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Lifting the bandwidth limit of optical homodyne
measurement with broadband parametric
amplification
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Homodyne measurement is a corner-stone method of quantum optics that measures the

quadratures of light—the quantum optical analog of the canonical position and momentum.

Standard homodyne, however, suffers from a severe bandwidth limitation: while the band-

width of optical states can span many THz, standard homodyne is inherently limited to the

electronically accessible MHz-to-GHz range, leaving a dramatic gap between relevant optical

phenomena and the measurement capability. We demonstrate a fully parallel optical

homodyne measurement across an arbitrary optical bandwidth, effectively lifting this band-

width limitation completely. Using optical parametric amplification, which amplifies one

quadrature while attenuating the other, we measure quadrature squeezing of 1.7 dB simul-

taneously across 55 THz, using the pump as the only local oscillator. As opposed to standard

homodyne, our measurement is robust to detection inefficiency, and was obtained with

>50% detection loss. Broadband parametric homodyne opens a wide window for parallel

processing of quantum information.
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The standard representation of a nearly monochromatic
light field is either as a complex amplitude a ¼ aj jeiφ to
reflect the amplitude and phase of the field oscillation

EðtÞ ¼ ae�iΩt þ a�eiΩt = aj jcosðΩt þ φÞ (Ω the carrier fre-
quency), or as a superposition of two quadrature oscillations E(t)
= x cosΩt + y sinΩt, where x = a + a* and y = i(a − a*) are the real
quadrature amplitudes of the cosine-wave and sine-wave com-
ponents. While the quadrature representation may be just a
mathematical convenience in classical electromagnetism, it is of
fundamental importance in quantum optics. The two quadrature
operators x = a + a† and y = i(a − a†) form a conjugate pair of
non-commuting observables ([x, y] = 2i) analogous to position
and momentum in mechanics, indicating that their fluctuations
are related by quantum uncertainty ΔxΔy ≥ 1. This conjugation is
most emphasized with quantum squeezed light1, where the
quantum uncertainty of one quadrature amplitude is reduced
(squeezed), while the uncertainty of the other is inevitably
increased (stretched), that is, Δx< 1<Δy2–4.

Homodyne measurement, which extracts the quadrature
information of the field, forms the backbone of coherent detec-
tion in physics and engineering, and plays a central role in
quantum information processing, from measuring non-classical
squeezing1, through quantum state tomography5–7, generation of
non-classical states8, quantum teleportation9–11, quantum key
distribution, and quantum computing12,13. To measure the field
quadratures, homodyne detection compares the optical signal to a
strong and coherent quadrature reference (local oscillator—LO),
where the specific quadrature axis to be measured is selected by
tuning the phase of the LO. Hence, the heart of a homodyne
detector encompasses an external LO and a field multiplier. This
is most evident for homodyne measurement in the radio-
frequency (RF) domain, where the input radio-wave and the
LO are directly multiplied using an RF frequency mixer. In optics,
however, direct frequency mixers do not exist. Instead, standard
optical homodyne relies on a beam splitter to superpose the
optical input and the LO (see Fig. 1a) and on the nonlinear
electrical response of square-law photo-detectors as the field
multipliers that generate an electronic signal proportional to the
measured x or y quadrature. Thus, measuring quadratures with
standard homodyne is inherently limited to the electronic
bandwidth of the photo-detectors (MHz-to-GHz). In addition,
homodyne detection is highly sensitive to the noise level and
quantum efficiency of the detectors, which leads to decoherence
due to the addition of vacuum noise14–17.

Yet, optical states of light can easily span optical bandwidths of
10–100 THz and more, where the quadratures x(t), y(t) vary
rapidly on a time scale comparable to the optical cycle (E(t) = x(t)
cosΩt + y(t) sinΩt). Thus, the detection method enforces an
inherent distinction between nearly monochromatic and broad-
band fields. In the near monochromatic case, the instantaneous
quadrature amplitudes vary slowly over millions of optical cycles,
and can be directly observed from the time-dependent electronic
signal of the homodyne output. For broadband light, however,
photo-detectors are too slow to follow the quadrature variations,
demanding an inherently different measurement approach14–17.

Two examples can illuminate both the potential utility of broad
bandwidth in quantum information and the difficulty of standard
methods to exploit it. One example is one-way quantum com-
putation with a quantum frequency comb13,18, which forms the
most promising realization of scalable quantum information to
date. This approach exploits the large bandwidth of frequency
mode pairs from a single parametric oscillator (two-mode
squeezed vacuum) as a set of quantum modes (Q-modes), where
coupling among near Q-modes demonstrated the largest entan-
gled cluster states to date along with a complete set of quantum
gate operations13. The number of parallel Q-modes is dictated by

the squeezing bandwidth of the parametric oscillator, which can
extend up to a full optical octave by rather simple means (limited
only by phase matching of the nonlinear interaction)19–21.
Assuming a squeezing bandwidth of 10–100 THz, the number of
simultaneous Q-modes can easily exceed 105. The limitation of
this approach to quantum computation is the bandwidth of the
measurement, where each Q-mode requires a separate homodyne
detection using a precise pair of phase-correlated LOs. A broad
bandwidth of Q-modes requires a dense set of correlated LOs and
multiple homodyne measurements, quickly multiplying the
complexity to impracticality. In our experiment, we simulta-
neously measure the entire bandwidth of a broadband two-mode
squeezed vacuum with only one LO—the pump field that gen-
erates the squeezed light to begin with.

Another example is in quantum key distribution, where
enhanced bandwidth was employed to increase the data rate by
increasing the number of bits per photon. The concept here is to
divide the photon readout time, which is limited by photo-
detectors, into multiple short time-bins, which act as an addi-
tional time stamp for each photon (or pair)22,23. The time stamp
(bin), which is usually detected using a Franson interferometer24,
enhances the number of bits per photon to log2N, where N is the
number of time-bins. Theoretically, if the bandwidth limit of the
detector could be lifted, all time (or frequency) bins could be
detected independently, and a ×N higher flux of photons could be
used, allowing full parallelization of the communication across
the available bandwidth and enhancement of the data throughput
by a larger factor N (compared to log2N).

Here we present a different approach to optical homodyne,
which resorts to a broadband optical nonlinearity—parametric
amplification, as the field multiplier. Using this method we
measure the entire bandwidth simultaneously with a single
homodyne device and a single LO. Specifically, since parametric
gain only amplifies one quadrature of the input signal but
attenuates the other, analysis of the output spectrum enables
evaluation of the input quadratures. Due to the parametric
amplification of the quadrature of interest, our measurement is
insensitive to detection inefficiency (and to the added vacuum
noise it introduces). Indeed, our observation of broadband
squeezing was easily obtained with >50% loss in the detection
channel. With sufficient parametric gain, any given x quadrature
can be amplified to overwhelm the attenuated orthogonal y
quadrature, even if it was originally squeezed, such that the
resulting output signal is practically proportional only to the
input x quadrature. Even if the parametric gain in the measure-
ment is not high enough to completely diminish the y quadrature,
measurement is simple, once the desired x quadrature is suffi-
ciently enhanced above the vacuum level. Specifically, two
orthogonal measurements, one for each quadrature, enable
extraction of both quadratures (average) over the entire optical
bandwidth, as detailed hereon.

