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Abstract
T-cell immunoglobulin and mucin domain 3 (Tim-3) is a transmembrane protein
that in both mice and humans has been shown to possess various functions in
a context-dependent manner. Thus, Tim-3 has been associated with both
inhibitory and co-stimulatory function, depending in part on the specific cell type
and immune response course. Though originally described on T cells, Tim-3 is
now known to be expressed by both lymphoid and non-lymphoid cells within
the immune system and even by non-immune cells. In addition, though widely
thought of as a negative regulator of immunity, Tim-3 has been shown in more
recent studies to have a positive function on both myeloid and lymphoid cells,
including T cells. Tim-3 is often expressed at a high level on exhausted T cells
in tumors and chronic infection and may engage in crosstalk with other
so-called “checkpoint” molecules such as PD-1. Thus, Tim-3 has emerged as a
possible therapeutic target, which is being actively explored both pre-clinically
and clinically. However, recent research suggests a more complex   rolein vivo
for this protein, compared with other targets in this area.
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Introduction
T-cell immunoglobulin and mucin domain 3 (Tim-3) (gene  
name Havcr2)1 is an immunoglobulin (Ig) and mucin domain  
family cell-surface molecule that was originally identified on  
CD4 helper 1 (Th1) and CD8 T cytotoxic 1 (Tc1) cells2. Initial  
studies on the role of Tim-3 in the murine experimental autoim-
mune encephalomyelitis (EAE) model suggested an inhibitory 
function on Th1 responses and regulation of macrophage  
activation and function. Blocking of Tim-3 can lead to the 
development of spontaneous autoimmunity, at least in some  
settings3. Corroborating an inhibitory function for Tim-3 is the 
fact that antibodies against Tim-3 have been shown to enhance  
anti-viral and anti-tumor T-cell responses, as described below. 
However, Tim-3 is now known to also be expressed by regulatory  
T (Treg) cells and innate immune cells such as dendritic cells  
(DCs), natural killer (NK) cells, monocytes, macrophages, and 
mast cells. Tim-3 is often referred to as a checkpoint receptor 
and exhaustion marker; however, Tim-3 has been seen to function  
differentially, in a context-dependent manner, and now is specu-
lated to have both positive and inhibitory functions4–6. Here, we will 
discuss existing evidence for these positive and negative effects 
of Tim-3 on immune responses and highlight some important  
unanswered questions.

Tim-3 structure and ligands
Tim-3 belongs to the Ig super family, with an N-terminal IgV 
domain, followed by a mucin-like domain that has sites for  
glycosylation. This is followed by sites for N-linked glyco-
sylation and a single transmembrane domain. The C-terminal  
cytoplasmic domain does not have any known inhibitory motifs 
but has five tyrosine residues, two of which have been shown to 
be phosphorylated and critical for Tim-3-mediated signaling. The  
IgV domain of Tim-3 consists of two anti-parallel beta sheets 
that are attached to each other by a disulfide bond. An additional  
disulfide bond stabilizes the IgV domain and reorients the CC′ 
loop toward the FG loop, thus forming a unique ligand-binding 
pocket4,7.

In humans, shedding of the ecto domain of Tim-3 can take  
place because of disintegrin and metalloproteases ADAM10 (a  
disintegrin and metalloprotease 10) and ADAM17. In the absence 
of the intracellular cytoplasmic domain of Tim-3, this shedding 
cannot occur, suggesting a role for the cytoplasmic domain of  
Tim-3 in its cleavage by ADAM10 and ADAM17. Although the  
relevance of this observation for Tim-3-mediated signaling is not 
well understood, Tim-3 shedding has been observed with CD14+ 
monocytes, in response to lipopolysaccharide stimulation, and 
in T cells, in the setting of graft-versus-host disease (GVHD)  
after allogenic hematopoietic cell transplant. Plasma levels of  
soluble Tim-3 were also found to be elevated in patients with 
GVHD8. Tim-3 shedding by ADAM10 has also been observed 
in untreated HIV patients, and this correlates with disease  
progression9.

