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In the last two years, there has been a surge in the number of publications on the
trace element selenium (Se) and selenocysteine-containing selenoproteins in human health,
largely due to the pandemic and the multiple roles that this micronutrient and Se-dependent
selenoproteins play in various aspects of the disease. In early 2020, two publications
increased the attention on Se status in the context of SARS-CoV-2, namely, a population-
based analysis correlating cure rates with baseline Se status in different regions of China [1],
and an analysis of individual patients who did or did not survive COVID-19 [2]. Both
studies indicated that Se deficiency was a risk factor for severe disease progression, poor
recovery, and eventually COVID-19-related death. Soon, these findings were supported
by several observational studies, e.g., on regional Se supply and severity of COVID-19
disease [3], on patients with comorbidities [4], or on patients with a parallel deficiency in
zinc, the second most important immune-relevant trace element [5–7]. Overall, a picture
emerged in which Se is an important parameter for COVID-19 disease progression and
survival, and severe Se deficiency measured in blood serving as a potential indicator of
target cell Se deficiency associated with organ system dysfunction and death (Figure 1A).

These results were not unexpected, as previous studies had pointed out the impor-
tance of Se status for the immune system and survival in critical illness [8]. The most solid
data base for this essential link was provided by several studies in intensive care units,
where Se deficiency was found to be an important predictor of severe disease course and
sepsis-related mortality [9–11]. The underlying causes are not yet clear, but the negative
acute-phase response of liver-derived selenoprotein P (SELENOP) and serum Se concen-
trations as biomarkers of poor systemic Se transport and target organ delivery appear
to be related to the observed association between low circulating Se concentrations and
unfavorable prognosis [12,13]. The strong decline in serum Se and SELENOP may di-
rectly lead to worsening disease, particularly in relation to the immune system [14], the
endocrine system [15] and the central nervous system [16,17], where insufficiently low Se
concentrations cause functional defects that can manifest in specific disease symptoms
(Figure 1B).

It has been observed that severe Se deficiency due to pregnancy, inflammation or other
conditions directly increases autoimmune disease risk [18–20]. The most conclusive data
for this notion were obtained by comparing the incidence of autoimmune thyroid disease
as a function of Se status [21], or thyroid disease prevalence in areas with low versus mod-
erate baseline Se intake [22]. These observational findings have recently been supported
by a focused molecular analysis of the role of the selenoprotein GPX4 in a specific severe
autoimmune disease, i.e., systemic lupus erythematodes, in which downregulation of GPX4
gene transcription contributes to neutrophil ferroptosis as a key driver of neutropenia [23].
Similarly, humoral immunity has been shown to depend on follicular helper T-cells, which
may undergo ferroptosis when GPX4 expression is low, leading to impaired immune re-
sponses to infection or vaccination in Se deficiency [24]. Importantly, these effects have been
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shown to be directly Se-dependent and seem preventable by Se supplementation, as demon-
strated, e.g., in a well-conducted randomized controlled trial in pregnant women at risk of
postpartum thyroiditis or by supplementation in COVID-19 patients, suggesting overall
that severe Se deficiency is an addressable risk factor for long-term complications [25,26].
Whether this relationship also applies to COVID-19 and the long-COVID symptoms is not
known, but currently seems plausible and requires experimental proof [20]. The observed
Se deficiency in patients with COVID-19 may be secondary to increased inflammatory
tone [27–29], hypoxia [30], and organ dysfunction [31–33], which develop in parallel and
appear to worsen in those patients with poor prognosis [2].
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Figure 1. Relationship between serum concentrations of the Se transporter selenoprotein P (SELE-
NOP) and survival in COVID-19 and possible implications for Se supply to target organs and sys-
temic defects. (A) Patients with COVID-19 display strongly reduced SELENOP concentrations com-
pared to healthy adults (Controls). In particular, non-survivors (Death) showed very severe Se de-
ficiency compared to survivors who left the hospital alive (Discharge). The red broken line indicates 
the 2.5th percentile of serum SELENOP as indicator of severe Se deficiency. (B) Severely reduced 
serum SELENOP concentrations indicate decreased Se transport to target organs, resulting in partial 
Se deficiency in the three major communication systems of the human organism, i.e., the immune, 
the endocrine and the central nervous system. The survival data have been published [2]. Spear-
man’s correlation test was applied (2-sided, 2-tailed), **** indicates p < 0.0001. 

