to lot size and level of detection.
21) It is unknown how many inspections follow ISPM 31.
22) During an audit carried to evaluate the system of official controls for the export of plants

and plant products to the European Union from the Dominican Republic, EU officials found
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that there was a lack of detailed guidelines and written instructions for export inspectors;
this could undermine the effectiveness of pre-export controls (European Commission DG
Sante, 2015). Such an issue may also occur in other countries within the region ‘core
America’.

23) FVO audits in Africa found that inspectors had insufficient time for export checks
(European Commission DG Sante, 2013). This may also be the case in countries within
‘core America’.

Estimation: Taking the above information into account, the following estimates were made:

• Mean percentage of infested product in export production fields in the area of origin over the
next 5 years;

• Mean percentage of infested material removed by post-harvest sorting;
• Mean percentage of infested material removed by post-harvest treatments.

Asparagus pathway Scenario
Percentile(a)

1 25 50 75 99

1. Infestation at origin: Average percentage of infested
product in export production fields in the area of origin

A0 0.001 0.01 0.03 0.1 1.0

A1 0.001 0.01 0.03 0.1 0.4
2. Effectiveness of post-harvest sorting
Average percentage of infested material removed.

A0 90 93 95 97 99

A1 90 93 95 97 99
3. Effectiveness of post-harvest treatments
(includes storage and shipping)

A0 75 88 95 97 99

A1 75 88 95 97 99

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.

G.4. Proportion of infested units (Asparagus bunches) detected at EU
border

Fresh Asparagus for consumption is not currently regulated under EU plant health legislation.
However, in a scenario where it had to arrive in the EU free from S. frugiperda, imports would be
sampled and subject to official inspection on arrival in the EU.

Factors to take into account:

8) There is little published evidence reporting the efficiency of effectiveness of plant health
import inspections.

9) Analysing data relating to plants for planting, Liebhold et al. (2012) estimated about 72%
of infested plant shipments passed through US ports undetected.

10) ISPM 31 provides guidance for minimum sample sizes that provides either 95% or 99%
confidence according to lot size and level of detection.

11) It is unknown how many inspections follow ISPM 31.
12) The analysis by Liebhold et al. (2012) considered plants infested by any pest taxa,

including pathogens. Detecting relatively large S. frugiperda larvae could be easier so the
28% success rate estimated by Liebhold et al. (2012) could be higher.

13) EU interceptions on Asparagus have been egg masses and early instar larvae.
14) Work et al. (2005) estimated that inspectors detected 19–28% of pests in non-refrigerated

maritime cargo and 30–50% of pests in cargo crossing the US–Mexico border.

Other factors discussed and input from external experts:

15) Small consignments from countries where exporters are not Global GAP accredited are
assumed to have higher infestation rates than large consignments from accredited
exporters where producers are catering to large supermarket chains in the EU that exercise
rigorous quality standards. We may consider an efficacy of import inspection in reducing
the level of infestation in the incoming trade in those cases where the total population of
incoming infested product is concentrated in few consignments with high rates of
infestation that may be identified upon import.
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16) Infestation rate is so low that prohibitively large sample sizes are required to confidently
detect infested consignments.

Estimation: Taking the above information into account, the following estimates were made:

• Estimated range of mean annual proportion of infested asparagus bunches (transfer units)
detected during phytosanitary inspections of asparagus from core America or sub-Saharan
Africa at the EU border over the next 5 years (time horizon for assessment)

Asparagus pathway Scenario
Percentile(a)

1 25 50 75 99

Effectiveness of import inspections
Percentage infested material removed at import

A0 0 0 0 0 0

A1 0 0 0 0 0

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.

G.5. Proportion of infested units rejected during post entry handling
or processing

Asparagus arrives in EU prepackaged as a tray with cling-film. Hence there would be no further
processing, simply some storage and transport for retail.

• Estimated range of mean annual proportion of infested asparagus rejected during postharvest
handling or processing over the next 5 years (time horizon for assessment)

Asparagus pathway Scenario
Percentile(a)

1 25 50 75 99

Effectiveness of post-entry handling/processing
Percentage infested material removed after import

A0 0 0 0 0 0

A1 0 0 0 0 0

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.
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Appendix H – Evidence dossier: Trade pathway – eggplant (Solanum
melongena)

H.1. Mean trade volume of eggplant imported into the EU from
countries where Spodoptera frugiperda occurs over the next
5 years

EUROSTAT data was extracted to determine the amount of imports and EU intracommunity trade
for eggplant (CN 0709 6030) over the 7 year period 2010–2016. Because of the widespread
occurrence of S. frugiperda in the Americas and in Africa, import data were grouped into five regions
(Map 1).

Table H.1: EU imports of eggplant (CN 0709 6030) from Third countries and intra-EU trade 2010–
1016 (Source EUROSTAT)

Source 2010 2011 2012 2013 2014 2015 2016 Mean

Intra-EU 1,693,603 1,706,386 1,844,193 1,884,293 2,016,872 2,113,577 2,152,724 1,693,603

Core
America

11,973 14,638 14,194 17,517 17,410 14,216 11,629 14,511

Sub-
Saharan
Africa

18,561 15,805 18,355 16,373 19,150 27,071 27,517 20,405

North Africa 6,540 8,402 3,495 1,519 2,877 2,429 5,325 4,370
Middle East 2,146 1,753 1,073 1,506 1,156 1,414 2,988 1,719

Other 50,182 50,232 53,736 60,199 67,883 61,325 72,752 59,473
Sum Third
Countries

89,402 90,830 90,853 97,114 108,476 106,455 120,211 100,477

Intra EU +
TC

1,872,407 1,888,046 2,025,899 2,078,521 2,233,824 2,326,487 2,393,146 1,894,559
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Other considerations to take into account:

� No extensive literature search was performed for this parameter.
� Only EUROSTAT data were collected and assessed.
� No trade body/industry information was obtained to verify EUROSTAT.
� The data indicates that imports and intra-EU trade have fluctuated over the past 7 years.
� The region from which the EU sources most eggplant fruit most often are Other regions, Sub-

Saharan Africa and Core America.
� Import of eggplant in Europe is stable.
� For the global import of eggplant, the S. frugiperda affected areas represents approximately

1/3 of the total import.

Following discussion, it was agreed that past import data best informs likely future imports and a
regression was performed to estimate mean annual future imports over the next 5 years, i.e. until the
time horizon of the opinion.

No difference in imports was anticipated in a scenario A1.

H.2. Weight of a transfer unit (single individual eggplant fruit)

A standard conversion factor for an individual eggplant fruit (0.271 kg, EFSA unpublished data) was
used to convert mass of imports into an estimate of the number of pieces of eggplant fruit. This
standard conversion factor was used to estimate the number of transfer units imported on the
pathway.

H.3. Proportion of export production fields infested; effectiveness of
post-harvest sorting and post-harvest treatments

Factors to take into account:

1) S. frugiperda is native to the tropical regions of the western hemisphere from the United
States to Brazil and Argentina (Sarmento et al., 2002; Ferreira et al., 2010).

2) Although Poaceae are preferred, S. melongena is a host of S. frugiperda and larvae can
cause damage to the fruit consisting of 3–6 mm wide holes (Brust, 2013).

3) Larvae of S. frugiperda are cannibalistic. Barlow and Kuhar (2005) suggests larval density is
reduced to one or two per plant; Chapman et al. (1999) suggests one to three fully grown
larvae may remain on host plants. However, the authors were not referencing larvae on
eggplants specifically.

Table H.2: Eggplant annual imports from third country regions expressed as a %

2010 2011 2012 2013 2014 2015 2016

Core America 13.4 16.1 15.6 18.0 16.0 13.4 9.7

Sub-Saharan Africa 20.8 17.4 20.2 16.9 17.7 25.4 22.9
North Africa 7.3 9.3 3.8 1.6 2.7 2.3 4.4

Middle East 2.4 1.9 1.2 1.6 1.1 1.3 2.5
other 56.1 55.3 59.1 62.0 62.6 57.6 60.5

Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table H.3: Estimated range of mean eggplant imports into the EU from the region ‘core Americas’
and sub-Saharan Africa over the next 5 years (time horizon for assessment) based on
regression of previous import (hundreds of kg)

Quantile (Percentile)
Lower
(1%)

Q1
(25%)

Median
(50%)

Q3
(75%)

Upper
(99%)

Scenario A0
(baseline)

41,698 49,686 53,405 57,485 68,936

Scenario A1
(with measures)

41,698 49,686 53,405 57,485 68,936
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4) The Dominican Republic is the major EU source of eggplant from core America. Between
2010 and 2016 from almost 70–92% of eggplants from core America were sourced from
the Dominican Republic (EUROSTAT data). S. frugiperda occurs in the Dominican Republic
(Nagoshi et al., 2017a,b).

5) In the Dominican Republic, S. melongena is grown outdoors and in glasshouses
(Despradel, 2013).

6) Rapid (pre-)cooling of eggplant fruit to 10°C immediately after harvest is necessary to retard
discolouration, weight loss, drying of calyx, and decay (CargoHandbook.com, 2012b).

7) S. frugiperda has been intercepted from the Dominican Republic in the EU before, but only
on Capsicum (twice in 2013; three times in 2014, Europhyt data).

8) S. frugiperda has not been intercepted on S. melongena from Dominican Republic.
9) All interceptions of S. frugiperda on S. melongena or S. macrocarpon recorded in Europhyt

originate from Suriname. Examining agricultural production in Suriname could explain why
this is.

10) A marketing survey examining fruit and vegetable products in Suriname during 2008 and
2009 revealed that Suriname had relatively small scale fruit and vegetable production and
a lack of cold storage and chilled transport facilities to maintain a cold supply chain to
maintain product quality (Anon. 2013). Production was largely undertaken by small and
part-time farmers using very labour-intensive and rudimentary methods. Customers,
especially supermarket chains in Europe, generally require producers to be certified
according to farm assurance systems such as GLOBALGAP (Global good agricultural
practice, Henson et al., 2011) and HACCP, with exporters certified according to
International Food Safety standards, British Retail Consortium standards or ISO 22000
(Filipovi�c et al., 2008). Most of the Surinamese fruit and vegetable producers did not meet
the requirements for such assurance systems. The need for greater farmer education,
improved product packaging and handling and the creation of efficient cold store chains
was identified (Fresh plaza 2012; Anon, 2013). Given a lack of GLOBAL GAP accreditation,
S. melongena from Suriname are probably not destined EU supermarkets and distribution
across the EU but rather more limited distribution to specific communities.

11) In contrast with Suriname, export facilities in the Dominican Republic are more developed. A
FVO audit carried out in the Dominican Republic to evaluate the system of official controls for
the export of plants and plant products to the EU (European Commission DG Sante, 2015)
found that in response to EU interceptions of Thrips palmi on S. melongena, a national action
plan (NAP) to reduce pests on exported S. melongena has been in place since 2014. The NAP
applies to production sites, pack houses and points of exit (e.g. airport).