At this point, four distinct ligands have been reported  
to bind to Tim-3 in different contexts. These are galectin-9  
(Gal-9), high-mobility group protein B1 (HMGB1), carcinoem-
bryonic antigen cell adhesion molecule 1 (Ceacam-1), and  

phosphatidylserine (PtdSer). Gal-9 was the first reported lig-
and for Tim-3 and was shown to induce apoptosis in Th1 cells10, 
although Gal-9 can bind to other receptors on the cell surface as 
well11. Interaction of PtdSer with Tim-3 has been shown to play a 
role in the clearing of apoptotic bodies and also helps in antigenic  
cross-presentation, although it should be noted that the affinity 
of PtdSer for Tim-3 is significantly weaker than for other TIM 
proteins12. Ceacam-1 is the most recently identified ligand for  
Tim-3 and can form a heterodimer with Tim-3 as well as  
interacting with Tim-3 in trans13. HMGB1 is highly expressed 
by tumor-infiltrating DCs. In tumors, Tim-3 therefore competes 
with nucleic acid binding to HMGB1 and lowers the transport of  
nucleic acids to the endosomes, thereby dampening the innate 
immune response to tumor-associated nucleic acid14. Liver- 
primed CD8+ Tim-3+ cells were also shown to suppress anti-
viral immunity in a Gal-9-independent and HMGB1-dependent  
manner15. As discussed below, antibodies to Tim-3 are actively 
being explored as therapeutics. Although these are often referred 
to as “blocking” antibodies, their ability to block the interac-
tion of Tim-3 with its various ligands is not always documented  
directly.

Regulation of Tim-3 expression and function
Transcriptional control of Tim-3 during acute and chronic  
infection and in tumors is an area of active research. Nuclear  
factor of activated T cells (NFAT) signaling has been shown to 
play a role in CD8+ T-cell regulation of Tim-316. T-bet is another  
transcription factor that has been shown to have a positive  
effect on Tim-3 expression during T-cell activation17, whereas 
the same factor appears to have a negative effect in exhausted  
T cells18. Tim-3 expression has also been shown to be regulated 
by at least three transcription factors: NFIL3, T-bet, and STAT3. 
In one report, the authors showed that interleukin-10 (IL-10)  
and IL-27 together can lead to epigenetic changes in the Havcr2 
locus19, further supporting the notion that, along with T-cell  
receptor (TCR) stimulus, cytokines and other extrinsic factors  
may have differential effects on Tim-3 expression and function.

Tim-3 is generally co-expressed with other checkpoint recep-
tors in settings of T-cell exhaustion in both tumors and chronic  
infection in both humans and mice20. However, mechanisms 
by which TCR, and other factors, regulate the expression of  
Tim-3 during acute versus chronic stimulation are not well  
defined. Similarly, in tumors, although a significant population 
of tumor-infiltrating T cells express Tim-3, it is not known what  
factors in the tumor microenvironment, along with tumor  
antigen, play a role in the upregulation of Tim-3 on effector and 
Treg cells.

Tim-3 signaling
Although initially Tim-3 was found to have an inhibitory  
function, based on its expression on exhausted T cells and in an 
autoimmunity model, there is still little direct proof of this con-
cept. There are also some reports which prove that Tim-3 in  
certain cases may play a co-stimulatory enhancing function. High 
ectopic expression of Tim-3 on T-cell lines has also been shown 
to have increased activation based on increased NFAT/AP-1 and 
nuclear factor-kappa B (NF-κB) reporter assays and enhanced  
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levels of cytokines21 and higher phospho-S6 levels. One pos-
sible explanation for contradicting reports with respect to Tim-3 
function in T cells relates to the expression of Ceacam-1 along 
with Tim-3. Thus, it has been suggested that Tim-3 inhibitory  
function is dependent on the co-expression of Ceacam-1 in both 
tumors and autoimmune disease13. Another factor which may 
play an important role, and which complicates the characteriza-
tion of Tim-3 signaling in vivo, is that Tim-3 is also expressed in  
other cell types.