Results
Experiment. The basic concept of our method for broadband
homodyne detection is illustrated in Fig. 1, showing in Fig. 1a the
standard homodyne method and in Fig. 1b the parametric
homodyne detection as realized by a broadband parametric
amplifier acting on the quadratures of the light. To describe the
effect of the parametric amplifier in Fig. 1b, we use the common
expression for the optical field at the output of a parametric
amplifier (based on either three-wave or four-wave mixing
(FWM) optical nonlinearity: aout ¼ ain coshðgÞ þ ayin sinhðgÞ =
xineg þ yine�g , where ain; a

y
in are the input field operators, xin, yin

are the input quadratures, and g is the parametric gain. Hence, the
parametric amplification amplifies one input quadrature (xineg)
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while attenuating the other (yine−g), indicating that for sufficient
amplification, the output field reflects one quadrature of the input
primarily without adding noise to the measured quadrature, thus
offering a quadrature selective quantum measurement. The
amplification process responds instantaneously to time variations
of the quadrature amplitudes x(t), y(t) and the amplification
bandwidth is limited only by the phase matching conditions in
the nonlinear medium, which can easily span an optical band-
width of 10–100 THz (implications of the time dependence are
deferred to a later discussion). In our experiment, we measured
the spectrally resolved intensity of the chosen input quadrature
x†(ω)x(ω) simultaneously across the entire bandwidth by
detecting the output spectrum of a parametric amplifier with an
input of broadband squeezed vacuum.

We note that the parametric amplifier used in the measure-
ment need not be ideal. Specifically, since the attenuated
quadrature is not measured, it is not necessarily required to be
squeezed below vacuum, only to be sufficiently suppressed

compared to the amplified quadrature. Consequently, restrictions
on the measurement amplifier are considerably relaxed compared
to sources of squeezed light, allowing it to operate with much
higher gain.

The common source for squeezed light or squeezed vacuum, in
our experiment, is also a parametric amplifier. If the amplification
is spontaneous (vacuum input), the amplifier attenuates one of
the quadratures of the vacuum input state, squeezing its quantum
uncertainty. For measuring the squeezing, we exploit the same
nonlinearity and the same pump that generates the squeezed state
in the first place, thus guaranteeing a bandwidth match of the
homodyne measurement to the squeezing process. The quad-
rature information over a broad frequency range is obtained
simultaneously by measuring the spectrum of the light at the
output of the detection parametric amplifier. With a single LO—
the pump, each individual frequency component is measured
independently, and the number of accessible Q-modes (or Q-bits)
that could be utilized simultaneously would be multiplied by N
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Fig. 1 Parametric homodyne vs. standard homodyne. a The standard homodyne measurement, where the electrical nonlinearity of two square-law photo-
detectors in a balanced detection scheme is used to multiply the quantum input field with the LO. The photo-detection (and the homodyne gain associated
with it) mark the transition from a quantum optical input (green frame) to a classical and electrical output (purple frame), where a severe bandwidth
limitation is imposed by the electronic detection. b The parametric homodyne method uses an optical parametric amplifier to amplify the quantum
quadrature of interest to a classical level (and attenuate the other) already in the optical domain before the photo-detection, thereby generating an optical
intermediate signal (light yellow frame), which is already classical, yet preserves the full optical bandwidth of the quantum input, and allows parallel photo-
detection and classical manipulation over the entire bandwidth. In the illustration, the broadband optical input is composed of four frequency components
(two-mode pairs), such that the Ω± 2ω mode-pair generates a fast beat envelope only on the x quadrature, and the Ω±ω mode-pair generates a slower
beat envelope only on the y quadrature. The total broadband optical field conceals the quadrature information, but after the parametric amplifier, the x
quadrature is amplified and the y quadrature is attenuated, such that the resulting parametric output is almost entirely proportional to the x quadrature,
rendering the fast x beat clearly visible. The small black oscillation plotted on top of the various fields is a cosine local-oscillator reference to identify the x
and y quadratures
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(the number of resolved frequency bins) rather than log2N. As
will be explained later, a single-frequency component of the
quadrature is actually a combination of two-frequency modes,
commonly termed signal ωs and idler ωi, symmetrically separated
around the main carrier frequency Ω.

The experimental demonstration of broadband parametric
homodyne consists of two parts (see Fig. 2): first, generation of
broadband squeezed vacuum, and second, parametric homodyne
detection of the generated squeezing. We generate broadband
squeezed vacuum by collinear FWM in a photonic crystal fiber
(PCF) that is pumped by narrowband picosecond pulses near the
zero dispersion wavelength of the PCF. To measure the generated
squeezing, we couple the light generated by the FWM process
together with the pump into another PCF, which acts as the
measurement parametric amplifier (in the experiment this was
the same PCF in the backward direction). After this second
(measurement) pass we record the parametric output spectrum to
extract the quadrature information (see Fig. 3a).

Since squeezed vacuum is a gaussian state, its quadrature
distribution is completely defined by the second moment. We
therefore measure the average spectral intensity (with averaging
times of a few 10 ms) and reconstruct the average quadrature
fluctuations xyx

� �
, yyy
� �

. Measurement of the instantaneous
intensity distribution is possible with a shorter integration time,
but not necessary for squeezed vacuum.

Fringes appear across the output spectrum of the measurement
parametric amplifier due to chromatic dispersion in the optical
components (filters, windows, etc.), which introduces a varying
spectral phase with respect to the pump across the FWM
spectrum. Thus, for some frequencies the stretched quadrature is
amplified (bright fringes) while for others the squeezed quad-
rature is amplified (relatively dark fringes), as seen in Fig. 3a. The
specific quadrature to be amplified can be controlled by the pump
phase (see Methods for more details on the experiment). The
broadband squeezing is evident already from the raw output
spectrum, shown in Fig. 3a, where reduction of the parametric
output below the vacuum noise level (the parametric output when
the input is blocked) is observed across the entire 55 THz. To
verify this, we varied the squeezing by varying the loss of the
input FWM field before the measurement (second) pass through
the PCF. As the loss is increased, the squeezing slowly vanishes,
and even though the total power entering the fiber is diminished,
the minimum fringes at the output of the measurement amplifier
rise towards the vacuum input level, as shown in the inset of
Fig. 3a.

The extraction of the quadrature information from the
measured parametric output assumes knowledge of the para-
metric gain. The calibration of the parametric amplifier is simple,

performed by recording the output spectrum for a set of known
inputs (Fig. 3b), when blocking various input fields (signal, idler,
or pump). For example, the vacuum level of the parametric
amplifier is observed when both the signal and the idler-input
fields are blocked (Izsi—zero signal idler). Also, the average
number of photons at the input is given by the ratio of the
measured output when the signal is blocked (idler only, Izs—zero
signal) to the vacuum input level Nih i ¼ Izs

Izsi
� 1. This calibration

process is fully described in the Methods. After calibration, we
obtain the parametric homodyne results of Fig. 3c, which show
~1.7 dB squeezing across the entire 55 THz bandwidth.

The observed squeezing in our experiment is far from ideal,
primarily due to the fact that the pump is pulsed, which induces
an undesirable time dependence of both the magnitude and phase
of the parametric gain in the squeezing process, as well as in the
parametric homodyne detection via self-phase and cross-phase
modulation—SPM and XPM. Since our pump pulses are
relatively long, their time dependence can be regarded as
adiabatic, indicating that the instantaneous squeezing (source)
and parametric amplification (measurement) are ideal, but the
quadrature axis, squeezing level, and gain of the two amplifiers
vary with time, not necessarily at the same rate. Thus, the
measured spectrum, which represents a temporal average of the
light intensity over the entire pulse, diminishes somewhat the
expected squeezing (see illustration in the Methods).