12) All exporting pack houses are required to be registered; registered pack houses must have
post-harvest treatment facilities including initial pressure water washing and hot water
treatment (50– 53� C, for four minutes, followed by cold water bath (4–11� C) for 4
minutes at least. The post-harvest treatment and pre-export inspections in pack houses

Table H.4: EU imports of eggplant from Suriname, Dominican Republic and other countries in ‘core
America’ 2010- 2016 (Hundreds of kg, Source: EUROSTAT)

2010 2011 2012 2013 2014 2015 2016

Dom. Republic 8,326 11,201 12,234 16,124 15,492 12,172 9,277

Suriname 1,561 1,488 1,838 1,313 898 1,006 1,044
Others 2,086 1,949 122 80 1,020 1,038 1,308

Sum 11,973 14,638 14,194 17,517 17,410 14,216 11,629

Table H.5: % of EU imports of eggplant from Suriname, Dominican Republic and other countries in
‘core America’ 2010–2016

Dom. Republic 69.5 76.5 86.2 92.0 89.0 85.6 79.8

Suriname 13.0 10.2 12.9 7.5 5.2 7.1 9.0

Others 17.4 13.3 0.9 0.5 5.9 7.3 11.2

100.0 100.0 100.0 100.0 100.0 100.0 100.0
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resulted in a significant decrease in the number of EU pest interceptions in 2015 (European
Commission DG Sante, 2015).

13) Fresh eggplant for consumption is regulated in Annex IV, B of the Plant Health Directive
2000/29/EC. This means that imports are subject to a plant health inspection before being
permitted to enter the EU

From sub-Saharan Africa

14) S. frugiperda is spreading and damaging several crops in sub-Saharan Africa.
15) Solanum melongena is a host of S. frugiperda and larvae can cause damage to the fruit

consisting of 1/8 to 1/4 inch wide holes (Brust, 2013)
16) Larvae of S. frugiperda are cannibalistic. Barlow and Kuhar (2005) suggests larval density

is reduced to one or two per plant; Chapman et al. (1999) suggests one to three fully
grown larvae may remain on host plants. However, the authors were not referencing larvae
on eggplants specifically.

17) The majority of eggplants from sub-Saharan Africa imported into the EU come from Kenya
(approximately 60–75% of eggplants from sub-Saharan Africa 2010–2016). The next
biggest exporter in recent years has been Uganda. Imports rose from less than 4% of sub-
Saharan eggplants in 2010 to almost 20% in 2016. Imports from Burkino Faso have also
risen. In contrast imports from Ghana have fallen (Europhyt data).

18) In Kenya, eggplant production is conducted throughout the year and the bulk of the crop
is exported. Eggplant has a cropping period of 4–7 months. In Kenya they are normally
planted from beginning of June to end of December to correspond with the export season
from October to May (Infonet biovision, 2018). Eggplant is mainly grown outdoors but
some is grown under glass.

19) Fresh eggplant for consumption is regulated in Annex IV, B of the Plant Health Directive
2000/29/EC (European Commission, 2002). This means that imports are subject to a plant
health inspection before being permitted to enter the community.

20) Between 2004 and 2015, there were 57 interceptions of pests on eggplant from sub-
Saharan Africa (Tables below). Some were EU listed quarantine pests.

Table H.6: EU imports of eggplant from sub-Saharan Africa, 2010–2016 (hundreds of kg, Source:
EUROSTAT)

Source 2010 2011 2012 2013 2014 2015 2016

Kenya 11,674 11,838 12,974 12,067 12,757 17,067 16,577

Uganda 707 661 991 2,171 3,280 4,325 5,336
Ghana 4,936 2,050 229 180 274 437 64

Burkina Faso 254 234 597 554 1,318 2,997 2,130
others 990 1,022 3,564 1,401 1,521 2,245 3,410

Sum 18,561 15,805 18,355 16,373 19,150 27,071 27,517

Table H.7: % of EU imports of eggplant from sub-Saharan Africa, 2010–2016 (Source: EUROSTAT)

Source 2010 2011 2012 2013 2014 2015 2016

Kenya 62.9 74.9 70.7 73.7 66.6 63.0 60.2

Uganda 3.8 4.2 5.4 13.3 17.1 16.0 19.4
Ghana 26.6 13.0 1.2 1.1 1.4 1.6 0.2

Burkina Faso 1.4 1.5 3.3 3.4 6.9 11.1 7.7
others 5.3 6.5 19.4 8.6 7.9 8.3 12.4

Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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21) Lepidoptera were last intercepted on eggplant from Kenya in 2009 (Diaphania indica). Prior
to this Helicoverpa armigera were intercepted in 2008 and 2006 (Europhyt data).

22) During 2014, 2015 and 2016, UK, NL, FR and BE collectively imported between 83% and
95% of all EU 28 imports of S. melongena from Kenya (EUROSTAT). The number of
consignments imported and the number inspected are shown below. Note that
consignment and inspection data does not come from all EU MS.

1) As a regulated commodity, all consignments of S. melongena imported into the EU are subject
to inspection. However, a reduced frequency of checks can be applied where justified.
Justification is based on criteria for assessing eligibility for reduced checks. The criteria are that
(i) an average of 200 or more consignments have been imported into the EU each year over
the last 3 years, (ii) a minimum of 600 inspections have been carried out during the last 3
years, and (iii) less than 1% of consignments imported were found to be infested.

2) S. melongena from Kenya have been subject to a reduced inspection level of 10% given
good compliance in recent years (European Commission, 2018a,b).

Table H.9: Consignments of S. melongena from Kenya 2014–2016; consignments inspected and
number of consignments contaminated with quarantine pests

Source Year
Number of

consignments
Number
inspected

Number of
interceptions
of listed pests

%
inspected

Propn of
inspected
which

contaminated

expected total
consignments
contaminated

Kenya 2014 4,334 1,673 0 38.6 0.0000 0

Kenya 2015 3,800 683 2(a) 18.0 0.0029 11

Kenya 2016 3,325 404 0 12.2 0.0000 0

(a): the quarantine pests found on S. melongena from Kenya in 2015 were Scirtothrips dorsalis and Bemisia tabaci (non-
European).

Table H.8: Pests recorded on Europhyt interceptions on S. melongena from sub-Saharan Africa
2004–2015

Pests Kenya Uganda Burkina Faso Sum

Lepidoptera, e.g. Helicoveroa armigera, Diaphania indica,
Leucinodes orbonalis

8 22(a) 30

Thysanoptera, e.g. Thrips palmi, Scirtothrips dorsalis 11 5 16
Diptera/Tephritidae, e.g. non-European 5 2 7

Tetranychus 3 3
Bemisia tabaci 1 1

Sum 28 24 5 57

(a): All Lepidoptera from Uganda were Leucinodes orbonalis.
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Figure: Europhyt notifications of pests from Kenya on eggplant

Thysanoptera, e.g. Scirtothrips dorsalis Lep: Diaphania indica

Dipt, e.g. non-European Tephri�dae Tetranychus

Lep: Helicoverpa armigera Bemisia tabaci

Note: The two 2015 findings of Diptera were not identified to species or family so could not be
confirmed as non-European Tephritidae.

25) Horticulture for export is well supported by Kenyan government. For example, the
Government established a Pest Control Products Board which licenses and registers pest
control products imported and used in Kenya; Government and industry stakeholders train
farmers on the safe use of pesticides. A National Code of Practice has been established
partly to address phytosanitary issues and the post-harvest handling process. The Fresh
Produce Exporters Association promote specific Codes of Practice for their members
(Export Promotion Council, 2018).

26) Supermarket chains in Europe generally require producers to be certified according to farm
assurance systems such as GLOBALGAP (Global good agricultural practice, Henson et al.,
2011) and HACCP, with exporters certified according to International Food Safety
standards, British Retail Consortium standards or ISO 22000 (Filipovi�c et al., 2008).

Other factors discussed and input from external experts:

27) Cropping practices for exports are more haphazard in core Americas than sub-Saharan
Africa. S. frugiperda is currently a high profile pest in Africa, this is not the case in Core
America

28) There is scope to improve crop husbandry practices, e.g. grow under netting, improved
scouting for pest Lepidoptera such as S. frugiperda, better targeting of pesticides. This
could improve conditions for the worst affected producers hence we applied a reduction in
the range at 99th percentile for Scenario A1.

29) There are no further treatments for eggplants. Eggplants are stored at 7 to 13°C, this is
assumed not to cause mortality to S. frugiperda infesting the fruit.

Estimation: Taking the above information into account, the following estimates were made:

• Mean percentage of infested product in export production fields in the area of origin over the
next 5 years;

• Mean percentage of infested material removed by post-harvest sorting;
• Mean percentage of infested material removed by post-harvest treatments.
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Eggplant pathway Scenario
Percentile(a)

1 25 50 75 99

1. Infestation at origin: Average percentage of infested
product in export production fields in the area of origin

A0 0.005 0.05 0.15 0.5 5.0

A1 0.005 0.05 0.15 0.5 2.0
2. Effectiveness of post-harvest sorting
Average percentage of infested material removed

A0 15 30 40 55 80

A1 15 30 40 55 80
3. Effectiveness of post-harvest treatments
(includes storage and shipping)

A0 0 0 0 0 0

A1 0 0 0 0 0

(a): Judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.

Infested eggplants arriving at the EU border are assumed to remain infested unless detected during
import inspections.

H.4. Proportion of eggplant fruit detected at EU border

For scenario A1 (with phytosanitary measures in place)

In a scenario where phytosanitary measures are in place against S. frugiperda, additional factors
need to be taken into account when estimating the mean annual proportion of transfer units infested
with S. frugiperda on eggplant exports.

A range of phytosanitary measures are available to lower the likelihood that S. frugiperda enters
the EU on hosts traded internationally. For example, hosts, such as eggplants could in principle be
sourced from a pest free area, or pest free place of production, or prior to their export have been
officially inspected and found free from S. frugiperda or subjected to treatment to ensure freedom
from the pest.

In order to guarantee pest freedom within a crop, place of production, place of production and
buffer zone, or area, it is necessary to fulfil the requirements outlined in ISPM No. 4 (FAO, 2017) and
ISPM No. 10 (FAO, 2016). This would be very challenging for a pest such as S. frugiperda that is
highly mobile and highly polyphagous. Ultimately eggplant fruit would need to be inspected prior to
export and found free of S. frugiperda so that a phytosanitary certificate could be issued. The question
to consider then is how likely is an infested eggplant to escape detection taking into account additional
crop protection practices, processing measures and quality control efforts.

EXPORT INSPECTIONS

FAs well as the factors considered in scenario A0, the following factors are also taken into account:

1) There is no survey information measuring the performance of export inspections.
2) ISPM 31 provides guidance for minimum sample sizes that provides either 95% or 99%

confidence according to lot size and level of detection.
3) It is unknown how many inspections follow ISPM 31.
4) A FVO audit carried out in the Dominican Republic to evaluate the system of official

controls for the export of plants and plant products to the EU (European Commission DG
Sante, 2015) found that post-harvest treatment and pre-export inspections in pack houses
resulted in a significant decrease in the number of EU pest interceptions in 2015 (European
Commission DG Sante, 2015).