Multiple tyrosine molecules in the cytoplasmic tail of Tim-3 
do not form any recognizable inhibitory motifs. Nonetheless,  
in silico characterization of these sites predicts that they can 
be substrates for phosphorylation by multiple tyrosine kinases.  
Indeed, several studies have now shown that tyrosine residues in 
the cytoplasmic tails of Tim-3 can be phosphorylated21,22. Both 
the Src family kinases Fyn and Lck and the Tec family tyrosine  
kinase Itk have been reported to have a role in Tim-3 cytoplas-
mic domain phosphorylation. Owing to the involvement of  
multiple kinases and multiple phosphorylation sites in the Tim-3 
cytoplasmic domain, distinct binding of different Tim-3 ligands 
or antibodies may bring about different outcomes. However, this  
possibility needs to be explored further.

In support of a possible co-stimulatory function, Tim-3 expres-
sion during acute lymphocytic choriomeningitis virus (LCMV) 
infection is associated with a better short-term effector T-cell  
response, though possibly at the cost of memory T-cell formation. 
Furthermore, the absence of Tim-3 leads to defective Akt/mTOR 
signaling23; however, in the chronic LCMV T-cell exhaustion  
model, Tim-3 expression was sufficient to dampen the anti-PD-1 
rescue of T-cell responses, thereby suggesting crosstalk of PD-1 
and Tim-3 in exhausted T cells23, as discussed above. Supporting 
this finding is the recent report by Gorman and Colgan that acute 
stimulation in response to LCMV infection leads to upregulation 
of Tim-3 in persisting Th1-type CD4 cells, and these cells also  
show enhanced effector functions both in vitro and in vivo24.

Bat3 is an adapter molecule that has also been shown to act as 
an inhibitor of Tim-3 signaling by directly binding to the Tim-3  
cytoplasmic tail in a Gal-9-reversible manner. Switch of binding of 
the cytoplasmic domain of Tim-3 from Bat3 to Fyn is speculated 
to play a role in determining whether Tim-3 signaling positively 
or negatively affects TCR signaling25. It has also been reported 
that Tim-3 can co-localize with transmembrane phosphatases  
such as CD45 and CD148 and that recruitment of Tim-3 to 
the immunological synapse may lead to destabilization of 
the synapse and dampening of TCR signaling26. During early  
pregnancy, in decidual NK cells, Gal-9/Tim-3 signaling has been 
shown to be important and beneficial for the maintenance of  
pregnancy27.

Tim-3 and innate immunity
Tim-3 is known to be expressed on certain innate immune cells, 
including NK cells, macrophages, DCs, and mast cells. Tim-3 has 
been found to be expressed by all mature NK cells, and immature 
NK cells upregulate Tim-3 upon maturation28. Studies on in vitro 

cultured NK cells suggest a co-stimulatory function for Tim-3. In 
tumors, Tim-3 expression is associated with poor prognosis and 
suppression of anti-tumor function. Blockade of Tim-3 reverses 
the exhaustion phenotype of NK cells in certain tumor models29,30.  
Tim-3 is constitutively expressed on mast cells and enhances  
proximal FcεRI signaling, leading to degranulation and cytokine 
release upon antigen crosslinking, suggesting a co-stimulatory 
function of Tim-3 in mast cells31.

Tim-3 is expressed on DCs and in tumors was shown to sup-
press the response to nucleic acid ligands for TLR3, TLR7, and 
TLR9 and cytosolic sensors to DNA and RNA by impairing  
HMGB1-mediated recruitment of nucleic acids to endosomes14. 
In DCs, Tim-3 has also been shown to inhibit activation and  
maturation via Btk and c-Src to prevent NF-κB signaling32. A  
recent article also shows that, during chronic HIV infection,  
Tim-3 may play a role in the dysfunction of plasmacytoid DCs by 
interfering with TLR signaling via the recruitment of IRF7 and  
p85 to lysosomes33.

Tim-3 is expressed on macrophages and, in various disease 
models, has been associated with inhibitory function34. More  
recently, Tim-3 has been shown to act as a negative regulator of 
the NLRP3 inflammasome by dampening NF-κB responses in 
mouse peritoneal macrophages35. The authors further showed 
that tyrosines 256 and 263 near the Tim-3 C-terminus are neces-
sary for NLRP3 inhibition by Tim-3 and, in a model of peritonitis  
blockade of Tim-3, led to increased pathology. Finally, a recent 
report also suggests a role for Tim-3 in regulating the resolution 
of inflammation in an acute lung injury model through effects  
of Tim-3+ Treg cells on macrophage polarization36.