Even with a pulsed pump, however, the various homodyne and
calibration measurements are consistent and unequivocal for
weak enough pump intensity (see Methods for further details on
the pulse-averaging effects). With a pure CW pump, as is
generally used in squeezing applications, this pulse-averaging
limitation would not exist. Another limitation in our measure-
ments is the need to re-couple the FWM back into the PCF,
which introduces an inevitable loss of 30% and reduces the
observed squeezing. This “known” loss can either be avoided
completely in other experimental configurations or can be
calibrated out to estimate the “bare” squeezing level of the
measured light source (see Methods).

We verified the properties of the parametric homodyne
detection in several ways. We measured the squeezed quadrature
xyx
� �

, and the uncertainty area, xyx
� �

´ yyy
� �

, of the squeezed
state. Ideally, the generated squeezed light should be a minimum
uncertainly state of xyx

� �
´ yyy
� � ¼ 1, independent of the

generation gain; and the average intensity of the squeezed
quadrature should exponentially decrease with the gain. The
results are presented in the Methods, showing a clear reduction of
the normalized squeezed quadrature intensity down to xyx

� � �
0:68 (32% below the vacuum level), and the uncertainty area
remains nearly ideal at xyx

� �
´ yyy
� �

<1:3, up to a pump power of
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Fig. 2 Experimental schematic of the parametric homodyne. The experiment consists of two parts: (1) generation of broadband squeezed light and (2)
homodyne measurement of the generated squeezing. Broadband two-mode squeezed light is generated via spontaneous four-wave mixing (FWM) in a
photonic crystal fiber (PCF) pumped by 12 ps laser pulses (786 nm). After generation, the pump is replaced by an appropriately delayed copy of the original
pump light, via a narrowband filter, which allows independent intensity and phase control, to tune the parametric gain and to select the specific quadrature
to be measured. Then, the new pump and the FWM light enter the second PCF for the homodyne measurement. After this second (measurement) pass
through the amplifier, the pump is separated from the FWM light by a narrowband filter and the FWM light is measured by a spectrometer
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60 mW. Further increase of the pump does not improve the
measured squeezing due to pulse effects, and the minimum
uncertainty property deteriorates. Based on the measured
squeezing, the instantaneous squeezed quadrature at the peak of
the pulse was estimated to be >3 dB (see Methods). Additional
verification measurements of the broadband squeezing are
presented and illustrated in the Methods.

Two-mode quadratures. The fundamental quadrature oscillation
—a single-frequency component of a quadrature amplitude x(ω),
y(ω), is a two-mode combination of frequencies ωs =Ω +ω and
ωi =Ω −ω—the signal and idler25–27. Using the field operators of
the signal as = a(ω) and the idler ai = a(−ω), the quantum
operators of the quadratures x(ω), y(ω) are (see Methods for an
intuitive reasoning)

xðωÞ ¼ as þ ayi
yðωÞ ¼ i ays � ai

� �
(

: ð1Þ

This definition preserves the commutation relation [x, y] = 2i and
reduces in the monochromatic case to the single-mode quad-
ratures x = a + a†, y = i(a† − a).

The generalization of the standard quadratures to two-mode
quadratures requires some attention. As opposed to the standard
quadrature operators, which are hermitian and represent the
time-independent real amplitude of the cosine (sine) oscillation,
the two-mode quadrature operators of Eq. (1) are non-hermitian
x†(ω) = x(−ω) ≠ x(ω) and represent a time-dependent beat
between the signal and idler modes with an envelope frequency
ω, carried by a cosine (sine) wave at frequency Ω (see Methods
for some intuitive reasoning). The quadrature operators x(ω),
x†(ω) represent the beat envelope, which has an amplitude and
phase, in some similarity to the field operators a, a† that represent
the amplitude and phase of the carrier oscillation. Yet, the two-
mode quadrature x is an observable quantity (in contrast to the
field operator a). Since x commutes with its conjugate [x(ω),
x†(ω)] = 0 (as opposed to [a, a†] = 1), it is possible to
simultaneously measure both the real and imaginary part of the
quadrature envelope, and thereby obtain complete information
on both amplitude and phase of the single quadrature:

Re½x� ¼ x þ xy ¼ Xs þ Xi

Im½x� ¼ i x � xy
� � ¼ Ys � Yi;

(
ð2Þ

where Xs,i, Xs,i are the standard single-mode quadratures of the
signal and idler modes. Our experiment measured x†(ω)x(ω).

Since the phase of the two-mode quadrature relates to
commuting observables (as opposed to the carrier phase), it does
not reflect a non-classical property of the quantum light field, but
rather defines the classical temporal mode in which the field is
measured. Specifically, the temporal mode of measurement is the
two-frequency beat pattern of frequency ω (see Methods for an
illustration), where the envelope phase defines the temporal offset
of the beat. This offset, along with other mode parameters, such
as polarization, spatial mode, carrier frequency, and so on define
the mode of the LO. Of course, quantum entanglement is possible
between the two envelope modes (cosine or sine) in direct
equivalence to entanglement of a single photon (or photon pair,
or cat state) between polarization modes, which is widely used for
quantum information. However, this “quantumness” between
modes is different and additional to the intra-mode quantum
state, which is described by the quadratures x, y.

Due to the bandwidth limitation of standard homodyne
measurement, the commonly used expression to interpret two-
mode quadratures of optical frequency separation ω does not rely
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Fig. 3 The procedure of parametric homodyne. Measurement of the
quadratures includes three stages: a raw output measurement, b
calibration, and c quadrature extraction. a Raw output measurements: In
the most general case of arbitrary parametric gain, two measurements are
needed to extract the quadrature information: (1) amplifying one
quadrature (black); and (2) amplifying the orthogonal quadrature (purple).
The specific quadrature to be amplified is defined by tuning the pump
phase. The reduction of the raw output beneath the vacuum input level
(dashed green) directly indicates squeezing. The inset shows the effect of
loss at the input FWM light on the parametrically amplified output. As the
loss is increased, the squeezing is reduced and the observed fringe minima
rise towards the vacuum level (vertical arrows) even though the total input
intensity is considerably decreased (a non-classical signature). b
Calibration: To calibrate the parametric amplifier, the output response is
measured for a set of three known inputs: (1) idler-input only (blocked
signal, Izs—solid blue), (2) vacuum input (blocked entire FWM—both signal
and idler, Izsi—dashed green), and (3) zero amplification (blocked pump,
Izp—dotted red). c Extracted quadratures (black and purple in accordance
with a)—with the analysis detailed in the Methods, quadrature information
is extracted. Quadrature squeezing is evident across the entire 55 THz
spectrum down to xyx

� � � 0:68, 32% below the vacuum level (~1.7 dB)
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on Eq. (1), but rather on Eq. (2). Two independent homodyne
measurements of the signal and idler quadratures, xs,i, ys,i need to
be made relative to two correlated LOs at their respective
frequencies ωs, ωi so that the two output homodyne signals are
within the electrical bandwidth. Thus, the standard procedure to
measure just a single-frequency component of the two-mode
quadrature x(ω) (and its squeezing) requires two separate
homodyne measurements of the independent quadratures of
both the signal and the idler using a pair of phase-correlated
LOs17,28. For a broadband spectrum, standard two-mode
homodyne requires a dense set of correlated pairs of LOs for
each frequency component of the measurement. As we have
shown, however, in our experiment above, a single LO is
sufficient to simultaneously extract a specific quadrature across
the entire optical bandwidth, just as a single pump laser can
simultaneously generate the entire bandwidth of quadrature
squeezed mode pairs.