5) During an audit carried to evaluate the system of official controls for the export of plants
and plant products to the EU in Ghana by DG Sante, EU officials found that sampling for
export inspections was inconsistent and in some cases inadequate, and that there was not
always enough time available to carry out effective inspections (European Commission DG
Sante, 2016).

6) During a similar audit in Kenya in 2013, EU officials found a significant weakness in the
system of official export checks, with insufficient time available for effective inspections
although the risk arising from this was mitigated by the biosecurity and pest prevention
measures applied by producers (European Commission DG Sante, 2013).
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7) S. melongena fruit are stored at 10–12°C with 90–95% RH. Fruit are sensitive to chilling
below 10°C. At 5°C, chilling injury will occur in 6–8 days. Storage of eggplant is generally
less than 14 days as quality rapidly deteriorates (CargoHandbook.com, 2012b).

IMPORT INSPECTIONS

8) Exports arriving in EU are assumed to generally be transported by air to reduce storage
time and maintain quality.

9) Many countries that keep records of pest interceptions do not register the total number of
inspections, which makes a precise assessment of the proportion of infested shipments
impossible (Eschen et al., 2015). The USA quarantine agency has sufficient resources to
inspect 2% of incoming shipments (National Research Council, 2002) whilst in New
Zealand no more than 18% of shipping containers can be inspected (Everett, 2000).

10) Infested eggplants departing core America or sub-Saharan Africa are assumed to remain
infested as they arrive in the EU. As a regulated commodity S. melongena should already
be inspected on arrival in the EU.

11) In a scenario where additional measures were put in place and S. melongena were to be
inspected for S. frugiperda, the reduced inspection regime may be lifted (removed) and all
consignments would be subject to official inspection on arrival in the EU.

12) There is little published evidence reporting the efficiency of effectiveness of plant health
import inspections.

13) An EU inspectorate with DG Sante (previously known as the Food and Veterinary Office
(FVO)), assists the European Commission in the application of phytosanitary regulations
and audits the plant inspection systems in each Member State. Their study tours revealed
differences and shortcomings in the inspection practices in audited countries (e.g. FVO
2011a,b, 2012a,b), such as a lack of guidelines for visual inspections, different levels of
inspection of the same commodities depending on the points of entry, non-random
sampling (e.g. examining just the easily accessible boxes).

14) Analysing data relating to plants for planting, Liebhold et al. (2012) estimated about 72%
of infested plant shipments passed through US ports undetected.

15) ISPM 31 provides guidance for minimum sample sizes that provides either 95% or 99%
confidence according to lot size and level of detection

16) It is unknown how many inspections follow ISPM 31
17) The analysis by Liebhold et al. (2012) considered plants infested by any pest taxa,

including pathogens. Detecting relatively large S. frugiperda larvae could be easier so the
28% success rate estimated by Liebhold et al. (2012) could be higher.

18) Work et al. (2005) estimated that inspectors detected 19–28% of pests in non-refrigerated
maritime cargo and 30–50% of pests in cargo crossing the US–Mexico border.

Other factors discussed and input from external experts:

1) Estimation: Taking the above information into account, the Panel estimated the mean
annual proportion of infested transfer units detected at the EU border.

2) Table x: Estimated range of mean annual proportion of infested transfer units detected
during phytosanitary inspections at the EU border over the next 5 years (time horizon for
assessment)

Estimation: Taking the above information into account, the following estimates were made:

• Estimated range of mean annual proportion of infested eggplant fruit (transfer units) detected
during phytosanitary inspections from core America or sub-Saharan Africa at the EU border
over the next 5 years (time horizon for assessment)

Eggplant pathway Scenario
Percentile(a)

1 25 50 75 99

Effectiveness of import inspections
Percentage infested material removed at import

A0 1 6 10 15 25

A1 1 6 10 15 25

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.
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H.5. Proportion of infested units rejected during post entry handling
or processing

Most of the eggplants arrive loose in cardboard boxes ready for the markets (as for peppers).
Hence there would be no further processing, simply some storage and transport for wholesale or
retail.

• Estimated range of mean annual proportion of infested eggplants rejected during postharvest
handling or processing over the next 5 years (time horizon for assessment)

Eggplant pathway Scenario
Percentile(a)

1 25 50 75 99

Effectiveness of post-entry handling/processing
Percentage infested material removed after import

A0 0 0 0 0 0

A1 0 0 0 0 0

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.
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Appendix I – Evidence dossier: Trade pathway – rose cut flowers (Rosa sp.)

I.1. Mean trade volume of Rosa cut flowers into the EU from countries
where Spodoptera frugiperda occurs over the next 5 years

EUROSTAT data was extracted to determine the amount of imports and EU intracommunity trade for rose
cut flowers over the most recent 7 years (2010–2016) (CN 0603 11). Because of the widespread occurrence
of S. frugiperda in the Americas and in Africa, import data were grouped into five regions (Figure 1).

Other considerations to take into account:

1) No extensive literature search was performed for this parameter.
2) Only EUROSTAT data were collected and assessed.
3) No trade body/industry information was obtained to verify EUROSTAT.
4) The data indicates that imports and intra-EU trade have fluctuated over the past 7 years.
5) The region from which the EU sources most fresh cut roses is sub-Saharan Africa.
6) The majority of rose cut flowers from sub-Saharan Africa comes from Kenya (60%) and

Ethiopia (30%). Uganda, Zambia and Zimbabwe are the other main exporters (Europhyt data).
7) Well-organised NPPOs in Africa supporting significant exports to the EU may be able to cope

with S. frugiperda. Conversely, weaker NPPOs, or those with smaller exports where the export
horticulture sector is less developed could find it problematic (Abrahams et al., 2017).

8) For scenario A1, phytosanitary measures will add costs and may reduce volume of trade.
9) Additional measures are not anticipated to significantly alter the amount of exports to EU

over the next 5 years.

Following discussion, it was agreed that past import data best informs likely future imports and a
regression was performed to estimate mean annual future imports over the next 5 years, i.e. until the
time horizon of the opinion.

Table I.2: Rose cut flowers annual imports from third country regions expressed as a %

2010 2011 2012 2013 2014 2015 2016 Mean

Core America 14.81 14.39 14.66 9.47 9.67 8.30 8.56 11.4

Sub-Saharan Africa 84.56 85.25 85.02 90.26 89.98 91.34 90.99 88.2
North Africa 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.0

Middle East 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.0
Other 0.60 0.34 0.32 0.27 0.35 0.36 0.45 0.4

Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table I.1: EU imports of rose cut flowers (CN 0603 11) from Third countries and intra-EU trade
2010-1016 (Source EUROSTAT) (Hundreds of kg)

2010 2011 2012 2013 2014 2015 2016 mean

Intra-EU 1,210,251 1,213,653 1,387,407 1,455,738 1,470,640 1,930,906 1,977,894 1,520,927

Core
America

205,964 212,071 211,936 200,404 216,020 217,548 226,859 212,972

Sub-
Saharan
Africa

1,175,722 1,256,129 1,229,309 1,910,560 2,010,784 2,394,573 2,412,557 1,769,948

North
Africa

141 75 55 57 39 1 35 58

Middle
East

321 138 23 12 10 15 10 76

Other 8,327 4,994 4,565 5,680 7,800 9,400 11,950 7,531
Sum
Third C

1,390,475 1,473,407 1,445,888 2,116,713 2,234,653 2,621,537 2,651,411 1,990,583

Intra-EU
+ TC

2,600,726 2,687,060 2,833,295 3,572,451 3,705,293 4,552,443 4,629,305 3,511,510
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Table: Estimated range of mean rose cut flower imports into the EU from the region ‘core Americas’
and sub-Saharan Africa over the next 5 years (time horizon for assessment) based on regression of
previous import (hundreds of kg)

Quantile (Percentile)
Lower
(1%)

Q1
(25%)

Median
(50%)

Q3
(75%)

Upper
(99%)

Scenario A0
(baseline)

3,373,522 3,796,871 3,989,603 4,198,252 4,755,635

Scenario A1
(with measures)

3,373,522 3,796,871 3,989,603 4,198,252 4,755,635

No difference in imports was anticipated in a scenario A1.

I.2. Weight of a transfer unit (single individual cut rose stem)

A standard conversion factor for an individual stem of a rose (0.051 kg, EFSA unpublished data)
was used to convert mass of imports into an estimate of the number of transfer units (individual
stems) imported on the pathway.

I.3. Proportion of export production fields infested; effectiveness of
post-harvest sorting and post-harvest treatments

1) Roses are perennial so may be exposed to pests at all times of the year. However, in the
major African producing countries roses are grown in protected plastic houses. There are
approximately 3,000 ha of plastic houses in Kenya, 1,000 ha in Ethiopia and less than
100 ha in each of Tanzania and Uganda (H. Wainwright, RealIPM, Kenya, pers comm.)

2) In Kenya, the floriculture industry comprises of large-, medium- and small-scale producers who
have attained high management standards and have invested heavily in value addition through
adoption of modern technology in production, precision farming and marketing (Anon.,
2017a). Farmers use drip irrigation, fertigation systems, greenhouse ventilation systems, net
shading, pre-cooling, cold storage facilities, grading, bouqueting, fertiliser recycling systems to
prevent wastage, wetlands for waste water treatment, artificial lighting to increase day length,
grading/packaging sheds, and refrigerated trucks for distribution (Anon., 2018).

3) Half of Kenya’s 127 flower farms are concentrated around Lake Naivasha, 90 km northwest
of Nairobi. Searching on Google maps around Lake Naivasha, Kenya, one can identify
greenhouses and horticultural sites of production. No signs of arable crops (e.g. maize
fields) can be identified in the surrounding area.

Figure I.1: Horticultural production on the shore of Lake Naivasha, Kenya (Source: Googlemaps https://
www.google.co.uk/maps/@-0.9080218,36.3501326,10867a,35y,37.82t/data=!3m1!1e3)
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1) Roses are harvested at different levels of maturity, depending on marketing and cultivar.
For long-distance transport or storage, roses are harvested with some of the sepals
reflexed (CargoHandbook.com, 2013). Flowers are harvested by hand, providing an
opportunity for pickers to spot pest infestations.

2) A short video showing production of cut roses in Kenya is available at https://www.
youtube.com/watch?v=JsKnp8b66l8

3) Rose bunches are routinely sleeved in plastic, waxed paper, or soft corrugated card
sleeves. When sold direct, e.g. to supermarkets, roses can be packed in sleeves labelled or
made into bouquets at source, prior to export (http://www.kenyarep-jp.com/business/ind
ustry/f_index_e.html)

4) Kenya is the leading exporter of rose cut flowers to the European Union. Approximately
50% of roses are sold directly to retailers and 50% via Dutch auctions (Anon, 2018).

