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AbsTrACT
Maintaining normal learning and memory functions 
requires a high degree of coordination between neural and 
vascular cells. Basic and clinical studies have shown that 
brain microvasculature dysfunction activates inflammatory 
cells in the brain, leading to progressive neuronal loss and 
eventually dementia. This review focuses on recent studies 
aimed at identifying the molecular events that link cerebral 
microvascular dysfunction to neurodegeneration, including 
oxidative/nitrosative stress, cellular metabolic dysfunction, 
inflammatory signalling and abnormal synaptic plasticity. A 
better understanding of the coupling between vasculature 
and brain neurons and how this coupling is disrupted 
under pathological conditions is of great significance 
in identifying new diagnostic and treatment targets for 
dementia for which no new drugs have been approved 
since 2003.

Accumulating evidence from epidemiological 
and postmortem studies suggests a close rela-
tionship among small vessel disease (SVD), 
aberrant neurovascular regulation and cogni-
tive impairment. Dysregulation of cerebral 
blood flow and abnormal neural activity 
secondary to altered neurovascular coupling 
have been observed in the early stage of 
neurodegenerative diseases. However, the 
precise mechanism by which vascular dysfunc-
tion contributes to cognitive impairment 
remains poorly understood.

Aberrant peroxynitrite generation is a 
primary risk factor for vascular dysfunc-
tion.1–4 Patients with Alzheimer’s disease 
(AD) exhibit clear cerebrovascular pathology 
and white matter injury due to microvascular 
infarction, suggesting an association of the 
cerebrovascular disease with neurodegener-
ative disorders.5 6 A possible contribution of 
nitrosative stress to AD pathology is indicated 
by the observation that peroxynitrite forma-
tion induced microvascular injury followed by 
β-amyloid accumulation in microvessels and 
parenchyma and eventual Glycogen synthase 
kinase-3β (GSK3β) activation and hyperphos-
phorylation of tau proteins in the aged rat 
brain.5 Supporting this suggestion, inhibi-
tion of nitrosative stress partially restored the 
decrease of phospho-CaMKII (Th286/287) 
and phospho-synapsin I (Ser603), increased 
the number of mature neurons in the 

hippocampus, and significantly improved 
cognitive function in mice with vascular 
dementia.7 Moreover, the inhibition markedly 
decreased peroxynitrite formation and down-
regulated NLRP3/caspase-1/IL-1β signalling 
in mice with bilateral carotid artery stenosis 
(figure 1).8

Damages to the neurovascular system are 
believed to be a major source of morbidity 
and mortality in chronic diseases such as 
diabetes.9 An alternation in hippocampal 
Ca2+/calmodulin-dependent protein kinase 
II(CaMKII)/Protein kinase C(PKC)/Protein 
kinase A(PKA) pathway may be partially 
responsible for the detrimental postdiabetic 
outcomes associated with cognitive dysfunc-
tion in diabetic models.10 Brain microvascular 
complications can lead to changes in brain 
structure and function.11 12 In vivo two-photon 
fluorescence microscopy reveals disturbances 
of cerebral capillary blood flow in diabetes 
which are exaggerated and associated with 
rapid cognitive decline after brain ischaemia.11 
Accompanied by the disturbance of capillary 
blood flow and neurovascular damage, phos-
pho-CaMKII (Thr286), phospho-synapsin I 
(Ser603) and phospho-GluR1 (Ser831) are 
dramatically decreased in the diabetic mice 
with ischaemia.11 Together, these findings 
suggest an active role for vascular factors in 
the pathogenesis of cognitive dysfunction. 
Further studies are needed to fully under-
stand the changes in the microenvironment 
in the brain under the different pathological 
condition and the communication between 
components of the neurovascular unit.

Emerging studies have uncovered essential 
roles of endothelial molecules in brain func-
tion and behaviour.13–17 For example, brain 
endothelial cells have been suggested to be a 
natural gatekeeper for virus-induced sickness 
behaviour.18 The study further demonstrated 
an engagement of tissue-specific Interferon 
(IFN) receptor chain 1 and established the 
signal transduction axis as a target for the 
treatment of the behavioural changes.18 Clin-
ical studies suggest that endothelial thrombo-
modulin is closely associated with cerebral SVD 
severity, but cerebral endothelial activation in 
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Figure 1 The schematic image is illustrating the possible 
relationship between cerebral microvascular dysfunction and 
neurodegeneration in dementia.

deep penetrating arteries did not.19 By using both endo-
thelial-specific gene knockdown and neurobehavioural 
strategies, we found that deletion of the endothelial 
ErbB4 receptor-induced impairment in exploratory 
activity in adult mice and the effect was associated with 
reduced glucose transport and impaired energy metab-
olism of the brain.20 More recently, the study showed 
that brain endothelial-derived semaphorin 3G might act 
as a synaptic organiser, regulating synaptic plasticity and 
hippocampal-dependent memory.21

A long list of endeavours are warranted to further tackle 
the mechanisms underlying the interaction between 
vascular and neuronal cells and the role of the interaction 
in dementia, including (1) studies using novel technolo-
gies including imaging from nanoscale to whole brain, 
high-throughput transcriptomics/proteomics screens 
and bioinformatics, (2) a deeper understanding of the 
dynamic regulation of neurovascular coupling by circu-
lating factors including those implicated in dementia, 
and (3) further exploration of the role of exosomes, cyto-
kines and microRNAs in neurovascular compartments. A 
combination of these approaches may allow for multidi-
mensional analyses of the complex underlying molecular 
and cellular network, help discover novel biomarkers, 
and develop more effective diagnostic and treatment 
strategies for dementia.
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