Quantum derivation of the parametric amplified output. To
model quantum mechanically the parametric homodyne process,
we derive an expression for the parametric output intensity
(photon-number) operator of the signal (or idler) mode, NsðgÞ ¼
aysðgÞasðgÞ (g is the parametric gain) in terms of the input com-
plex quadratures x(ω), y(ω). Mathematically, our method relies
on the similarity between the quadrature operators of interest
(Eq. (1)) xðωÞ ¼ as þ ayi , iy

y ¼ as � ayi and the field operator at
the output of a parametric amplifier:

asðgÞ ¼ as coshðgÞ þ eiφayi sinhðgÞ � Cas þ Dayi ; ð3Þ

where the coefficients C and D are generally complex. Since field
operators must fulfill aysðgÞ; asðgÞ

� � ¼ 1, the two coefficients C
and D must obey Cj j2� Dj j2¼ 1, which leads to the common
description of C = cosh g and D = eiφ sinh g. However, the attrib-
uted phase of the parametric process φ, which is determined by
the pump phase and the phase matching conditions in the non-
linear medium, can also be expressed explicitly, leaving the two
coefficients C, D real and positive (rather than complex), using

asðg; θÞ ¼ Caseiθ þ Dayi e
�iθ

� 	
eiθ0 . Since the overall phase θ0 does

not affect the photon-number calculations, we may discard it as
θ0 = 0. In this expression we account for the phase of the pump as
a rotation of the input quadrature axis—as,i→ as,ieiθ. Accordingly,
the rotated complex quadrature operators (Eq. (1)) become
xθðωÞ ¼ aseiθ þ ayi e

�iθ and yθðωÞ ¼ i ayse
�iθ � aieiθ

� �
.

Parametric amplification directly amplifies one quadrature of
the input and attenuates the other, as evident by expressing the
field operators as(g) at the output using the quadrature operators
x,y of the input:

asðgÞ ¼ C þ D
2

x þ i
C � D

2
yy ¼ eg

2
x þ e�g

2
iyy; ð4Þ

where the index θ was dropped for brevity. Finally, the parametric
photon-number operator at the output is

NsðgÞ ¼ aysðgÞasðgÞ ¼ Ns�Ni�1
2

þ CþD
2

� �2
xyx þ C�D

2

� �2
yyy

¼ Ns�Ni�1
2 þ e2g

4 xyx þ e�2g

4 yyy;

ð5Þ

where Ns;i ¼ ays;ias;i represent the input photon numbers
(intensities) of the signal and idler. When access is available
simultaneously to the intensities of both the signal and the idler,
their sum of intensities provides the cleanest measurement of the

quadrature intensities

NsðgÞ þ NiðgÞ ¼ e2g

2
xyx þ e�2g

2
yyy � 1: ð6Þ

Note that Ns(g) −Ni(g) =Ns −Ni is a constant of the amplifica-
tion, independent of the parametric gain.

With sufficient parametric gain, any given x quadrature at the
input can be amplified above the vacuum noise to a “classical
level”, even if it was originally squeezed, which allows complete
freedom in measurement since vacuum fluctuations are no longer
the limiting noise. If the measurement gain considerably exceeds
the generation gain, such that e2gx†x≫ e−2gy†y, the amplified
quadrature will dominate the intensity of the output light
allowing to neglect the intensity of the attenuated orthogonal y
quadrature, and the measurement of the light intensity spectrum
at the output will directly reflect (after calibration, see Methods)
the single-shot value of the input quadrature intensity x†(ω)x(ω),
just like the standard measurement of the electrical spectrum at
the output of standard homodyne.

Although the concept of parametric homodyne is conveniently
understood in the limit of large gain, where the quadrature of
interest dominates the output light field, parametric homodyne is
equally effective with almost any finite gain. When the
measurement gain is not large enough and the attenuated
quadrature cannot be neglected, the two quadrature intensities
can be easily extracted using a pair of measurements; setting the
pump phase to amplify one quadrature (θ = 0) and then to
amplify the other (θ = π/2), as illustrated in Fig. 3. Indeed, the
output intensity in this case will not directly reflect the quadrature
intensity, but it still provides equivalent information about the
quadrature at any finite gain, since two light intensity measure-
ments along orthogonal axes uniquely infer the two quadrature
intensities at any finite gain, indicating that the information
content of a measurement of the output intensity is the same as
that of the quadrature intensity. An analytic derivation of this
equivalence is provided in the Methods.

Applicability to quantum tomography. Quantum state tomo-
graphy is a major application of homodyne measurement. It
allows reconstruction of an arbitrary quantum state (or its density
matrix or Wigner function) from a set of quadrature measure-
ments along varying quadrature axes7. Unique reconstruction
requires a complete measurement of the quadrature distribution
function, which necessitates single-shot measurements of the
instantaneous quadrature value, not just its average. Although
both standard two-mode homodyne and parametric homodyne
provide incomplete quadrature information in a single shot (in
somewhat different ways), they still allow reconstruction of the
quantum state under some assumptions. Hereon we review the
different limitations of both methods and their implications to
quantum tomography, leading to a conclusion that a combination
of parametric homodyne followed by standard homodyne alle-
viates all the limitations and allows unambiguous reconstruction
of arbitrary states.

Standard two-mode homodyne cannot provide a complete
measurement of x(ω) in a single shot since standard homodyne is
a destructive measurement. Specifically, observation of Re[x(ω)]
= Xs + Xi requires a standard homodyne measurement of both
frequency modes, which inevitably destroys the quantum state by
photo-detection and prevents a consecutive measurement of
Im[x(ω)] = Ys − Yi. Splitting the state into two measurement
channels is impossible since such a splitting will inevitably
introduce additional vacuum noise. Thus, although Re[x(ω)] and
Im[x(ω)] commute, standard two-mode homodyne can evaluate
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only one of them in a single shot. In analogy to light polarization,
standard homodyne acts as an absorptive polarizer that detects
one polarization but absorbs the other, preventing complete
analysis of the polarization state.

Our current realization of parametric homodyne suffers from a
different ambiguity in a single shot (envelope phase). Since
parametric homodyne measures only the instantaneous intensity
of the quadrature x†x (across a wide spectrum), but not its phase,
only the probability distribution of the intensity P(x†x) can be
measured.

Let us analyze the ambiguity that is introduced to the
reconstruction of a two-mode quantum state by the incomplete
measurement, for both standard homodyne (only real part) and
parametric homodyne (only intensity). For standard homodyne,
the interpretation of a null result is ambiguous: a zero
measurement can arise either from a true null of the measured
quadrature or from a wrong selection of the envelope phase.
Thus, standard homodyne can reconstruct a two-mode quantum
state only if the envelope phase is fixed and known a priori. For
two-mode squeezed vacuum, however, which is the major two-
mode quantum state that is experimentally accessible, the
envelope phase is random, indicating that standard homodyne
can provide only the average fluctuations
xyx
� � ¼ Xs þ Xið Þ2� �þ Ys � Yið Þ2� �

, but not the single shot
value of the quadrature (or its intensity).

For parametric homodyne, where the quadrature intensity is
measured, null (or any intensity) is unambiguously interpreted
for any envelope phase, but the sign of the measured quadrature
is ambiguous. Thus, complete reconstruction is possible (for any
envelope phase) only if the symmetry of the quadratures is
known, which is relevant to a large set of important quantum
states. For example, photon-number states or squeezed states6

that are known to be symmetric can be reconstructed, and indeed
the non-classicality of a single photon state is directly manifested
by the fact that the probability to measure a null intensity

vanishes P xyθxθ ¼ 0
� 	

¼ 0 for any quadrature axis θ, which

inevitably indicates negativity of the Wigner function at zero field.
Yet, a two-mode coherent state ± αj i and cat states like
αj i± �αj i8 can be differentiated only if the symmetry of the
state is assumed a priori. For broadband squeezed vacuum, where
the envelope phase is inherently random, this measurement is
ideal.

