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It is increasingly appreciated that physical forces play important roles in cancer biology,

in terms of progression, invasiveness, and drug resistance. Clinical progress in treating

hematological malignancy and in developing cancer immunotherapy highlights the role

of the hematopoietic system as a key model in devising new therapeutic strategies

against cancer. Understanding mechanobiology of the hematopoietic system in the

context of cancer will thus yield valuable fundamental insights that can information

about novel cancer therapeutics. In this perspective, biophysical insights related to

blood cancer are defined and detailed. The interactions with immune cells relevant to

immunotherapy against cancer are considered and expounded, followed by speculation

of potential regulatory roles of mesenchymal stromal cells (MSCs) in this complex

network. Finally, a perspective is presented as to how insights from these complex

interactions between matrices, blood cancer cells, immune cells, and MSCs can be

leveraged to influence and engineer the treatment of blood cancers in the clinic. VC 2018
Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1063/1.5025689

NOMENCLATURE

ALL Acute lymphoid leukemia

AML Acute myeloid leukemia

APC Antigen presenting cell

BCR B-cell receptor

BM Bone marrow

CLL Chronic lymphocytic leukemia

CML Chronic myeloid leukemia

CXCL12 CXC-chemokine ligand 12

CXCR4 CXC-chemokine receptor type 4

DC Dendritic cell

E Young’s modulus

GvHD Graft-versus-host disease

GvT Graft-versus-tumor

HSC Hematopoietic stem cell

LepR Leptin receptor

LOX Lysyl oxidase

LSC Leukemia stem cell

MMP Metalloproteinase
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MSC Mesenchymal stromal cell

NG2 Neuron-glial antigen 2

PD-1 Programmed cell death protein-1

SDF-1 Stromal-derived factor-1

SIRPa Signal regulatory protein a
TCR T-cell receptor

VCAM-1 Vascular cell adhesion molecule-1

VEGF Vascular endothelial growth factor

YAP1 Yes-associated protein-1

I. INTRODUCTION

Significant progress has been made in the biology, diagnostics, and therapeutics of cancer

over several decades. More recent progress has unveiled a key insight: cancer needs to be

understood by considering its microenvironments since they contribute to initiation, metastatic

potential, and drug resistance.1 Various genomic and proteomic approaches have elucidated bio-

chemical components, cellular types, and signaling pathways that regulate cancerous microen-

vironments, followed by extensive validation of individual genes using animal models. By com-

bining these approaches in cancer biology with technologies in bioengineering—most notably,

biomaterial design and physical probing methods—it has been increasingly appreciated that bio-

physical cues play important roles in cancer. Most studies on biophysical regulation of cancer

have explored the contribution of solid mechanics, including stiffness (stress versus strain) of

the extracellular matrix and fluid mechanics, such as shear stress present in blood and lymphatic

flow. Additionally, some of the known genes in cancer, especially those that encode structural

proteins such as cytoskeletons, are now beginning to be reinterpreted in the context of biophysi-

cal regulation and cancer mechanobiology.

While previous work has mostly focused on biophysical regulation of cells in solid tumors,

it is important to note that substantial clinical progress has been made mostly with blood can-

cers, including chemotherapy and hematopoietic stem cell (HSC) transplantation. Recent clini-

cal success in immunotherapy demonstrates that immune cells—blood cell lineages—can be tar-

geted to treat both blood2 and solid cancers.3 Both blood cancer cells and immune cells

interface with the extracellular matrix and non-hematopoietic cells, especially stromal cells, in

microenvironments.1 Therefore, understanding how biophysical cues from the matrix regulate

blood cancer cells and immune cells both directly and indirectly via stromal cells can poten-

tially serve as an important platform that may provide information about treatment strategies

for a broad range of cancer (Fig. 1). In this perspective, we will first summarize key knowledge

related to hematopoiesis, hematopoietic malignancies, leukemia stem cells (LSCs), and hemato-

poietic stem cell niches, followed by a description of how biophysical cues from the matrix

may impact the pathophysiology and pharmacology of blood cancer cells. We will then discuss

how understanding biophysical regulation of immune cells in cancer microenvironments may

provide novel insights for immunotherapy. We will speculate how physical forces may impact

blood cancer cells, blood cell turnover, and immunity in cancer by regulating stromal cell func-

tions. Finally, we will discuss how insights into mechanobiology might be translated to the clin-

ical setting for the treatment of cancer.