5) S. frugiperda occurs year round in sub-Saharan Africa with overlapping generations.
6) S. frugiperda is a minor pest of Rosa (CABI, 2018a). Nevertheless, S. frugiperda larvae

have been found on rose cut flowers during import inspections (e.g. Zambia, 2018).
7) Within a crop, S. frugiperda will be clumped (not evenly distributed) within a

field/glasshouse.
8) In high value export crops, additional pest management measures (more chemical sprays)

will be applied to ensure quality control, and maintain market access.
9) Rose cut flowers are regulated within 2000/29 EC as plants which must be subject to a

plant health inspection in the country of origin or the consignor country, if originating
outside the community, before being permitted to enter the community (2000/29 EC,
Annex V, B 2). Rose cut flowers imported into the EU must originate in a country free from
non-European Bemisia tabaci (Annex IV A 1, 45.2). Phytosanitary inspections prior to
export may prevent some infested consignments being shipped.

10) A short video illustrating export inspection of rose cut flowers in Tanzania is available at
https://www.youtube.com/watch?v=qNRAeRyzaxg

11) Despite the required pre-export inspections, Noctuid quarantine pests have previously been
intercepted on roses entering the EU from Africa (see table below; Source Europhyt,
extracted 10 April 2018).

12) During an audit carried to evaluate the system of official controls for the export of plants
and plant products to the EU from Kenya in 2013, EU officials found a significant weakness
in the system of official export checks, with insufficient time available for effective
inspections although the risk arising from this was mitigated by the biosecurity and pest
prevention measures applied by producers (European Commission DG Sante, 2013a,b).

13) Quarantine Lepidoptera in the same family as S. frugiperda have been the most commonly
recorded harmful organisms on cut roses from sub-Saharan Africa. Lepidoptera are found
as larvae.

Table I.3: Europhyt interceptions of harmful organisms on rose cut flowers from sub-Saharan
countries 2000-2017

Zimbabwe Kenya Ethiopia Zambia Burundi Malawi Sum % of sum

Spodoptera
littoralis

436 43 9 31 4 4 527 53.0

Helicoverpa
armigera

217 118 57 32 6 4 429 43.1

Helicoverpa sp. 2 1 2 5 0.5

Spodoptera
frugiperda

2 2 0.2

Spodoptera sp. 1 1 2 0.2

Bemisia tabaci 5 2 7 0.7
Tetranychus 4 4 0.4

Thysanoptera 2 3 5 0.5
Bemisia sp. 3 3 0.3
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The chart below shows the number of quarantine Lepidoptera intercepted on cut roses from
sub-Saharan countries 2003–2017. Since the peak in 2008, there has been a decline in interceptions.

1) As noted above, rose cut flowers are already regulated by the EU and such material must
be inspected on arrival in the EU. However, a reduced frequency of checks can be applied
where justified. Justification is based on criteria for assessing eligibility for reduced checks.
The criteria are that (i) an average of 200 or more consignments have been imported into
the EU each year over the last 3 years, (ii) a minimum of 600 inspections have been carried
out during the last 3 years, and (iii) less than 1% of consignments imported were found to
be infested.

2) Since January 2011, cut roses from Kenya have been subject to a reduced inspection level
of 5% given good compliance in recent years. Cut roses from Ethiopia have been subject to
5% inspection since January 2016. Cut roses from Zambia have been subject to 10%
inspection since January 2017 whilst cut roses from Tanzania have been subject to 15%
level of inspection since January 2014 (European Commission, 2018a,b).

3) Of 73,362 consignments of rose cut flowers that entered the EU in 2014, 9,540 were
inspected of which 3 resulted in pest interceptions. In 2015 of 74,605 consignments 10,404
were inspected with 1 pest interception. In 2016 of 75,219 consignments, 11,618 were
inspected with 1 interception. (Data from BE, CY, DE, FR, NL, SE and UK). Table I.4 below
shows this data and the equivalent data for Ethiopia, Tanzania and Zambia. Note that
consignment and inspection data does not come from all EU MS. Nevertheless, the data
from these 7 EU MS represents > 99% of all rose cut flowers entering the EU28 from
Kenya, Ethiopia, Tanzania and Zambia during 2014, 2015 and 2016 (EUROSTAT data)

Zimbabwe Kenya Ethiopia Zambia Burundi Malawi Sum % of sum

Liriomyza
huidobrensis

2 2 0.2

Liriomyza trifolii 2 2 0.2

Acari 2 2 0.2
Sum 669 172 68 67 11 8 995 100.0

All Lepidoptera 656 162 66 67 11 8 970 97.0

As % Of All
Lepidoptera

68.0 16.8 6.8 6.9 1.1 0.8 100.0
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Figure I.2: Numbers of quarantine Lepidoptera intercepted in the EU on roses from six African
nations 2003–2017 (Source: Europhyt)
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4) Plotting the number of Lepidoptera interceptions against the amount of rose cut flower
imports indicates that for Kenya and Ethiopia (the biggest exporters) the highest number of
interceptions occurred the year when exports were lowest.

Table I.5: Consignments of cut roses from sub-Saharan Africa 2014–2016; consignments inspected
and number of consignments contaminated with quarantine pests

Source Year
Number of

consignments
Number
inspected

Number of
interceptions

of listed
pests

%
inspected

Propn of
inspected
which

contaminated

expected total
consignments
contaminated

Kenya 2014 73,362 9,540 3 13.0 0.0003 23

Kenya 2015 74,605 10,404 1 13.9 0.0001 7
Kenya 2016 75,219 11,618 1 15.4 0.0001 6

Ethiopia 2014 12,594 3,218 0 25.6 0.0000 -
Ethiopia 2015 9,915 2,050 1 20.7 0.0005 5

Ethiopia 2016 8,935 1,608 0 18.0 0.0000 -
Tanzania 2014 2,301 394 3 17.1 0.0076 18

Tanzania 2015 2,751 483 4 17.6 0.0083 23
Tanzania 2016 2,967 561 3 18.9 0.0053 16

Zambia 2014 2,192 1,007 2 45.9 0.0020 4
Zambia 2015 2,475 1,191 2 48.1 0.0017 4

Zambia 2016 2,352 1,265 0 53.8 0.0000 -

Table I.4: Imports of rose cut flowers (CN 060311) into specific EU MS and all EU MS

Source Year
Total imports to BE, CY, DE,
FR, SE, NL, UK (hundreds kg)

Total EU 28 imports
(hundreds kg)

BE, CY, DE,
FR, SE, NL, UK
as % of EU 28

Kenya 2014 1,248,434 1,250,186 99.9

Kenya 2015 1,305,183 1,307,231 99.8
Kenya 2016 1,344,148 1,346,577 99.8

Ethiopia 2014 486,910 487,541 99.9
Ethiopia 2015 849,045 850,129 99.9

Ethiopia 2016 834,387 835,420 99.9
Tanzania 2014 25,024 25,024 100.0

Tanzania 2015 15,569 15,569 100.0
Tanzania 2016 14,108 14,108 100.0

Zambia 2014 73,575 73,580 100.0
Zambia 2015 66,801 66,801 100.0

Zambia 2016 59,323 59,323 100.0
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Other factors discussed and input from external experts:

For scenario A1 (with phytosanitary measures in place)

In a scenario where phytosanitary measures are in place against S. frugiperda, additional factors
need to be taken into account when estimating the mean annual proportion of transfer units infested
with S. frugiperda on rose cut flower exports.

A range of phytosanitary measures are available to lower the likelihood that S. frugiperda enters
the EU on hosts traded internationally. For example, hosts, such as roses could be sourced from a pest
free area, or pest free place of production, or prior to their export have been officially inspected and
found free from S. frugiperda or subjected to treatment to ensure freedom from the pest.

In order to guarantee pest freedom within a crop, place of production, place of production and
buffer zone, or area, it is necessary to fulfil the requirements outlined in ISPM No. 4 (FAO, 2017) and
ISPM No. 10 (FAO, 2016). This would be very challenging for a pest such as S. frugiperda that is
highly mobile and highly polyphagous. Ultimately, cut roses would need to be inspected prior to export
and found free of S. frugiperda so that a phytosanitary certificate could be issued. The question to
consider then is how likely is an infested rose to escape detection taking into account existing crop
protection practices, processing measures and quality control efforts.

Factors to take into account:

7) There is no survey information measuring the performance of export inspections.
8) ISPM 31 provides guidance for minimum sample sizes that provides either 95% or 99%

confidence according to lot size and level of detection.
9) It is unknown how many inspections follow ISPM 31.

10) During an audit carried to evaluate the system of official controls for the export of plants
and plant products to the EU from Kenya in 2013, EU officials found a significant weakness
in the system of official export checks, with insufficient time available for effective
inspections although the risk arising from this was mitigated by the biosecurity and pest
prevention measures applied by producers (European Commission DG Sante, 2013).

11) The number of quarantine Lepidoptera found on rose cut flowers from major exporting
countries such as Kenya, Ethiopia and Zimbabwe have declined since a peak in 2008.

12) Since January 2011 cut roses from Kenya have been subject to a reduced inspection level
of 5% given good compliance in recent years. Cut roses from Ethiopia have been subject
to 5% inspection since January 2016. Cut roses from Zambia have been subject to 10%
inspection since January 2017 while cut roses from Tanzania have been subject to 15%
level of inspection since January 2014 (European Commission, 2018a,b).
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Figure I.3: Lepidoptera interceptions vs amount of cut rose imports
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Estimation: Taking the above information into account, the following estimates were made:

• Mean percentage of infested product in export production fields in the area of origin over the
next 5 years;

• Mean percentage of infested material removed by post-harvest sorting;
• Mean percentage of infested material removed by post-harvest treatments.

Cut roses pathway Scenario
Percentile(a)

1 25 50 75 99

1. Infestation at origin: Average percentage of
infested product in export production fields in the
area of origin

A0 0.0001 0.0005 0.001 0.002 0.01

A1 0.0001 0.0005 0.001 0.002 0.01
2. Effectiveness of post-harvest sorting
Average percentage of infested material
removed.

A0 70 85 90 91.5 95

A1 75 85 90 91.5 95
3. Effectiveness of post-harvest treatments
(includes storage and shipping)

A0 75 88 95 98 99

A1 75 88 95 98 99

(a): Expert judgement was used to estimate five quantiles of the infestation at origin and the reduction factor expressing
effectiveness.

I.4. Proportion of infested units detected at EU border

1) Exports of roses from sub-Saharan Africa occur year round. Exports are highest during the
spring. Cut roses are transported as air freight or by sea.

2) To preserve quality and vase life, cut roses should be transported at between 0.5 and
1.0°C (Harkema et al., 2017).

3) There are daily flights into the EU that carry rose cut flowers. Roses transported in
refrigerated (reefer) shipping containers from Africa take 2–5 weeks to reach the EU
(Harkema et al., 2017).