Tim-3 and tumors
Tim-3 is expressed on a significantly higher proportion of  
tumor-infiltrating lymphocytes compared with its expression in 
peripheral lymphoid compartments1,37. Tim-3 upregulation, along 
with upregulation of other checkpoint receptors, is associated  
with CD8 T-cell exhaustion. In melanoma, upregulation of  
Tim-3, along with PD-1, marks a highly non-responsive popula-
tion of CD8 T cells1. Tim-3 has also been shown to be expressed 
on tumor antigen-specific T cells in the peripheral blood of 
patients with various tumors. In mouse models, various types of 
tumors have been shown to be affected differently in terms of the  
efficacy of Tim-3 antibody treatment. While there are reports 
in which anti-Tim-3 antibody treatment did not lead to any inhi-
bition of tumor growth38, there are other studies in which anti- 
Tim-3 antibody did lead to a slowing of tumor progression by 
promoting type I anti-tumor immunity39. It has also been reported 
that Tim-3+ T cells in head and neck cancer are resistant to  
PD-1 blockade alone and that there is crosstalk between Tim-3 
and PD-1 in CD8 T cells via PI3K/AKT signaling40. It has also 
been reported that in a head and neck cancer model, increased 
resistance to cetuximab is associated with increased PD-1 and 
Tim-3 expression on tumor-infiltrating lymphocytes41, further 
suggesting the need for a multi-dimensional approach to can-
cer treatment. Thus, a combination of anti-Tim-3 treatment with 
other anti-checkpoint receptors and co-receptor receptors is a  
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potentially attractive immunotherapy for cancer. However, it  
should be noted that how these combination therapies work  
mechanistically is still under-explored.

In addition to effector T cells, Tim-3 is highly expressed on  
tumor-infiltrating Treg cells across multiple types of tumors42. A 
higher frequency of Tim-3+ tumor-infiltrating lymphocyte Treg  
cells is also associated with poor patient survival37. Consistent 
with this, Tim-3+ tumor Treg cells may be more suppressive than  
Tim-3− Treg cells from the same tumors43. In head and neck  
tumors, Tim-3+ Treg cells have also been shown to express  
higher levels of co-inhibitory molecules such as CTLA-4 and 
CD39, along with higher levels of FoxP3, CD25, granzyme B, 
and PD-1. Some tissue-resident Treg cells have also been reported 
to upregulate Tim-344, which has been shown to play a role in  
tissue homeostasis and repair45, but the exact role of Tim-3 in these 
tissue Treg cells is still not clear. Treg cells are also known to  
express Tim-3 during allograft rejection, in which it has been 
shown that Tim-3-expressing Treg cells are short-lived46.  
This raises a question about the status of Tim-3-expressing Treg 
cells in tumors, as it was recently reported that apoptotic Treg  
cells in the tumor microenvironment may have a more important 
suppressive function than live Treg cells via an inhibitory effect  
of ATP on both antigen-presenting cells and effector T cells47.

With regard to non-T cells, Tim-3 is expressed by tumor- 
associated macrophages in response to tumor-derived factors 
such as transforming growth factor-beta (TGF-β)48. In addition,  
Tim-3 low M1 macrophages can upregulate Tim-3 and become 
M2 macrophages in the tumor microenvironment, directly damp-
ening macrophage function49. It should be noted that a direct 
role for Tim-3 in M2 macrophages has not been reported. NK  
cells are also known to play a significant role in tumor clear-
ance, and tumor-associated NK cells constitutively express Tim-3. 
These NK cells also show an exhausted phenotype, and anti-Tim-3  
treatment, as discussed above, leads to the reversal of exhaus-
tion in some tumors. Tim-3 function and regulation in NK tumor  
immunity are still relatively under-studied, compared with  
T cells, so future studies may reveal additional layers of  
Tim-3-mediated crosstalk in tumor immune responses involving 
NK cells.