Clearly, the two methods complete each other in their
capabilities, indicating that a combination of parametric homo-
dyne with interferometric detection is the perfect solution to a
complete measurement, as illustrated in Fig. 4. Specifically,
parametric gain is a non-demolition process (contrary to

standard homodyne) that provides a light output and allows
extraction of the complete quadrature information in a single
shot, including the phase. Thus, if the measured quadrature is
amplified sufficiently above the vacuum, this quadrature becomes
insensitive to loss, even for moderate gain values. The parametric
output light can thus be split to two homodyne channels that will
measure both Re[x(ω)] and Im[x(ω)] simultaneously (see Fig. 4).
The splitting does not hamper the measurement (contrary to
standard homodyne) since the added vacuum affects primarily
the attenuated quadrature, which is not measured.

In the literature, the possibility to add a parametric amplifier
before electronic detection was analyzed in several different
contexts: already the seminal paper of Caves from 1981 that
introduced squeezed vacuum to the unused port of an
interferometer for sub-shot noise interferometric measurement,
suggested to include a parametric amplifier in the detection arm
to overcome the quantum inefficiency of photo-detectors29,
Leonhardt and Paul30 later suggested a similar use of parametric
amplification for quantum tomography that is insensitive to loss,
Ralph31 suggested it for teleportation and Davis et al.32 for the
analysis of atomic spin-squeezing. Most recently, this concept was
experimentally implemented for atomic spin measurements in33

enabling phase detection down to 20 dB below the standard
quantum limit with inefficient detectors.

Comparison to standard homodyne. It is illuminating to
examine on equal footing standard homodyne measurement and
the parametric homodyne method. After all, the balanced
detection in standard homodyne produces a down-converted RF
field at the difference-frequency of the two optical inputs (LO and
signal), similar to optical down-conversion, which is the core of
parametric amplification. In that view, the well-known homodyne
gain of balanced detection (proportional to the LO field) produces
an amplified electronic version of the input quantum quadrature,
directly analogous to the parametric gain (proportional to the
pump amplitude), which optically amplifies a single input
quadrature. Thus, both the standard homodyne gain and the
optical parametric gain serve the same homodyne purpose—to
amplify the quantum input of interest (the optical quadrature) to
a classically detectable output level34, which is sufficiently above
the measurement noise (the electronic noise for standard
homodyne or the optical vacuum noise for parametric homo-
dyne). Consequently, standard and parametric homodyne are two
faces of the same concept.

The difference between the two schemes is both technical and
conceptual. On the technical level, the gain of standard
homodyne is generally very large, allowing to a priori neglect
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Fig. 4 A Complete broadband homodyne scheme. Parametric homodyne allows to fully measure the two-mode quadrature amplitude; once the quadrature
of interest x(ω) is sufficiently amplified above the vacuum level by the parametric amplifier, this quadrature becomes insensitive to additional vacuum
noise, which allows splitting of the light into two standard homodyne channels in order to measure simultaneously both Rex(ω) and Imx(ω)
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any effect of the unmeasured quadrature on the electrical output,
whereas the optical parametric gain may not be sufficient to
justify such an a priori assumption and may require more careful
analysis of the output with finite gain, as we described earlier. On
the conceptual level, parametric homodyne provides an optical
output, as opposed to standard homodyne that destroys the
optical fields. Since the optical parametric output can be
sufficiently “classical” (amplified above the vacuum level), it is
far less sensitive to additional vacuum noise from optical loss or
detector inefficiency. Consequently, parametric homodyne does
not only preserve the optical bandwidth across the quantum-
classical transition (see Fig. 1), but can also allow complete
reconstruction of the two-mode quadrature in a single shot, as
was explained in the previous sub-section. Hence, adding a layer
of optical parametric gain before the electronic photo-detection,
be it intensity detection or homodyne provides an important
freedom to quantum measurement beyond the ability to preserve
the optical bandwidth.

Beyond the pure two-mode field. Last, let us briefly consider
broadband time-dependent states of light beyond the single-
frequency two-mode state. Any classical wave packet with spec-
tral envelope f ðωÞ ¼ f ðωÞj jeiφðωÞ around the carrier frequency Ω
(normalized to

R
dω fðωÞj j2¼ 1) can be regarded as an electro-

magnetic mode with associated quantum field operators

af ðtÞ ¼
R
dωfðωÞaðωÞe�iωt

ayf ðtÞ ¼
R
dωf?ðωÞayðωÞeiωt;

(
ð7Þ

and associated temporal quadratures

xf ðtÞ ¼
R
dωe�iωt fðωÞaðωÞ þ f?ð�ωÞayð�ωÞ� �

yf ðtÞ ¼ i
R
dωe�iωt f?ð�ωÞayð�ωÞ � fðωÞaðωÞ� �

;

(
ð8Þ

which is just the Fourier transform of Eq. (1) (see also Eq. (11) in
the Methods).

We can express the temporal quadrature xf(t) in terms of the
two-mode quadratures x(ω), y(ω) as

xf ðtÞ ¼
R
dωe�iωt fðωÞþf?ð�ωÞ

2 xðωÞ þ i fðωÞ�f?ð�ωÞ
2 yyðωÞ

h i
yf ðtÞ ¼

R
dωe�iωt fðωÞþf?ð�ωÞ

2 yyðωÞ � i fðωÞ�f ?ð�ωÞ
2 xðωÞ

h i
;

8><
>: ð9Þ

where the symmetric and antisymmetric parts of the wave packet
f ðωÞþf ?ð�ωÞ

2 ; f ðωÞ�f ?ð�ωÞ
2 are the Fourier transforms of Ref(t), Imf(t)

the real and imaginary parts of the field envelope in time.
Equation (9) can be simplified considerably when the spectrum

of the wave packet is symmetric f ðωÞj j ¼ f ð�ωÞj j, which is the
major situation to employ a quadrature representation to begin
with. The temporal quadrature xf(t) is then simply a super-
position of many two-mode components xθ(ω) with a spectrally
varying axis θ(ω) and envelope phase δ(ω)

xf ðtÞ ¼
R
dωe�iωt fðωÞj jeiδðωÞxθðωÞðωÞ

¼ R
dωe�iωt fðωÞj jeiδðωÞ xðωÞcosθðωÞ þ yyðωÞsinθðωÞ� �

yf ðtÞ ¼
R
dωe�iωt fðωÞj jeiδðωÞyyθðωÞðωÞ

¼ R
dωe�iωt fðωÞj jeiδðωÞ yyðωÞcosθðωÞ � xðωÞsinθðωÞ� �

:

8>>>>><
>>>>>:

ð10Þ

The quadrature axis of each two-mode component is dictated
by its carrier phase θðωÞ ¼ φðωÞþφð�ωÞ

2 —the symmetric part of the
spectral phase of the wave packet φ(ω); and the two-mode

envelope phase δðωÞ ¼ φðωÞ�φð�ωÞ
2 relates to the antisymmetric

part of φ(ω). Thus, for a transform limited mode, where φ(ω) = 0,
both the envelope phase and the quadrature axis are constant
across the spectrum δ(ω) = 0, θ(ω) = 0. An antisymmetric phase
variation, (φ(ω) = −φ(−ω)), will affect only the envelope phase,
but keep the quadrature axis constant θ(ω) = 0, as is the case for
down-converted light. A purely symmetric phase φ(ω) = φ(−ω),
as due to material dispersion, will affect only the quadrature axis,
but keep the envelope constant δ(ω) = 0.