4) A typical supply chain could appear thus: roses are harvested, sorted, packed at the
grower, transported to a consolidation centre, inspected prior to export, placed in a
refrigerated (reefer) container, transported to the harbour, shipped to the EU, inspected on
arrival in EU and transported to an auction/distribution centre and further transported to
the shop targeted for the supermarket (based on Harkema et al., 2017).

5) Cut roses marketed at Dutch auctions must meet general quality standards applicable to all
cut flowers and specific requirements for cut roses (CBI Market Intelligence, 2016).

6) As a regulated commodity, rose cut flowers are inspected on entry. Since January 2011,
cut roses from Kenya have been subject to a reduced inspection level of 5% given good
compliance in recent years. Cut roses from Ethiopia have been subject to 5% inspection
since January 2016. Cut roses from Zambia have been subject to 10% inspection since
January 2017 whilst cut roses from Tanzania have been subject to 15% level of inspection
since January 2014 (European Commission, 2018a,b). Given that rose cut flowers provide
a pathway into the EU, the reduced check regime may be revised and a higher proportion
of rose consignments may be inspected in future. The following factors should be taken
into account:

7) There is little published evidence reporting the efficiency of effectiveness of plant health
import inspections.

8) ISPM 31 provides guidance for minimum sample sizes that provides either 95% or 99%
confidence according to lot size and level of detection.

9) It is unknown how many inspections follow ISPM 31 (FAO, 2008),
10) Analysing data relating to plants for planting, Liebhold et al. (2012) estimated about 72%

of infested plant shipments passed through US ports undetected.
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11) The analysis by Liebhold et al. (2012) considered plants infested by any pest taxa,
including pathogens. Detecting relatively large S. frugiperda larvae could be easier so the
28% success rate estimated by Liebhold et al. (2012) could be higher.

12) Work et al. (2005) estimated that inspectors detected 19–28% of pests in non-refrigerated
maritime cargo and 30–50% of pests in cargo crossing the US–Mexico border.

13) A short video showing US border inspections of cut roses is available at https://www.
youtube.com/watch?v=nJ8tF0_PpLE

Other factors discussed and input from external experts:

• Infestation is so low that it is not going to make a difference.
• Nevertheless interception may still occur.

Estimation: Taking the above information into account, the following estimates were made:

• Estimated range of mean annual proportion of infested rose cut flowers (transfer units)
detected during phytosanitary inspections from core America or sub-Saharan Africa at the EU
border over the next 5 years (time horizon for assessment)

Rose cut flowers pathway Scenario
Percentile(a)

1 25 50 75 99

Effectiveness of import inspections
Percentage infested material removed at import

A0 0 0 0 0 0

A1 0 0 0 0 0

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.
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supply countries in sub-Saharan Africa (hundreds of kg)
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Roses from core America

The vast majority of cut roses from core America come from Columbia and Ecuador

Colombia

1) Colombia grows 8,000 ha of flowers. Around 7,000 ha are cultivated under greenhouse
conditions while 1,000 hectares are produced outdoors, under rain fed conditions (USDA
Foreign Agricultural Service 2015).

2) The Colombian Association of Flowers Exporters representing 75% of Colombia’s flower
production, has invested in technology to improve and maintain quality (Bueno, 2005).

3) S. frugiperda is not regarded as a pest in protected cut flower production. Europhyt has no
records of interceptions of S. frugiperda or any other pests on roses from Columbia.

Ecuador

4) Most of Ecuador’s rose plantations are found in the province of Pichincha in the Andes at an
altitude of between 2,800 and 3,000 metres (Conefrey, 2015).

5) Significant pests of roses in Ecuador include aphids, thrips and mites (Godoy Su�arez, 2014;
Bolanos-Carriel and Orellana, 2016).

6) In Ecuador, S. frugiperda is a problem on maize, cotton, tobacco, tomato, cucumber, rice,
sugarcane, beans and soy beans (Andrews, 1988).

7) There are four records of Europhyt interceptions on roses from Ecuador (Spodoptera sp. x1
in 2011; Helicoverpa sp. x1 in 2014; Helicoverpa zea x 1 in 2014 and Helicoverpa zea x1 in
2017).

8) Cut flowers for export to the EU are subject to EURGAP and ISO quality accreditation
9) Noctuidae pests such as Spodoptera litura and Chrysodeixis eriosoma can be pests of cut

flowers. The appropriate phytosanitary measure is to inspect the consignment to check that
it is free from the pests (Mhlanga, 2014).

Table: Imports of rose cut flowers from countries in ‘core America’ (Hundreds of kg, EUROSTAT)

2010 2011 2012 2013 2014 2015 2016

Ecuador 158,633 166,924 167,415 160,399 173,162 176,074 184,179

Colombia 46,390 44,294 44,245 38,818 42,809 41,426 42,614
Costa Rica 117 608 215 1090 0 1 0

Brazil 794 207 56 38 38 32 27
Peru 0 11 0 49 6 0 13

Guatemala 3 8 0 9 0 14 0
St Kitts and Nevis 26 0 0 0 0 0 0

Mexico 1 0 0 1 1 0 19
Dominican Republic 0 17 0 0 0 0 0

Suriname 0 1 1 0 4 1 6
Panama 0 1 3 0 0 0 0

Bolivia 0 0 0 0 0 0 1
El Salvador 0 0 1 0 0 0 0

Trinidad and Tobago 0 0 0 0 0 0 0
Uruguay 0 0 0 0 0 0 0

Sum core America 205,964 212,071 211,936 200,404 216,020 217,548 226,859
Table x.x: Imports from Equador, as a percentage

Ecuador 77.0 78.7 79.0 80.0 80.2 80.9 81.2
Colombia 22.5 20.9 20.9 19.4 19.8 19.0 18.8

others 0.5 0.4 0.1 0.5 0.0 0.0 0.0

sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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I.5. Proportion of infested units rejected during post entry handling or
processing

Roses are transported very heavily packaged, e.g. wrapped in cellophane with tape and with
corrugated cardboard around the flower head to provide protection. Sometimes sachets of plant feed
are also attached. Other than the removal of the cardboard and perhaps attaching sachets of flower
food, there would be no further processing, simply some storage and transport for wholesale or retail.

• Estimated range of mean annual proportion of infested rose cut flowers rejected during
postharvest handling or processing over the next 5 years (time horizon for assessment)

Rose cut flowers pathway Scenario
Percentile(a)

1 25 50 75 99

Effectiveness of post-entry handling/processing
Percentage infested material removed after import

A0 0 0 0 0 0

A1 0 0 0 0 0

(a): Expert judgement was used to estimate five quantiles of the reduction factor expressing effectiveness.
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Appendix J – @Risk generated results from pathway models

When the pathway model for entry via trade is implemented in @Risk, outputs are generated to a
level of precision that is not warranted given the uncertain inputs. Results shown in the main body of
the opinion are rounded appropriately. Nevertheless, for transparency the tables below provide the
results as generated by @Risk.

Table J.1: @Risk outputs for pathway models for entry of S. frugiperda into the EU via the trade in
peppers, sweetcorn, eggplants, cut roses and asparagus. Calculations with the pathway
model were made assuming current regulations as at January 2018 (Scenario A0)

Percentile 5th 25th Median (50th) 75th 95th 90% range 50% range

Peppers 1,755 9,534 30,520 98,350 525,903 524,148 88,816

Eggplant 805 4,248 13,478 43,036 222,133 221,328 38,788
Sweetcorn 137 885 2,482 6,012 17,566 17,429 5,127

Cut roses 30 159 453 1,179 4,450 4,420 1,020

Asparagus 4 31 126 485 3,218 3,214 454

Table J.2: @Risk outputs for pathway models for entry of S. frugiperda into the EU via the trade in
peppers, sweetcorn, eggplants, cut roses and asparagus, Scenario A1

Percentile 5th 25th Median (50th) 75th 95th 90% range 50% range

Peppers 2,014 9,962 29,669 90,767 442,085 440,071 80,805

Eggplant 906 4,457 13,346 39,339 188,146 187,240 28,882
Sweetcorn 4 26 78 190 583 579 164

Cut roses 29 160 448 1,180 4,506 4,477 1,020

Asparagus 4 32 124 451 2,754 2,750 419

Table J.3: @Risk outputs for pathway models for entry of S. frugiperda into the EU via the trade in
other vegetable and cut flower hosts

Percentile 5th 25th Median (50th) 75th 95th 90% range 50% range

Scenario A0 6,191 18,750 44,567 119,067 599,737 593,546 100,317

Scenario A1 4,204 14,297 37,533 104,008 496,076 491,872 89,711

Table J.4: @ Risk outputs – numbers of immature S. frugiperda entering into Andalucia and Sicily
on infested commodities versus numbers of adults migrating into southern EU (mainly
Andalucia and Sicily) from North Africa were S. frugiperda to establish in Morocco and
Tunisia

Percentile(a) 25th Median (50th) 75th 50% prob int(b)

Andalucia 651 1,479 3,885 2,234

Sicily 391 889 2,336 1,945

Migration into EU 3,876 31,725 203,399 16,523
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Appendix K – Other commodity pathways

Depending on the level of detail at which a pathway is described, a risk assessment could
potentially examine hundreds of pathways for a pest that occurs in many countries and feeds on many
hosts (MacLeod and Baker, 2003). Recognising the polyphagous nature of S. frugiperda, it was not
possible to examine all possible pathways, instead sweetcorn, a plant product from a major host, and
vegetable hosts on which S. frugiperda had been intercepted and which have unique HS/CN codes,
were assessed in some detail (Table A below). The volumes of other potential vegetable commodities
(Table B) are taken into account within ‘other uncertainties’.

Table K.1: (A) Commodity pathways assessed in detail: mean 5 year volumes imported into the EU
from regions where S. frugiperda occurs (hundreds of kg) Source: EUROSTAT

Description CN/HS code core America sub-Saharan Africa Sum

Roses (cut flowers)(a) 06031100 328,250 1,878,283 2,206,532

Asparagus(a) 07092000 349,813 2,250 352,063
sweetcorn 07099960 149 106,327 106,476

Sweet peppers + other Capsicum(a) 07096010 +
07096099

31,487 31,177 62,664

Aubergines(a) 07093000 18,361 18,330 36,691

Sum 728,060 2,036,366 2,764,426

(a): = commodity on which S. frugiperda has been intercepted.