There is increasing evidence that Tim-3 can also be expressed by 
tumor cells themselves50–52. The expression of Tim-3 on tumor 
cells may lead to tumor progression by multiple mechanisms,  
including direct suppression of CD4 T-cell function and inhibi-
tion of IL-6–STAT3 signaling and by directly promoting tumor  
metastasis52. Given the expression of Tim-3 in multiple cell 
types in different tumor models, it would be very interesting to 
explore how anti-Tim-3 alone, or in combination with other anti- 
checkpoint receptor modalities, affects various subpopulations 
of Tim-3-expressing cells. A more in-depth discussion about 
the possible roles of Tim-3 in tumors can be found in recent  
reviews53,54.

Tim-3 and pregnancy
A possible role for Tim-3 in pregnancy was first reported by  
Zhao et al., who showed that Tim-3 was upregulated by periph-
eral blood monocytes (but not T or B cells)55. This group also  
reported that abnormal Tim-3 levels during pregnancy are  
associated with pregnancy loss, although it should be noted 
that a later report suggested that the expression of Tim-3 by  
peripheral blood CD8 T cells and NK cells was associated with 
lower cytokine production cytotoxicity56. In pregnant mice, cells  
from the decidua show high expression of both PD-1 and  
Tim-3, and these T cells also had higher proliferative capacity  
and cytokine-producing ability. Treatment of pregnant mice 
with anti-PD-1 or anti-Tim-3 (or both) leads to pregnant mice  
becoming highly susceptible to pregnancy loss. The number and 
function of Tim-3+PD-1+ T cells were also seen to be affected 
in cases of recurrent miscarriage57. In addition, PD-1 and  
Tim-3 have been shown to induce Th2 bias at the maternal–fetal  
interface58. The interaction of Gal-9 and Tim-3 was also shown 
to play a role at the maternal–fetal interface by directly affect-
ing decidual NK cell function59,60. Furthermore, Tim-3-express-
ing peripheral NK cells were shown to have immunosuppressive  
function, resulting in the production of anti-inflammatory  
cytokines and the induction of Treg cells57. Significantly, in cases 
of recurrent miscarriage, Tim-3 expression and function on NK 
cells were found to be defective59,60. In addition, Tim-3 could 
protect decidual stromal cells from Toll-like receptor-mediated  
apoptosis and inflammatory reactions and promotes Th2 bias at 
the maternal–fetal interface58. Thus, these studies demonstrate 
that Tim-3 plays important roles in establishing and maintain-
ing the immune-tolerant environment both at the maternal–fetal  
interface and in the peripheral blood, resulting in successful  
pregnancy.

Tim-3 and infectious disease
The role of Tim-3 during infection was first reported in HIV-
infected patients, in whom CD8+ T cells were shown to express  
Tim-3 and were functionally exhausted61. Tim-3 expression 
also directly correlated with viral load and was inversely corre-
lated with the use of highly active anti-retroviral therapy. In vitro  
peptide stimulation in the presence of anti-Tim-3 antibody also 
led to the restoration of cytokine function and proliferation of  
HIV-specific T cells. Tim-3, along with PD-1, is also highly 
expressed on mouse and human exhausted T cells in LCMV62, 
hepatitis B virus63, Friend virus, and hepatitis C virus64 infec-
tion. It should be noted that Tim-3, along with PD-1, is associated 
with terminally exhausted T cells and that in some cases anti- 
Tim-3, along with anti-PD-L1 antibody, leads to the restoration  
of cytotoxic function and reduction of viral titer62.

Recent work in our lab highlights an additional role of Tim-3 
as a determinant of effector versus memory T-cell differentia-
tion in acute viral infection, consistent with the observation that 
Tim-3 is rapidly expressed by activated T cells in response to  
acute LCMV challenge23. This raises an interesting question  
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regarding the possibility of differential regulation and function 
of Tim-3 in acute versus chronic infection. Thus, in acute  
infection, there appears to be a co-stimulatory role for Tim-3,  
leading to differences in mTOR signaling, whereas in the case 
of chronic infection, Tim-3 marks exhausted cells and may play 
a direct role in dampening T-cell responses. Alternatively, it is  
worth considering that the expression of Tim-3 by exhausted T 
cells represents a last-ditch effort by the immune system to salvage  
some function from these cells. Further support for a positive 
role for Tim-3 in driving mTOR activation comes from a recent  
study of human T cells65.