Therefore, measurement of an arbitrary generalized quadrature
of broadband light requires measurement (or knowledge) of two
spectral degrees of freedom—the quadrature axis θ(ω) and the
envelope phase δ(ω). Parametric homodyne with intensity
measurement provides complete information of the quadrature
axis θ(ω) (by measuring the output spectrum for varying pump
phase), but is insensitive to δ(ω). It therefore allows measurement
if δ(ω) is either unimportant (down-conversion) or known a
priori (transform limit or well-defined pulse), which is relevant to
all current sources of broadband quantum light in spite of the
limitations. The combination of parametric gain followed by
standard homodyne allows complete arbitrary measurement, as
explained above.

Discussion
It is interesting to note that the effect of two parametric amplifiers
in series was deeply explored previously in the context of quan-
tum interference35. In such a series configuration, interference
occurs between two possibilities for generating bi-photons, either
in the first amplifier or in the second, depending on the pump
phase. The interference contrast can reach unity when the para-
metric gain of the two amplifiers is identical (assuming no loss),
which testifies to the quantum nature of the light in both the
single-photon regime21 and at high power20,35. Here, however, we
consider the second amplifier as a measurement device, inde-
pendent of the source of light to be measured. This light source
can be, but is certainly not limited to be, a squeezing parametric
amplifier. Clearly, any other source of quantum light is relevant
when homodyne measurement is of interest, such as single
photons, Fock states, NOON states, Schrödinger cat states, and so
on.

A different optical measurement of quantum light was recently
reported in ref. 36, where vacuum fluctuations of THz radiation
were observed in time. There too an optical nonlinearity (of
several THz bandwidth) was utilized for a direct measurement,
where the large bandwidth of the nonlinearity was key to enable
time sampling of the vacuum fluctuations, well within a single
optical cycle of the measured THz mode.

To conclude, we presented an approach to optical homodyne
measurement with practically unlimited bandwidth, which adds a
layer of optical parametric amplification before the photo-detec-
tion, and enables simultaneous quadrature measurement across
the entire spectrum with a single LO. This measurement removes
major limitations of optical homodyne and opens a wide window
for efficient utilization of the bandwidth resource for parallel
quantum information processing. An interesting expansion of
this concept would be where the pump itself includes more than
one mode, for measurement of “hyper” entanglement between
different frequency pairs of the frequency comb with a multi-
mode pump13,37.

Methods
Two-mode quadratures: time and frequency representation. The direct
mathematical relation of the time varying field to broadband quadrature ampli-
tudes is simple and illuminating in both time and frequency, and yet, it is rarely
used outside the context of near monochromatic light. For a classical time-
dependent field E(t) = a(t) exp iΩt + c.c., the two quadratures in time are the real
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and imaginary parts of the field amplitude a(t)

xðtÞ ¼ aðtÞ þ a�ðtÞ ¼ 2Re½aðtÞ�;
yðtÞ ¼ i a�ðtÞ � aðtÞ½ � ¼ 2Im½aðtÞ�:



ð11Þ

In frequency, therefore, the quadrature amplitudes x(ω), y(ω), represent the
symmetric and antisymmetric parts of the field spectral amplitude a(ω)

xðωÞ ¼ aðωÞ þ a�ð�ωÞ;
yðωÞ ¼ i a�ðωÞ � að�ωÞ½ �;



ð12Þ

where ω is the offset from the carrier frequency Ω, possibly of optical separation,
and aðωÞ ¼ 1ffiffiffiffi

2π
p

R
aðtÞe�iωtdt. Strictly speaking, Eqs. (1) and (12) define the

quadratures of the nonlinear dipole within the medium, not of the emitted light
field. Specifically, they do not include the frequency dependence of the optical field
operator EðωÞ � aðωÞ ffiffiffiffi

ω
p

, which is different for the signal and idler modes. Yet, to
avoid cumbersome nomenclature we simply refer to these as the “two-mode
quadratures,” since they correctly represent the quantum correlation and squeezing
of a two-mode field.

Figure 5 illustrates the temporal field of a single two-mode component of a pure
quadrature oscillation, which represents a beat pattern: slow sinusoidal envelope of
frequency ω over a fast carrier wave at frequency Ω (cosine or sine). The temporal
two-mode field can be written in terms of the two-mode quadratures as

EΩ;ωðtÞ ¼ ase�iðΩþωÞt þ aie�iðΩ�ωÞt� �þ c:c:

¼ xðωÞe�iωt þ xyðωÞeiωt� �
cosΩt

þ yðωÞe�iωt þ yyðωÞeiωt� �
sinΩt

; ð13Þ

where the terms in the square brackets represent the quadrature envelopes.

Calibration of the parametric amplifier. The parametric amplifier must be cali-
brated to allow extraction of the quadrature information from the measured output
intensities (using Eqs. (5) or (6)). In our experiment, the spectral width that could
be detected by the spectrometer was limited to ~100 nm, which prevented mea-
surement of both the signal and the idler simultaneously. In addition, the detection
efficiency for the idler frequencies was considerably reduced compared to the
signal. Thus, we measured mostly the signal band and relied on Eq. (5) to obtain
the quadratures.

Generally, five calibration parameters are required—the gain coefficients Cj j
and Dj j (without the phases that define the quadrature axis), the average photon
numbers of the two input modes N s;N i (to evaluate the offset term Ns�Ni�1

2 in
Eq. (5)), and the overall detector response per single photon n20. Thus, five
independent measurements are required. In many applications, however, the
number of independent measurements may be reduced, since the offset term may
be treated as just � 1

2, when the photon-number difference is zero, which is
generally zero for squeezed light with symmetric loss; and the parametric amplifier
may be assumed ideal Cj j2¼ Dj j2þ1

� �
if the gain is not very high.

Using Eq. (3), the measurement output (proportional to the FWM intensity) is

Is ¼ n20 Cj j2N s þ Dj j2 N i þ 1
� ��

þC�D aysai
� �þ CD� asa

y
i

D Ei
:

ð14Þ

For calibration we use measurements that are independent of phase-coherent

terms ( aysai
� � ¼ asa

y
i

D E
¼ 0 or D = 0), allowing us to write

Is ¼ n20 Cj j2N s þ Dj j2 N i þ 1
� �� �

. We first measure the output intensity in two
scenarios: (1) Izsi, blocking the signal and idler (vacuum input) and (2) Izs, blocking
the signal (only idler input). The names of the calibration quantities are chosen in
analogy to the engineering formalism for evaluating linear systems by measuring
their response in various cases, termed: zero input response and zero state
response. We use similar indices for the various parametric responses: zero signal
(ZS), zero idler (ZI), zero signal and idler (ZSI), and zero pump (ZP). These
measurements provide (with the aid of Eq. (14)) Izsi ¼ n20 Dj j2 and
Izs ¼ n20 Dj j2 N i þ 1

� �
, indicating that the ratio between these two measurements

yields the idler average photon-number N i ¼ Izs
Izsi

� 1. Note that these two
measurements act as a simple method for acquiring the input number of photons
independent of the parametric gain. The signal photon-number N s ¼ Izi

Izsi
� 1 can be

acquired by measuring the output idler intensities in the same way (or be assumed
equal to N i , if appropriate).

Next, we use the knowledge of the input photon numbers for calibrating the
overall detector response n20. We measure: (3) Izp, blocking the pump (zero
amplification, Cj j ¼ 1; Dj j ¼ 0, letting the signal and idler through). Again, from
Eq. (14) we find n20 ¼ Izp

Ns
.