Table K.2: (B) Other vegetable commodity pathways

Description CN/HS code core America sub-Saharan Africa Sum

Other cut flowers 06031970 + 06031980 214,564 512,551 727,115

Beans 07082000 31,511 369,142 400,653
Onions 07031019 217,810 32,786 250,596

Peas 07081000 112,708 113,608 226,316
Other veg. inc. Momordica * 07099990 100,383 105,865 206,247

Carnations (cut flowers) 06031200 120,825 56,992 177,816
Chrysanthemums (cut flrs) 06031400 42,772 18,345 61,117

Cauliflowers 07041000 914 28,585 29,499
Tomatoes 07020000 17,025 439 17,464

Garlic 07032000 15,074 351 15,425
Leeks 07039000 1,080 14,182 15,261

Other brassica 07049090 137 7,194 7,331
Other legumes 07089000 3,753 972 4,725

Rose cuttings 06024000 13 2,893 2,905
Brussels sprouts 07042000 58 2,309 2,366

Onion sets 07031011 1,207 403 1,610
Shallots 07031090 1,064 379 1,443

Cabbage 07049010 516 480 995
Gherkins 07070090 525 32 557

Cucumbers 07070005 254 23 277
Head lettuce 07051100 2 63 65

Other lettuce 07051900 0 53 53

Sum 882,194 1,267,644 2,149,837

Ratio of assessed sum of commodity pathways: other vegetable commodity pathways = 1: 0.78.
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Appendix L – Distributing commodities across NUTS 2 regions

L.1. Introduction to NUTS (Nomenclature Units for Territorial
Statistics)

NUTS are an EU standard for identifying national and sub-national divisions within Members States
of the EU. Four NUTS levels are used, NUTS 0 refers to a whole EU Member State; NUTS 1, 2 and 3
refer to increasingly smaller areas within a member state.

At present there are:

• 97 regions within NUTS 1,
• 270 regions at NUTS 2, and
• 1,294 regions at NUTS 3 level.

L.1.1. Regional consumption

For fresh produce, the majority of end-use consumption is expected to be dependent on the
population of consumers across the EU. Thus it is assumed that the distribution of commodities across
the EU is proportional to consumers in NUTS 2 regions. Whilst food consumption does vary regionally,
Blandford (1984) found the differences in food consumption between OECD countries were decreasing,
suggesting diets were converging and are become increasingly similar in the overall structure of their
diet. When comparing diets within Europe, Elsner and Hartmann (1998), Mauracher and Valentini
(2006), Schmidhuber and Traill (2006) and Polsel (2012) found European diets were also converging.
Within the EU diets have become more homogeneous, there has been increased intakes in
Mediterranean countries of saturated fats, cholesterol and sugar, while there has been reductions in
saturated fat and sugar in Northern European countries (Schmidhuber and Traill, 2006).

Figure L.1: Population of NUTS 2 regions
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Appendix M – Evidence dossier: Entry via migration directly from
sub-Saharan Africa

M.1. Natural spread of Spodoptera frugiperda in the Western
Hemisphere

1) S. frugiperda is a migratory species with notable dispersal capacity (Johnson, 1987). Like
most other noctuid moths they are nocturnal fliers, initiating flight short after sunset and
generally terminating before dawn, an approximately 4–8 h flight duration (Westbrook,
2008). There is evidence that flights over successive nights can occur (Rose et al., 1975).

2) Adults fly downwind hence direction of movement depends largely on prevailing winds with
host availability influencing the rate of spread (Luginbill, 1928; Hogg et al., 1982). Flight
altitude is between 100 and 1,000 m above ground level (AGL) (corresponding
approximately to 1,000 to 850 mb), a range also found for other migratory Noctuid moths
including Helicoverpa armigera (Feng et al., 2005), Autographa gamma (Alerstam et al.,
2011), S. exigua (Feng et al., 2003), and S. exempta (Riley, Reynolds, and Farmery, 1983).

3) Adult annual migrations occurring in the summer result in the pest expanding from its
endemic area in the tropical and sub-tropical regions of the Americas to cover more than
2,000 km across the entire US up to Canada in the north and reaching Argentina and Chile
in the south (Luginbill, 1928; Sparks, 1979; Pair et al., 1986).

4) In Central America, adults generally disperse about 500 km (approx. 310 miles) before
oviposition, moving from seasonally dry habitats to wet habitats (Johnson, 1987).

5) Because S. frugiperda does not diapause, winter populations in the United States are limited
to the southern regions of Texas and Florida with infestations in the rest of the continent
due to annual migrations from these sites (Luginbill, 1928). Sparks (1979) and Johnson
(1987) reproduce a map showing the typical annual northwards progression of S. frugiperda
over the USA (Figure M.1a). Starting from southern Florida and Texas, the spring generation
flies north, generally spreading several hundred km before settling to reproduce the next
generation. The seasonal migration from Texas to Canada extends approximately 3,000 km.
The northward migration coincides with progressively later corn plantings that makes the
preferred host plant available throughout the migratory stages (Figure M.1b). Average wind
vectors during the growing season strongly supports northerly flights at the altitude
commonly used by S. frugiperda (Figure M.1c). These factors provide optimal conditions for
long-distance migration.

Spodoptera frugiperda partial risk assessment

www.efsa.europa.eu/efsajournal 100 EFSA Journal 2018;16(8):5351



6) Using haplotype ratios to distinguish between S. frugiperda from south-central USA (e.g.
Texas) and south-eastern USA (Florida), Nagoshi et al. (2012) identified separate northward
migration routes in North America. Generations derived from a Texas population migrated
northwards following the Mississippi River valley, remaining west of the Appalachian
Mountains; generations derived from Florida migrated north remaining east of the
Appalachian Mountains. Model projections demonstrated that wind patterns, corn
availability, and nocturnal flight behaviour could reproduce the North American migration
pattern delineated by the genetic studies (Westbrook et al., 2016).

7) There is evidence that S. frugiperda will attempt long-distance flights over water as adults have
been found on structures at sea, 250 km from land (Sparks, 1979). However, S. frugiperda
populations in the Caribbean islands shows limited mixing indicating that the Caribbean Sea is
an effective barrier segregating the North American and South American populations, probably
because of unfavourable wind patterns (Nagoshi et al., 2017a,b).

M.2. Other examples of long-distance flight by Noctuid moths

1) Pedgley et al. (1995) reviewed information on long-range windborne movements by winged
insects in various climatic zones of Africa and Europe. They concluded that migrations are
related to the weather and to seasonal changes of climate and prevailing wind. Large-scale
movements are often dominated by a single weather system.

2) Chen et al. (1995) used entomological radar to demonstrate that Mythimna separata
(Oriental armyworm) (Lep: Noctuidae) migrated from southern China to provinces in north
east China, a distance of more than 1,000 km.

Figure M.1: Migration of S. frugiperda in the USA is supported by corn availability and wind patterns
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3) Chang et al. (2018) found pollen grains from plants in southern China attached to Agrotis
segetum (Lep: Noctuidae) in north eastern China, indicating long-distance migration.

4) Agrotis ipsilon (Lep: Noctuidae) migrate long distances driven by meteorological events
(Showers et al., 1989).

5) In Africa, migration direction of Spodoptera exempta is determined by seasonal wind
patterns (Tucker et al., 1982; Rose et al., 1985).

6) Summarising research on S. exempta, Rose et al. (2000) noted that outbreaks can result
from winds converging for a persistent period, causing adults to become concentrated
locally. The adults mate and lay eggs. The concentration of adults and the subsequent
development of their progeny can result in pest outbreaks. In contrast, adults that are not
concentrated by wind convergence will disperse more widely and produce scattered low-
density populations.

7) Spodoptera exigua is able to reach UK from North Africa and Spain (Sparks et al., 2005).
8) S. exigua has been reported migrating over 3,500 km in 9 to 11 days, from the Caspian Sea

region to Finland; millions of both sexes reached Finland and neighbouring countries
(Mikkola and Salmensuu, 1965; Johnson, 1969). However, Mikkola (1970) re-evaluated this
event and only found evidence for nocturnal flight, concluding that over land migration was
nocturnal and intermittent rather than continuous ‘the bulk of the migrant swarm advanced
intermittently, flying only by night’. They suggest the possibility of continuous flight but no
evidence is presented.

9) Feng et al. (2003) reports radar and trap studies with S. exempta in China and found
only nocturnal flight activity beginning at dusk, with most moths flying below 500 m AGL at
21–32 km/h and a flight duration of 5–8 h. This is very similar to the description of
S. frugiperda by Westbrook (2008) and Westbrook et al. (2016).

M.3. Migration scenarios in Africa as exhibited by other Lepidoptera
species

1) Heliothine moths typically migrate during evening hours, with long-distance flight occurring
at below 1,000 m AGL (meters Above Ground Level) and for a period of 8–12 hours
(Beerwinkle et al., 1995; Westbrook et al., 1995; Feng et al., 2005; Alerstam et al., 2011).

2) Four Lepidoptera species endemic in sub-Saharan Africa and with long-distance flight
capability show different patterns of northward range expansion. These illustrate real life
examples for the potential natural migration of S. frugiperda into Europe (Figure M.2). Two
are represented by Spodoptera species believed to have originated in Africa and share many
characteristics of S. frugiperda, including a broad host range, nocturnal flight behaviour, and
no diapause. The absence of the latter is significant because it limits permanent populations
to regions with mild winters.

3) Example 1 is represented by S. exempta, which has yet to become established in the
Maghreb or Europe despite being endemic in most of sub-Saharan Africa. There is no
evidence to date that substantial numbers of S. exempta are entering Europe by natural
migration, indicating that the Sahara Desert and the Mediterranean Sea are an effective
barrier against northward natural migration of this species.

4) Example 2 is represented by S. littoralis, whose geographical range extends into southern
Europe. Significant numbers were observed in 1949 in southern Spain and permanent S.
littoralis populations have become established in southern Spain, Cyprus, Greece, Italy,
Israel, Malta, and Morocco (https://www.cabi.org/isc/datasheet/51070). It is noteworthy
that the establishment of permanent populations in Europe have been largely limited to
areas in or near the temperate Mediterranean region, delineating a northern limit for moths
that cannot diapause.

5) Example 3 is illustrated by Helicoverpa armigera, which has similar characteristics to the two
Spodoptera species but can also diapause. This added cold tolerance substantially expands
the northern range of resident populations.
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6) Example 4 is represented by the painted lady butterfly, Vanessa cardui, which undergoes
annual migrations to and from Africa and Europe (Talavera and Vila, 2017). In this case,
sub-Saharan Africa serves as a wintering reservoir from which large numbers of V. cardui
migrate each spring to repopulate Europe (Stefanescu et al., 2012).

7) The S. exempta or S. littoralis examples seem most likely for S. frugiperda given similarities
in morphology, physiology, and flight behaviour.

M.4. Migration route: sub-Saharan Africa (Sahel) to Europe by crossing
the Sahara

M.4.1. The Sahara as a barrier

1) Northward migration of S. frugiperda from the Sahel is problematic because of the barrier
imposed by the Sahara Desert. The distance from the Sahel to the Mediterranean coast is
> 3,000 km and this pathway has none of the factors that facilitate long-distance migration
in North America (Figure M.1).

2) There is evidence that V. cardui routinely undergoes a southerly migration from Europe to
the Sahel, a distance of about 4,000 km in a single flight (Stefanescu et al., 2007, 2012,
2013, 2016; Talavera and Vila 2017).