It has been observed that severe Se deficiency due to pregnancy, inflammation or 
other conditions directly increases autoimmune disease risk [18–20]. The most conclusive 
data for this notion were obtained by comparing the incidence of autoimmune thyroid 
disease as a function of Se status [21], or thyroid disease prevalence in areas with low 
versus moderate baseline Se intake [22]. These observational findings have recently been 
supported by a focused molecular analysis of the role of the selenoprotein GPX4 in a spe-
cific severe autoimmune disease, i.e., systemic lupus erythematodes, in which downreg-
ulation of GPX4 gene transcription contributes to neutrophil ferroptosis as a key driver of 
neutropenia [23]. Similarly, humoral immunity has been shown to depend on follicular 
helper T-cells, which may undergo ferroptosis when GPX4 expression is low, leading to 
impaired immune responses to infection or vaccination in Se deficiency [24]. Importantly, 
these effects have been shown to be directly Se-dependent and seem preventable by Se 
supplementation, as demonstrated, e.g., in a well-conducted randomized controlled trial 
in pregnant women at risk of postpartum thyroiditis or by supplementation in COVID-19 
patients, suggesting overall that severe Se deficiency is an addressable risk factor for long-
term complications [25,26]. Whether this relationship also applies to COVID-19 and the 
long-COVID symptoms is not known, but currently seems plausible and requires experi-
mental proof [20]. The observed Se deficiency in patients with COVID-19 may be second-
ary to increased inflammatory tone [27–29], hypoxia [30], and organ dysfunction [31–33], 
which develop in parallel and appear to worsen in those patients with poor prognosis [2]. 

Adequate Se status is not only a prerequisite for proper immune system functioning 
[34,35], but also of great importance for the central nervous system [16,36,37] and the en-
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refined rodent model systems has shown that excess Se intake or transgenic overexpres-
sion of selenoproteins can impair glucose control, induce diabetes-like symptoms, and 
increase the risk of hyperglycemia [41,42]. Disruption of the regular peroxide-dependent 
signaling cascades by increased peroxidation appears to contribute to these defects 
[43,44]. Accordingly, a relationship between serum Se and insulin resistance has been re-
ported from several observational studies. Thus, high Se status could impair normal insu-
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Figure 1. Relationship between serum concentrations of the Se transporter selenoprotein P (SE-
LENOP) and survival in COVID-19 and possible implications for Se supply to target organs and
systemic defects. (A) Patients with COVID-19 display strongly reduced SELENOP concentrations
compared to healthy adults (Controls). In particular, non-survivors (Death) showed very severe
Se deficiency compared to survivors who left the hospital alive (Discharge). The red broken line
indicates the 2.5th percentile of serum SELENOP as indicator of severe Se deficiency. (B) Severely
reduced serum SELENOP concentrations indicate decreased Se transport to target organs, resulting
in partial Se deficiency in the three major communication systems of the human organism, i.e., the
immune, the endocrine and the central nervous system. The survival data have been published [2].
Spearman’s correlation test was applied (2-sided, 2-tailed), **** indicates p < 0.0001.

Adequate Se status is not only a prerequisite for proper immune system function-
ing [34,35], but also of great importance for the central nervous system [16,36,37] and the
endocrine control of energy and carbohydrate metabolism [38–40]. Pioneering work in
some refined rodent model systems has shown that excess Se intake or transgenic overex-
pression of selenoproteins can impair glucose control, induce diabetes-like symptoms, and
increase the risk of hyperglycemia [41,42]. Disruption of the regular peroxide-dependent
signaling cascades by increased peroxidation appears to contribute to these defects [43,44].
Accordingly, a relationship between serum Se and insulin resistance has been reported from
several observational studies. Thus, high Se status could impair normal insulin sensitivity,
or conversely, circulating Se levels could be elevated in diabetes due to insulin resistance
and elevation of hepatic SELENOP biosynthesis as a meaningful measure to protect from
elevated circulating glucose levels. The latter explanation seems to be valid [45,46], as no
increased type 2 diabetes mellitus risk was found in individuals taking Se supplements in
the large supplementation studies [47]. Recent data from the NHANES III study, which
analyzed the Se status of diabetic patients, suggest that serum Se concentrations correlate
positively with life expectancy and protection from cardiovascular events [48]. Neverthe-
less, caution is mandatory as excessive supplemental Se intake can be toxic [49], and the
use of very high therapeutic Se dosages may exceed the endogenous safety regulatory
pathways that normally limit SELENOP biosynthesis to a certain maximum [50]. This may
result in an oversupply of Se to target cells, which impairs regular peroxide-dependent
signaling and leads to impaired control of insulin biosynthesis and insulin resistance.
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The Se-dependent disruption of homeostatic control of carbohydrate metabolism can
also be observed in the other direction, i.e., in Se deficiency. Marginal Se intake was linearly
associated with hypoglycemia in a large observational study in China [51]. This surprising
result provided a possible molecular and metabolic cause for poor survival in severe
disease-related Se deficiency. Moreover, this notion accords with prior research on the
association between Se deficiency as a risk factor for heart failure, cardiac events, and death
from cardiovascular disease [52–56]. Therefore, new tools are needed to identify patients at
risk for Se deficiency at an early stage, especially since Se intake cannot be reliably predicted
or inferred from dietary habits [57,58]. Overall, the biological derangements resulting from
severe Se deficiency are diverse and complex because multiple organ systems are involved,
which interact, and the disorders develop dynamically (Figure 2).
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Figure 2. Well-established and recently described associations of Se deficiency with certain health
risks. Low Se status can result from insufficient nutritional supply, chronic disease, inflammation,
infection, or as a result from pregnancy, surgery or other conditions of increased need. Severe Se
deficiency is known to be associated with autoimmune disease and increased risk of mortality due
to cancer, cardiovascular disease, or infection. Recent research has added hypoglycemia risk and
poor survival of patients with COVID-19 or type 2 diabetes mellitus to the list of Se-dependent health
issues. The importance of poor Se status for the development of SARS-CoV-2 variants of concern due
to increased mutagenesis in Se-deficient hosts or for the development and resolution of long-COVID
symptoms are other potential links, but respective studies and relevant data are not yet at hand.