Once the detector response is obtained, we can obtain the parametric gain

coefficients Cj j; Dj j with the Izsi measurement, since Dj j2¼ Izsi
n20
, and Cj j2¼

Dj j2
Ns

Izi
Izsi

þ 1
� 	

(or may be assumed ideal Cj j2¼ Dj j2þ1, if appropriate). Note that the

calibration is needed only once, as long as the parametric measurement gain is
constant, and the average photon-number difference at the input N i � Ns does not
change (typically for squeezed input, this difference is simply zero).

Extraction of the average quadratures. The two quadratures cannot be measured
simultaneously, but their average intensities can both be extracted from two
measurements of the parametric output intensity, amplifying one quadrature first
(Ix) and then the other (Iy), according to

xyx
� � ¼ 1

r2�q2 r Ix=n20 � p
� �� q Iy=n20 � p

� �� �
yyy
� � ¼ 1

r2�q2 r Iy=n20 � p
� �� q Ix=n20 � p

� �� �
;

(
ð15Þ

where n20 is the detector response per single photon and the coefficients p, q, and r
are:

p ¼ 1
2 Ns � N i � 1
� �

q ¼ 1
4 Cj j þ Dj jð Þ2

r ¼ 1
4 Cj j � Dj jð Þ2:

8><
>: ð16Þ

Parametric homodyne with finite gain. To consider more formally the equiva-
lence of parametric amplification to extraction of quadrature information at any
finite gain, let us examine the relation between the field operators at the output of
the amplifier and the quadratures of the input (Eq. (3)) asðθ; gÞ ¼ ase�iθ coshðgÞ þ
ayi e

iθ sinh gð Þ ¼ xθeg þ iyyθe
�g . As mentioned, the field operator converges in the

limit of large gain to an amplified single quadrature operator as(θ, g)→ egxθ, but
this convergence can never be exact since the commutation relation of field
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Fig. 5 Time-domain illustration of a pure two-mode quadrature oscillation with a single-frequency component. a Quadrature maps of the signal and idler
field amplitudes as,ai in a rotating frame at the carrier frequency Ω ¼ ωsþωi

2 . Due to the frequency difference from the carrier, the amplitudes of the signal
and idler rotate around the quadrature map in opposite directions at rates +ω=ωs −Ω and −ω=ωi −Ω. If the two amplitudes are equal in magnitude
asj j ¼ aij jð Þ, they constantly cancel out along one quadrature axis, and add up along the orthogonal axis to form an oscillating beat—the pure quadrature

oscillation; for the cosine oscillation ays ðtÞ þ ayi ðtÞ ¼ 0, and for the sine oscillation axsðtÞ þ axi ðtÞ ¼ 0. b Time-domain illustration of pure two-mode
quadrature oscillations, showing the two-mode beat envelope at frequency ωmodulating the carrier frequency oscillation. The quadrature axis is defined by
the phase φsþφi

2 of the carrier of the two-mode oscillation relative to a reference LO (black) −0, π for the x(ω) quadrature (cosine) and ± π
2 for y(ω). The

phase of the quadrature amplitude φs�φi
2 reflects the temporal offset of the beat envelope with respect to a time reference
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operators [a, a†] = 1 is inherently different than that of quadrature operators
[x, x†] = 0. To illuminate the smooth transition from a field operator to a quad-
rature, let us express the field operator for any finite parametric gain in the form of
a generalized quadrature operator along an axis of a complex angle ϑ = θ + iγ,

asðgÞ ¼ M ~xcosϑþ ~yy sinϑ
� � ¼ M~xϑ; ð17Þ

where the imaginary part of the quadrature axis and the normalization factor M
relate to the gain g by tanh γ ¼ e�2g ;M2 ¼ 2=sinh2γ.

Thus, the single-shot measurement of the output light intensity with any
parametric gain reflects the intensity of the “generalized” quadrature at this gain
value, and not the standard (real) quadrature. The commutation relation of these
generalized quadratures is

~xϑ; ~x
y
ϑ

h i
¼ 1=M2 � e�2g ; ð18Þ

where the approximation is valid already for moderate gain of g ≥ 1. Consequently,
the commutator of the measured generalized quadratures, converges very quickly
to that of the real quadratures.

Details of the experimental setup. In our experiment (Figs. 2 and 6), we generate
an ultra-broadband two-mode squeezed vacuum via collinear FWM in a PCF,
which is pumped by narrowband 12 ps pulses at 786 nm with up to 100 mW
average power. The broad bandwidth is obtained by closely matching the pump
wavelength to the zero dispersion of the fiber at 784 nm21, resulting in a signal and
idler bandwidth of ~55 THz each, with ~90 THz mean frequency separation
between the mode centers (700 nm—signal center, and 900 nm—idler center).
After generation, the pump is separated from the FWM field into a different optical
path by a narrowband filter (NBF1—Semrock NF03-808E-25), allowing indepen-
dent control of the relative pump phase. The pump phase is actively locked to the
phase of the FWM using an electro-optic modulator and a fast feedback loop. Both
the FWM and pump fields are reflected back (mirrors M1, M2) towards the PCF
for a second pass, which then acts as the homodyne measurement. The final
parametric amplified spectrum (after the second “homodyne” pass) is filtered from
the pump (NBF2—Semrock NF03-785E-25) and measured with a cooled CCD
spectrograph (SpectraPro 2300i).

In order to partially compensate for the temporal pulse effects due to SPM of
the pulsed pump, we used the original pump pulse from the first pass through the
PCF also for the second pass. This guaranteed that the pump and the FWM
accumulated nearly the same phase modulation (either SPM for the pump or XPM
for the FWM light). Polarization manipulations were used to tune the effective

parametric gain in the second (measurement) pass independently of the squeezing
strength in the first pass: since the phase matching conditions in the PCF are
polarization dependent, the observed FWM spectrum is generated only by one
polarization of the pump (this fact was extensively verified).

Thus, rotating the pump polarization before the first pass with a half-wave plate
we could transfer part of the pump power through the fiber without affecting the
FWM. This power could later be used in the second pass by rotating its
polarization back to the PCF axis with a quarter-wave plate in the pump beam
path. This extra pump power accumulated almost the same SPM as the FWM, but
without affecting the squeezing generation.

The various calibration measurements were performed by manipulating the
FWM light between the passes either by physically blocking the FWM beam
(vacuum input) or pump beam (zero amplification) or with a high-efficiency
optical long-pass filter (idler-input only) (Semrock FF776-Dio1). The two
orthogonal homodyne measurements (amplifying the squeezed quadrature or the
stretched quadrature) were acquired by tuning the offset of the active feedback loop
that locked the pump phase.