3) It has been suggested that the springtime northward migration might also occur by a direct
flight over the Sahara Desert to northern Africa (Talavera and Vila 2017), though the
supporting wind currents that might facilitate this long migration are not specified. However,
dust from Africa routinely drifts into Europe indicating frequent air transport between the
two continents. Climatic conditions most favourable to northward migration from the Sahel
occurs in the spring as indicated by the behaviour of V. cardui. Radar data from Europe, the
Mediterranean, and western Africa (Mauritiana) showed that springtime (March–June)
migrations of V. cardui were directed northward while summer/autumn (July–November)
migrations moved southward, the latter consistent with a return migration from Europe to
Africa (Stefanescu et al., 2012). These data suggest a March to June window for migration
from Africa to Europe.

4) Figure M.3 shows average wind direction and velocity for the month of June, which has a
pattern representative of the springtime period. At the lower altitude (925 mb or 762 mb)
predominantly northerly winds in North Africa and the Sahara would seem to represent a
significant barrier to northward migration (as compared to Figure C.1 for the USA).
However, at a 3,000 m (700 mb) altitude the Sahel is dominated by an easterly wind flow
that rotates into a south-westerly wind on the African western coast. If S. frugiperda can fly
at the higher altitude, a plausible wind-supported pathway is possible that entails
progressive migration from the Sahel to the western coast followed by north-easterly
migration into the Maghreb.

Figure M.2: Distribution of selected Noctuid moth pests in Africa and Europe. Source https://
www.cabi.org/isc/
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M.4.2. Saharan Dust

1) Saharan and/or Sahelian dust is regularly transported in three general directions (i)
northward across the Mediterranean to southern Europe, sometimes as far north as
Scandinavia (ii) westward over the North Atlantic, and (iii) eastwards across the eastern
Mediterranean (review by Goudie and Middleton, 2001).

2) Much of the dust comes from two distinct regions (i) a region covering eastern Mauritania,
western Mali and southern Algeria and (ii) the Bodele depression in Chad (Middleton and
Goudie, 2001). However, as noted above, the wind carrying the dust flows at a higher
altitude (3000 m) than the altitude at which S. frugiperda migrates.

3) Dust storms from the Sahara are most common in late spring and early summer. Dust can
spread across Europe and be carried north to Sweden. The Barcelona Dust Forecast Center
prepares daily regional forecasts using an atmospheric model (P�erez et al., 2011; Haustein
et al., 2012). Current three-day forecasts are available at https://dust.aemet.es/forecast.
Figure 7a) to d) shows example forecast for February 2017 indicating wind flows carrying
dust reaching into Spain from west Africa and moving east across Italy into Greece.
https://dust.aemet.es/methods/the-nmmb-bsc-dust-model

4) During a year of monitoring, 20 dust events were measured on Corsica, with the dust
originating for North Africa (reference in Goudie and Middleton, 2001).

5) Chapman et al. (2012) used an atmospheric dispersion model normally used to predict the
trajectory of sedimenting particles, but which has also been used to model dispersal of
midge vectors of bluetongue, to model the dispersal of Autographa gamma (Lep:
Noctuidae) arriving in the UK from Europe.

Figure M.3: Average wind pattern for June at two altitudes. Source: http://iridl.ldeo.columbia.edu/
maproom/Global/Climatologies/Vector_Winds.html?bbox=bb%3A-170%3A15%3A-40%
3A75%3Abb
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6) However, extrapolations from dust distributions have to be treated with some caution. The
average dust transportation altitude is 700 mb (3,000 m) (Varga et al., 2014), which is at
the upper limit of what has been reported for V. cardui (Mikkola, 2003; Stefanescu et al.,
2007) and well above that so far observed for S. frugiperda (Westbrook, 2008) and other
Noctuid moths (Feng et al., 2003; Drake, 2012). This means that a substantial portion of
dust is being transported by air currents not available to S. frugiperda. Transport of dust
across the Sahara Desert typically occurs at speeds of 10–15 meters/sec (Varga et al.,
2014), requiring multiple days to move from the Sahel to the Maghreb. This is substantially
longer than the nocturnal flight duration typical of S. frugiperda. Therefore, using the dust
air transport system to traverse the Sahara Desert would require substantially different
behaviour from S. frugiperda relative to what has been observed in the Western
Hemisphere.

7) Figure M.6 shows monthly mean wind speed and direction at 1,000 mb (ground level) and
925 mb (approximately 1,000 m) for each month of the year.

a) b) 

c) d) 

Source: https://watchers.news/2017/02/23/thick-saharan-dust-europe-February-2017/

Figure M.4: (a–d) Examples of 4 day dust flow projections spreading dust from Africa over Europe
February 2017
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M.4.3. Alternative dispersal model

1) The results of 12 simulations of S. frugiperda dispersing from the Khartoum area of Sudan
and the Addis Ababa region of Ethiopia were presented in Heinrichs et al. (2017).
Figure M.6 is taken from Heinrichs et al. (2017) and shows the output of each simulation.
Simulations differ in the start date (December 1st to May 15th using 15-day intervals). The
result for 15 March is expanded. Concentration (?) of S. frugiperda 120 days after the start
of the simulation is colour coded, descending from red to violet. However, it seems that
these projections were run with S. frugiperda flying for 120 consecutive days. Any
simulation run for a long time will show a wide dispersion pattern.

2) Adult females are relatively short-lived (13–19 days at 26.8°C) (Johnson, 1987).
3) The farther one strays from the normal biology and flight behaviours of S. frugiperda, the

less realistic the simulations become. S. frugiperda is a nocturnal flier. It may be possible to
extend that flight a few hours beyond the scotophase but factors like dehydration become
an increasing issue.
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Figure M.5: Projected dispersal of S. frugiperda over 120 days from the Khartoum area of Sudan and
the Addis Ababa region of Ethiopia (Source: Heinrichs et al., 2017)
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Figure M.6: Monthly mean wind speed and direction at 1,000 mb (ground level) and 925 mb
(approximately 1,000 m) for each month of the year
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Figure M.6: Continued
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Figure M.6: Continued
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M.5. Conclusions

• We know of no documented example of a moth species migrating in continuous flight for
multiple days.

• We know of no studies demonstrating Spodoptera species undergo significant daytime flight.
Perhaps the best method to observe migratory flight time is with radar, which shows
Spodoptera flying primarily, if not solely, at night (Feng et al., 2003).

• There is no evidence that S. frugiperda can travel 3,000 km in a single flight without
extraordinarily favourable wind conditions at the correct altitude. Such conditions are not
present in sub-Saharan Africa for northward migration.

• Taking the above evidence into account the entry of S. frugiperda directly into the EU from
populations in sub-Saharan Africa is judged not feasible and was therefore not quantified.
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Appendix N – Evidence dossier: Entry via migration from North Africa

1) There are multiple examples of Lepidoptera species for which there is evidence of migration
from northern Africa to Europe on a seasonal basis. These include the Noctuid moth
Autographa gamma (Chapman et al., 2012) and the butterfly Vanessa cardui (Stefanescu
et al., 2007). In addition, the distribution pattern of Spodoptera littoralis, a native of Africa,
is consistent with a progressive northward migration into northern Africa and eventual
establishment in southern Europe.

2) Spodoptera species are capable of long-distance migration with continuous flight limited to
scotophase (dark period). This has been demonstrated for S. frugiperda (Rose et al., 1975;
Westbrook, 2008), S. exempta (Rose et al., 1985; Riley et al., 1992), S. exigua (Mikkola,
1970), and S. litura (Saito, 2000). The speed and direction of flights is primarily dictated by
wind vectors above the flight boundary layer, i.e. above the layer of air in which insects are
capable of directed flight. Long-distance moth migration is passive downwind flight
occurring above the flight boundary layer and usually occurs at altitudes from 100 m to
1,500 m (1,000 mb to 850 mb) above ground level (Srygley and Dudley, 2008).
Documented instances of long-distance (> 1,000 km) migration by Spodoptera species
include annual migrations in North America by S. frugiperda (Westbrook et al., 2016), a
mass migration in northern Europe by S. exigua (Mikkola, 1970), seasonal migration over
the Bohai Sea by S. exigua (Fu et al., 2017), and seasonal migration in eastern Asia by
S. litura (Fu et al., 2015). Based on these observations, the migration of S. frugiperda from
northern Africa to Europe across the Mediterranean Sea is assumed to require favourable
wind conditions and resting areas within a single night flight of the origin.

3) There are low altitude regional winds that would support moth flight into the Mediterranean
region (Figure N.1). The ‘leveche’ is a hot, dry southerly wind which blows along the south-
east coast of Spain ahead of low pressure. It often carries dust and sand from Africa. The
‘khamsin’ is a southerly wind blowing over Egypt in front of depressions passing eastwards
along the Mediterranean or North Africa when there is high pressure to the east of the Nile.
The wind blows from the interior of Africa and is hot and dry, and often carries much dust.
It is most frequent from April to June.

4) Detailed examination of seasonal wind patterns indicate favourable air transport for
migrations from Morocco into Spain and northern Tunisia into Sicily during at least some
portions of the year (Figure N.2). In both cases, overwater flight would be less than 300
km. The dispersion pattern based solely wind patterns can be estimated using the HYSPLIT
trajectory model (Stein et al., 2015). A subset of extrapolated trajectories based on a single
12-h flight from Morocco and Tunisia reached Spain and Sicily, respectively (Figure N.3).

Leveche Khamsin

Figure N.1: Maps illustrating regional winds from Africa to Europe
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5) Stefanescu et al. (2007), examined the frequency and sources of Vanessa cardui migrating
into southern Europe from North Africa using experimental data and applying a source-
receptor model. They reported a strong association between migration of V. cardui and
synoptic-scale wind currents. During observation periods in late spring – early summer from
1997 to 2006 (excluding 2005), there were 32 weeks in which there were significant
increases in V. cardui populations. 23 of the 32 weeks also had favourable winds from North
Africa. In Figure 4, dark blue areas in North Africa represent most likely sources of

Figure N.2: : Seasonal wind patterns over northern Africa

Figure N.3: HYSPLIT trajectory projections for a 12 h flight at 1,500 m. Origins in Morocco are
marked 1, 2, 3; in Tunisia 4. Different colours indicate the percentage of trajectories
originating in the source area that cross the coloured zones. For instance: yellow areas
are crossed by more than 10% of the 1,500 m height wind trajectories that originate in
the source areas during a travel time of 12 h. Blue areas are crossed by 1-10% of those
wind trajectories, etc. Further information is given in Stein et al. (2015)
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immigrant V. cardui into Europe (blue regions in to the north of UK are a model artefact
explained by the authors)

6) The importance of the Maghreb as the primary source of migration into Spain was further
indicated by the finding of substantial breeding grounds for V. cardui in locations in
Morocco that were predicted by the pattern of synoptic winds believed to be directing the
flight (Stefanescu et al., 2017).