Consistent with a positive role for Tim-3 in at least some infec-
tions, Tim-3 expression by human T cells during Mycobacte-
rium tuberculosis (MTb) infection is associated with increased  
effector function66. For reasons that are unclear, a more recent 
report, using a mouse model, concluded that Tim-3 helps to  
maintain T-cell exhaustion on T cells during MTb infection67. 
The same authors previously reported an indirect mechanism for  
Tim-3 in both mouse and human MTb infection, whereby 
Tim-3 expressed by T cells interacts with Gal-9, which in turn  
stimulated the antibacterial function of macrophages68,69. Thus, 
as described elsewhere in this review, significant attention will  
need to be paid to the effects of Tim-3 on not only T cells but 
also other cell types that can express this protein. In Listeria  
monocytogenes infection, Tim-3 expression has been shown to 
correlate positively with an effector phenotype of T cells, and  
Tim-3 expression has been directly demonstrated to enhance  
CD8 T-cell responses in this model5.

Tim-3 and immunotherapy
Establishment of Tim-3 as an exhaustion marker, in both  
tumors and chronic infection, makes Tim-3 an attractive target for 
immunotherapy. In mouse tumor models where PD-1 blockade 
is only partially efficacious, the combination of Tim-3 and PD-1  
therapy has been shown to be more effective as a treatment, 
leading to better tumor regression38,39. In the case of chronic  
infection, combined blockade of Tim-3 and PD-1 led to improved 
CD8 T-cell response and viral control62. Adaptive resistance to 
PD-1 monotherapy has been associated with the upregulation 
of other checkpoint receptors and is a current challenge in the  
field70, including crosstalk between PD-1 and Tim-3 in exhausted/
effector T cells40. Combined blockade of Tim-3 along with 
other checkpoint receptors such as PD-1 and CTLA-4 therefore  
may be an important therapeutic approach. Long-term protec-
tion has also been observed in a murine tumor model when Tim-3  
monoclonal antibody was combined with agonist antibodies  
against the co-stimulatory molecule CD137 on T cells71. Pur-
suant to a better mechanistic understanding of how anti-Tim-3  
antibodies might function in tumor therapy, a recent report  
showed that previously described antibodies to human or mouse 

anti-Tim-3 seem to work by blocking the interaction of Tim-3  
with PtdSer and Ceacam-172.

Recently, the use of chimeric antigen receptor (CAR) T cells was 
approved by the US Food and Drug Administration as a therapy 
to treat B-cell lymphoma. Despite some success of CAR T-cell  
therapy in patients with B-cell acute lymphoblastic leukemia 
and B-cell malignancies, there is limited efficacy of CAR T cells 
in solid tumors. One of the probable reported causes of this is 
the ability of the tumor microenvironment to induce CAR T-cell  
exhaustion, leading to PD-1 and Tim-3 expression after initial  
waves of expansion56. It has also been reported that tonic CAR T 
receptor signaling triggered by antigen-independent clustering 
can lead to early exhaustion of CAR T cells through the upregu-
lation of Tim-3, PD-1, and LAG-373. This further highlights the  
rationale for exploring anti-Tim-3 therapy, along with other  
therapeutic approaches, for the treatment of cancer.

Although Tim-3 has been shown to be a promising therapeutic 
target, a recent report suggests that anti-Tim-3 treatment can lead 
to more severe inflammation and peribronchiolar fibrosis due to  
defective clearance of apoptotic bodies74, consistent with the 
notion that Tim-3 is a receptor for PtdSer on apoptotic cells.  
Therefore, more detailed and systematic study is needed to 
determine other potential side effects of anti-Tim-3 antibody  
treatment.

Summary
Although Tim-3 was first described as an inhibitory receptor  
on T cells, it is now known to be expressed by different immune 
and non-immune cell types. In addition, Tim-3 has now been  
shown to possess either negative or positive function in various  
settings, depending on the cell type and physiological or patho-
logical context. All of these findings suggest that current efforts  
to translate Tim-3 as a target for immunotherapy of cancer 
will be more complicated than other targets with more limited  
expression (for example, CTLA-4 and PD-1). Nonetheless, they 
also indicate that there is more interesting biology surround-
ing Tim-3 that remains to be deconvolved and that may lead to  
unanticipated applications for this protein as a therapeutic target.
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