Informative transgenic mouse models have highlighted the specific roles of individ-
ual selenoproteins causing some severe developmental, neurological, immunological, or
metabolic phenotypes [59–61]. Similarly, rare human inherited diseases affecting regu-
lar selenoprotein biosynthesis have pinpointed some most relevant factors implicated in
selenoprotein biosynthesis, and highlighted their association with developmental disor-
ders, neuronal defects, infertility or the disruption of other regulatory pathways [62–64].
However, the problems we currently observe with COVID-19 rather result from acquired
deficiencies due to the inflammatory disease and do not represent inherited or chronic
defects. A similar severe decrease in circulating Se concentration has been observed before
in severe sepsis [9] or at the end of pregnancy in areas of low Se supply [65]. Of note,
all three conditions, i.e., COVID-19, sepsis and pregnancy, are associated with long-term
sequelae and slow full recovery. It can take years to overcome sepsis [66], and similarly,
pregnancy can directly cause permanent autoimmune disease [67,68] as well as chronic
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postpartum depression [69,70]. The supportive effects of supplemental administration of Se
on mortality, progression, and recovery from sepsis are currently unclear [71], but positive
studies have been reported [10]. Experience with Se in pregnancy is more consistent, and
supplementation has been effective in preventing postpartum thyroiditis and postpartum
depression [25,72,73]. The extent to which this experience can be extrapolated to COVID-19
and long-term impairment remains to be tested, but at least from experience, potential
success in preventing severe Se deficiency during illness and convalescence seems likely,
while adverse effects have not been reported when Se-deficient individuals were given
adequate amounts of Se [46].

Knowledge of the role of Se in cancer, cardiovascular disease, and the other major non-
communicable diseases is relatively solid and will expand further, in particular with respect
to ageing [74–76], and by analytical studies applying several biomarkers of Se status in
parallel [40,77,78]. Other important areas of future research include a better understanding
of the Se status for fertility and early development, and the mechanisms of Se transport [31].
Recent reports indicate unexpectedly high variability of trace elements in the follicular
fluid surrounding the maturing oocytes prior to ovulation [79], a direct relationship be-
tween Se concentration in amniotic fluid and development of small-for-gestational-age
newborns [80], and an increased risk of a number of pregnancy complications in women
with low Se levels in the first trimester [81]. The importance of iodine and thyroid hor-
mones in these conditions and their homeostatic control is well established, and it seems
imperative to give equal attention to the Se status.

Another urgent, remarkable, and well-characterized interaction between Se deficiency
and COVID-19 involves the virus itself, i.e., its variability and mutation frequency. In some
very elegant experiments, Melinda A. Beck’s group has demonstrated that Se-deficient
host organisms provide a perfect environment for enhanced viral mutagenesis. Mice with
low Se and vitamin E status or deficient of intracellular cytosolic glutathione peroxidase
(GPX1) exhibited increased mutation rates of infectious viruses, allowing apathogenic
viruses to evolve into highly pathogenic viral quasispecies, likely due to increased reactive
oxygen species tone and consequent damages [82,83]. The extent to which Se deficiency
in chronically ill, immunosuppressed or poorly supplied individuals contributes to the
evolution of new variants of concern of the current SARS-CoV-2 virus remains to be
investigated in the coming months [84]. Thus, again, efforts should be made to avoid
severe Se deficiency on a population-wide scale and in individual at-risk patients to reduce
the likelihood of increased mutagenesis and spread of new virus variants. However, it is
unlikely that this can be achieved quickly and that the contribution of severe Se deficiency
to pandemic spread and emergence of new viral strains can be directly attributed to low Se
and causality demonstrated. From a personal point of view, actively avoiding Se deficiency
through a wisely chosen diet or the use of dietary supplements seems to be a most sensible
and efficient measure to reduce one’s health risks, to improve survival chances in disease
and to avoid long-term sequelae after infection.
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