7) Were S. frugiperda to establish in North Africa, then maize and sorghum growing areas
could provide a source for migratory populations to reach the EU. A study of S. frugiperda
density during an infestation outbreak at two intensive corn-growing sites in Texas, USA,
found average densities as high as 3.97 pupae/m2 (Pair et al. 1989, 1991). In 2017,
Morocco corn and sorghum area were an estimated 140,000 ha. (http://www.fao.org/),
which based on the Texas data could produce as much as 500 million moths. The HYSPLIT
projection estimates that approximately 1% of drift trajectories will enter Spain. However,
not all of the source population will migrate. A HYSPLIT projection for Tunisia (2,200 ha)
also indicates that 1% of the trajectories of migrating adults could reach Sicily.

Figure N.4: Abundance of Vanessa cardui (individuals per 100 m transect) computed with a source-
receptor model applied to count data March-June 2000 – 2004 and 2006. (Stefanescu
et al., 2007)

Figure N.5: production of maize and wheat in Morocco and Tunisia
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8) S. frugiperda is a secondary and sporadic pest of wheat so maize and sorghum are the
most relevant source of migratory populations because S. frugiperda density in non-
preferred hosts do not grow so large that they lead to large migratory populations.

9) If S. frugiperda becomes established in northern Africa (the Maghreb), then proximity and
wind patterns indicate a high probability of periodic migration into Europe.

10) Proportion of a population that will migrate: Estimating the proportion of a population that
migrates is a challenge. It is so far not possible to distinguish migratory from non-
migratory individuals. Probably the best (and perhaps only) estimation is 10% of
S. frugiperda from early stage corn and 90% from late stage will migrate (Westbrook and
Lopez, 2010; Westbrook et al., 2016).

11) Proportion that survive migration: This calculation is also difficult and will be location
dependent. Migration viability in the US cornbelt will likely be relatively high since plant
hosts are plentiful and humidity high, while migration over the Sahara Desert will be low
for the opposite reasons. I suspect migration from the Maghreb to southern Spain will be
moderate with some S. frugiperda being lost over water.

12) Using vertical entomological radar, Chapman et al. (2002) made a conservative estimate
that over four consecutive nights in May 2000, approximately 3,000 Plutella xylostella (Lep:
Yponomeutidae) per kilometre of migration front entered the UK from continental Europe
(Netherlands, Belgium, Germany) using favourable winds.

13) Combining data from entomological radars and ground-based light traps Chapman et al.
(2012) estimated that 10–240 million Autographa gamma (Lep: Noctuidae) reached the UK
each year from continental Europe.

Estimation: Taking the above information into account, expert judgement was used to estimate five
quantiles for each substep in the migration pathway.

Percentile

Substep 1st 25th
Median
(50th)

75th 99th

P0 Area of host crop Fixed/constant (FAO stat)

P1 Proportion of crop acting as a source for migrating
adults

0.10 0.55 1.00 1.00 1.00

P2 S. frugiperda density in source crops 0.1 0.4 1.0 2.5 10.0

P3 Proportion of adults engaging in migration 0.1 0.35 0.5 0.65 0.9
P4 Proportion of trajectories that connect source

populations to the EU
0.01 0.03 0.1 0.3 1.0

P5 Proportion of adults surviving migration to reach EU 0.001 0.01 0.1 0.3 0.9

P1: This proportion is considered to be fairly large (ranging from 0.1 to 1 with 1 as a median)
because of the large potential of the insect to disperse within-season, but uncertainty is also included.

P2: This represents the density of the insect in host crops. Evidence from the USA points to S.
frugiperda densities of 0.39 to 3.9 adults produced per m2 in maize crops in Texas (Pair et al., 1991).
A broader range than this (0.1 to 10 adults produced per m2) was adopted in the elicitation to reflect
a lack of information from the region (S. frugiperda is not established in North Africa). Low densities
would reflect marginal conditions for the insect, either due to climate or low input agriculture resulting
in host crops with low nitrogen content. High densities would indicate good conditions for the insect,
assuming high inputs, e.g. irrigation and fertiliser, but poor control.

P3: The proportion of adults engaging in long-distance flight was based on information in
Westbrook et al. (2016) who built a model for the seasonal migration of S. frugiperda in the USA.
These authors used values for the proportion of adults engaging in long-distance flight of 0.1 and 0.9
in their model, depending on the developmental stage of the maize crop. The elicitors adopted a range
for P3 from 0.1 to 0.9, with a symmetric distribution and 0.5 as a centre.

P4: This parameter is related to the weather systems that can transport the moth from northern
Africa to Europe. Based on simulations with the HYSPLIT model (Stein et al., 2015), the probability of
aerial trajectories starting in source locations reaching Europe within the maximum flight duration of
the moth (not more than 12 h as it is a night flier) was estimated to range from 0.001% to 1%. There
is thus high uncertainty about the value of this parameter.
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P5: This is the proportion of moths surviving flight. There is no virtually no information on this
parameter, other than general knowledge that some butterflies are able to migrate from Africa to
southern Europe in substantial numbers (Vanessa cardui; Stefanescu et al., 2007) while on the other
hand, the exposure during a long flight is expected to take a death toll due to exhaustion, desiccation,
predators, etc. A broad range was elicited, from 0.001 to 0.9 to express lack of substantial
information.
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Appendix O – Evidence dossier: Establishment

O.1. Ensemble modelling

Maps from SDM ensemble modelling with various thresholds are presented below.
0.452 (coded in Figure O.1 as 450) is the threshold that encompasses 95% of the 407 presences

used to make the models. This threshold results in an average of 67% (� 0.02 stdev) of the 407
pseudo-absence locations being correctly predicted to be unsuitable. This could be interpreted as a
33% likelihood of an orange or blue site in fact being unsuitable, and a 5% chance of a non-coloured
site in fact being suitable. (Note this result is the composite result of hundreds of randomly generated
pseudo-absence sets).

0.58 (coded as 580 in Figure O.1) is the threshold that encompasses 90% of the 407 presences
used to make the models. This threshold results in 76% (�0.02 stdev) of the 407 pseudo-absence
locations being correctly predicted to be unsuitable. This could be interpreted as a 24% likelihood of a
blue site in fact being unsuitable, and a 5% chance of a non-coloured or orange site in fact being
suitable. This result is the composite result of hundreds of randomly generated pseudo-absence sets.
The blue sites are a subset of the orange sites.

The reason that parts of the Sahara desert is shown as suitable is perhaps because some of the
hot areas S. frugiperda occupies in the Americas are irrigated, but irrigation is not accounted for in the
SDMs. Therefore, the models think these sites are hot and dry rather than hot and wet. The relevant
occurrence data are in the east of Chile (SumWet values of 5, 25, 50, 60 mm) and the centre of
Mexico (93, 112 mm). The driest place occupied in Chile is just north of Lima in Sechura desert. The

Figure O.1: Locations in northern Africa and Europe where ensemble modelling indicates the
environment is suitable for establishment of S. frugiperda (based on a threshold of
0.452). See text for further explanation
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other points are also in the Sechura desert. According to Wikipedia ‘Short rivers flowing across the
desert from the Andes support intensive irrigation-based agriculture.’ This impression is borne out by
looking at the driest populations in Chile, where the populations are encompassed by orange cells but
not blue.

The Mexican populations in very dry areas are predicted to be unsuitable by the lower threshold,
but this is probably because they are too cold as well as too dry. This could also be true for the
unpredicted Chilean population and the unpredicted Texas population.

O.2. Uncertainty in agreement between models in ensemble

Uncertainty between SDM models in the ensemble can be considered as the uncertainty that the
ensemble accurately represents the favourability of the environment for S. frugiperda population
growth, given the different measures of favourability that result from different data sets and models. It
could also indicates the relative suitability between sites.

In Figure O.3 below, the green cells are above the higher threshold of 0.572 (which has a type I
error rate of 0.1). A high (more green) value means the prediction in the cell is more precise, i.e. it’s
agreed upon by more models. The quantiles are based on the level of agreement between model
global predictions, so the 50th percentile represents the median level of agreement worldwide. All but
one point have agreement between models above 50% (there is one point in yellow on the north
coast of Spain).

Figure O.2: Locations in Central and North America where ensemble modelling indicates the
environment is suitable for establishment of S. frugiperda (based on a threshold of
0.452). See text for further explanation
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O.3. Uncertainty in the lower limit of suitability for S. frugiperda year-
round establishment

This is the uncertainty in where the threshold should be drawn, above which we are confident
that S. frugiperda can establish year-round populations, or complete a single generation. Four
thresholds were applied.

Rationale Threshold

% of known S. frugiperda
sites predicted to be

unsuitable
(Type I error or the inverse
of sensitivity) (�standard

deviation)

% of sites where S. frugiperda is
not present, predicted to be
suitable, (Type II error or the

inverse of specificity)
(�standard deviation)

Predicts all but 5% of
known S. frugiperda sites
to be suitable

0.452 5% 33% (�0.02)

Predicts all but 10% of
known S. frugiperda sites
to be suitable

0.572 10% 24% (�0.02)

Maximises the sum of the
accuracy of predicting

0.674 12% (�0.02) 20% (�0.03)

Figure O.3: Locations Europe where ensemble modelling indicates the environment is suitable for
establishment of S. frugiperda (based on a threshold of 0.452). See text for further
explanation
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Rationale Threshold

% of known S. frugiperda
sites predicted to be

unsuitable
(Type I error or the inverse
of sensitivity) (�standard

deviation)

% of sites where S. frugiperda is
not present, predicted to be
suitable, (Type II error or the

inverse of specificity)
(�standard deviation)

occupied sites to be
suitable and unoccupied
sites to be unsuitable (i.e.
sum of sensitivity and
specificity)

Minimises the difference
between the accuracy of
predicting occupied sites
to be suitable and
unoccupied sites to be
unsuitable (i.e. difference
between sensitivity and
specificity)

0.625 17% (�0.02) 17% (�0.01)

If thresholds are used when generating a map, the threshold to use should align with the level of
uncertainty that is acceptable (to the risk manager). However, selection of threshold should also be
based on the known problems with the data used to calculate specificity. There are accurate records of
the presences, but not the absences of S. frugiperda. The absence data are much more likely to be
wrong than the presence data. This suggests that sensitivity should be weighted more highly than
specificity.

Threshold: 0.452 0.572

Predicts 95% of suitable sites; 33% of 
sites are predicted suitable but S. 
frugiperda not known to be in them

Predicts 90% of suitable sites; 24% of 
sites are predicted suitable but S. 
frugiperda not known to be in them

Predicts 88% of suitable sites; 20% of 
sites are predicted suitable but S. 
frugiperda not known to be in them

0.674

The sequence of maps for different thresholds clearly shows how the area of potential
establishment of S. frugiperda is shrinking as the type II error rate is reduced (i.e. the proportion of
absence locations classified as suitable). It shows that the actual area of potential establishment where
winter survival is possible in Europe and northern Africa could be very marginal indeed.
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