Effects of the pulsed pump. In our experiment, the pump for both generation of
the squeezed light and for the parametric homodyne measurement (second pass) is
a pulsed laser of ≈12 ps duration. Since the bandwidth of the generated FWM (55
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Fig. 6 Details of the experimental setup. The experiment consisted of two
parts: (1) generation of broadband squeezed light (propagating from left to
right) and then (2) homodyne measurement of the generated squeezing
(propagating back from right to left). Broadband two-mode squeezed light
is generated via spontaneous four-wave mixing (FWM) in a photonic
crystal fiber (PCF) pumped by 12 ps laser pulses (786 nm) (collimated at
the output with a parabolic mirror PRM). After generation, the pump and
the FWM are separated into two paths by a narrowband filter (NBF1)
allowing the pump phase and polarization to be tuned independently. Both
pump and FWM are reflected back by folding mirrors (M1, M2) for a
second pass through the PCF, now acting as a measuring device. The
specific FWM quadrature to be amplified is selected by tuning the pump
phase, and the amplification gain is controlled by manipulation of the pump
polarization using the half-wave and quarter-wave plate (HWP, QWP)
before the fiber and after it. After the second (measurement) pass through
the PCF, the FWM field is separated from the pump by a narrowband filter
(NBF2) and directed towards a CCD spectrograph, where the amplified
spectrum is measured
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Fig. 7 Dependence of the squeezed fringe on the parametric gain. The
squeezed quadrature can be directly obtained from the relative output of
the minimum fringe when the measurement gain (GM) is large enough
(relative to the squeezing gain—GS)—the ratio between the output with
input (Imin) and the output with vacuum (blocked) input (Izsi). For increased
measurement gain (but constant input squeezing), the relative parametric
output should therefore converge to a constant level, directly indicating the
absolute quadrature intensity. To observe this, we varied the pump
intensity in the second (measurement) pass up to 5.5 times the intensity
used for generating the broadband squeezing in the first (generation) pass.
This convergence of the relative output (dots) GM

GS
>3

� 	
approached a

constant level of ~5% below the vacuum level. When the measurement gain
is reduced, the relative output decreases due to a quantum interference
effect, reaching maximum visibility when the squeezing generation gain is
equal to the measurement gain GM

GS
¼ 1

� 	
. In this regime, the general

measurement becomes indirect (although the squeezing effect is still
directly evident), and a pair of measurements (amplifying one quadrature
and then the other) is needed for extracting the quadrature information.
Below the level of identical gain, the observed output strongly rises over the
vacuum level, obscuring the direct evidence of squeezing; however, the
quadrature information can still be extracted (though with reduced
accuracy) using the same pair of measurements. The solid (blue) curve
indicates a numerical simulation of the relative output, assuming the
measured pump pulse energy and FWM loss, and an estimated nonlinear
coefficient, fiber coupling efficiency, and hyperbolic-secant pulse shape. For
comparison, we included the simulated result for the relative output at the
peak of the pulse (dashed green)
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THz) is much larger than the pump bandwidth (<0.1 THz), we could account for
the main affect of the pulse shape as an adiabatic variation of the parametric gain
and phase modulation (SPM, XPM) along the temporal profile of the pump pulse.
Thus, the adiabatic variation can be discretized in time, referring to time instances
within a single pulse as separate parametric events of varying gain and phase.

However, since the integration time of the photo-detectors in the CCD spectro-
graph is much longer (~10 ms), the measured homodyne data is averaged over the
entire shape of many pulses.

The effect of the pulse on the parametric gain alone changes the generated
squeezing and the measurement gain with time, measuring weak squeezing with
weak parametric gain at the edges of the pulse, and strong squeezing with strong
parametric gain at the peak. The phase modulation (SPM, XPM) of the FWM
process has a more severe effect, since it modulates in time the quadrature axis to
be amplified. As a result, due to the pump pulse shape, the amplified quadrature
axis of the FWM field rotates with time. Luckily, when the pump itself experiences
nearly the SPM it can still act as a near-perfect LO (phase regarding) for measuring
the FWM, even after passage through the fiber. The small residual difference
between the pump SPM and the FWM XPM causes the amplified FWM quadrature
to rotate with time, mixing different quadrature axes together in the same
measurement, smearing out some of the squeezing.

Ideally, we would like to extract the maximum squeezing that occurs at the peak
of the pulse from the time-averaged measurements. To estimate this peak
squeezing, we numerically simulated the entire FWM generation and parametric
amplification along the pump pulse with 50 fs temporal resolution (corresponding
to the coherence time of the FWM). The simulation incorporated the measured
pump pulse energy, the measured loss and fiber coupling efficiencies, and an
assumed hyperbolic-secant temporal shape of the pump pulse (12 ps). Using the
simulation, we could calculate both the average and the peak outputs of the
process, allowing us to estimate the squeezing at the peak of the pulse from the
measured averaged homodyne output. Figure 7 demonstrates the relation between
the peak homodyne output and the average homodyne output, as the parametric
measurement gain is varied. As long as the generation pump power does not
exceed a specific limit (~60 mW in our experiment), the pulse-averaging only
affects the absolute measured squeezing values (which can be roughly estimated)
but not the expected trends of the experiment (increasing the loss, the squeezing
power, or the parametric power).

Expanded results. To verify the properties of the parametric homodyne, we
measured the quadrature squeezing xyx

� �
, and the uncertainty area, xyx

� �
´ yyy
� �

of the squeezed state as described in the main text.
Another important verification of our squeezing measurement is to observe the

effect of loss on the measured quadrature squeezing and stretching. We measured
the quadrature intensities after applying a set of known attenuations (30–66% loss),
and reconstructed the “bare” quadratures before loss, which indeed collapsed to the
same value, as shown in Fig. 8c, d. The effect of loss on the quadrature intensity can
be regarded as propagation through a beam splitter with one open port. The
relations between the operators of the two inputs (a1, a2) and two outputs (b3, b4)
of the beam splitter can be defined as b3 = ta1 + ra2 and b4 = ta1 − ra2, where t and r
are the transmission and reflection (loss) amplitudes. In these terms, the
quadrature operator at output port 3 is: x3 = tx1 + rx2, and the expectation value of
the quadrature intensity is

x23
� � ¼ tj j2 x21

� �þ rj j2 x22
� �þ 2rt x1h i x2h i: ð19Þ

Assuming a vacuum state at the open input port 2, the final expression becomes:

x23
� � ¼ tj j2 x21

� �þ rj j2: ð20Þ

Hence, the “bare” quadratures, before the loss, can be reconstructed using

xyx
� �

bare¼ xyx
� �

measured� rj j2
� 	

= tj j2: ð21Þ

As a complementary evaluation, we studied the parametric measurement-
amplifier output as a function of its own gain, while maintaining the squeezing
generation gain constant. For this, we gradually increased the pump power in the
second pass up to 5.5 times the pump power that generated the squeezing in the
first pass. When the parametric gain is strong enough, the output intensity relative
to the vacuum level (without input) is directly proportional to the input
quadrature. Hence, we expect the relative output to stabilize as the parametric gain
is increased, and indeed the observed reduction below the vacuum level stabilized
at 5%. Figure 7 shows the measured results and addresses the pulse effects on this
measurement.

Data availability. All relevant data are available from the authors.
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Fig. 8 Expanded homodyne results. a Measured squeezed quadrature as a
function of squeezing strength (696 nm)—(solid line for guidance only). As
the squeezing strength in the first pass is increased, the measured
squeezed quadrature decreases, down to xyx

� � � 0:68 at a pump power of
~ 60mW. Further increase of the pump degrades the observed squeezing
due to temporal effects of the pulsed pump. b Minimum uncertainty
conservation (696 nm)—(solid line for guidance only). Ideal squeezed
vacuum is a minimum uncertainty state of xyx

� �
yyy
� � ¼ 1, independently of

the squeezing strength. Up to a pump power of 60mW, the uncertainty
area is indeed nearly conserved ( xyx

� �
yyy
� �

<1:3). Beyond this limit the
pulse-averaging effect washes out the minimum uncertainty property. c, d
The effect of loss on the squeezed state. c We apply a series of loss values
(30–66%) to a given squeezed state and observe the influence on the
squeezed/stretched quadratures. d The reconstructed “bare” squeezed/
stretched quadratures that calibrated out the loss from all the curves of c,
demonstrating collapse of all the curves to nearly the same value, as
expected
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