II. HEMATOPOIESIS, HEMATOPOIETIC MALIGNANCIES, AND LEUKEMIA STEM CELLS

The hematopoietic system has served as a model to understand how stem cells give rise to

different lineages and how this process is perturbed in malignancies. A combination of fluores-

cence activated cell sorting and functional assays such as the colony-forming unit assay and

transplantation has revealed a hierarchical system of blood cell lineages emanating from stem

cells (Fig. 2), which can be separated based on surface receptor expression. This map has been

extended to human cells through xenotransplantation in genetically engineered, immunocompro-

mised mouse models.4 In general, HSCs can be distinguished from progenitors based on long-
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term (�4 months), multilineage engraftment after transplantation and successful engraftment

after serial transplantation into a new host. Progenitors can be detected based on their ability to

form colonies from individual cells. Overall, Hematopoietic lineages are classified into myeloid

and lymphoid. Myeloid lineages are further classified into two groups—(1) Erythroid lineages

that lose nuclei, eventually giving rise to red blood cells, and megakaryocyte lineages that pro-

duce platelets; (2) Lineages that retain nuclei, including monocytes, granulocytes, and dendritic

cells (DCs). Lymphoid lineages primarily include B-cells, T-cells, and natural killer (NK) cells.

While the accepted foundation of hematopoietic hierarchy holds, the lineage map is continu-

ously revised to show novel subpopulations and lineage bias of some HSCs, such as those that

directly differentiate into the megakaryocyte lineage,5 reflecting a level of heterogeneity in

hematopoiesis.6

Hematopoietic malignancies are classified based on the organ where cancerous cells are

located (marrow and blood for leukemia and lymph nodes for lymphoma), the differentiation

status of abnormal cells (more primitive cells for acute and more mature cells for chronic), and

the affected lineages (myeloid and lymphoid). Chronic malignancies that affect myeloid line-

ages are broadly termed chronic myeloproliferative neoplasms (CMNs). CMNs are further clas-

sified into chronic myeloid leukemia (CML) that shows genetic translocation in chromosome 22

(“Philadelphia chromosome” with a BCR-ABL fusion gene) and the Philadelphia-chromosome

negative disorders, including essential thrombocythemia, polycythemia vera, and primary mye-

lofibrosis.7 Acute myeloid leukemia (AML) is characterized by rapid proliferation of immature

FIG. 1. Understanding biophysical regulation of different cellular components in blood cancers. The role of extracellular

matrix mechanics is highlighted. Green arrows highlight the functions that may benefit cancer treatment, while red arrows

indicate the functions that may promote cancer. Biophysical cues from the matrix are known to play important roles in

maintaining HSC functions and directing MSC differentiation. HSCs contribute the turnover of immune cells, while MSCs

are known to modulate immune cells. However, the dense matrix represents a barrier for immune cells to migrate through

and interact with cancer cells. Biophysical cues from the matrix are also known to regulate proliferation and chemoresist-

ance of cancer cells. Additionally, blood cancer cells are known to originate from HSCs when they are mutated, while they

also become chemoresistant when they interact with MSCs.
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myeloblasts and is associated with a number of genetic mutations, most notably those of the

mixed lineage leukemia (MLL) gene.8 Chronic lymphocytic leukemia (CLL) occurs in B-cells

and is the most common leukemia subtype in adults.9 Multiple myeloma is a malignancy of ter-

minally differentiated, plasma cells, which are a subset of the B-cell lineage.10 Acute lympho-

cytic leukemia (ALL) also develops mostly from the B-cell lineage, but 25% of cases develop

from the T-cell lineage.11 Lymphomas can be classified into two forms. Hodgkin’s lymphoma

accounts for 10% of all lymphomas and is diagnosed based on the presence of giant multinucle-

ated cells called Reed-Sternberg cells.12 In contrast, non-Hodgkin’s lymphoma shows a diverse

spectrum of subtypes depending on morphology, genetics, and surface marker phenotyping.13

Hematopoietic malignancies are now understood in the context of the hematopoietic hierar-

chy, especially for leukemias (Fig. 2). Efforts over the past two decades have established the

concept of leukemia stem cells (LSCs) in which leukemias originate from a minority of malig-

nant cells that possess stem cell-like functions, including long-term repopulation and self-

renewal.14 Existence of human LSCs was first shown by transplanting purified marrow cells

from AML patients into immunocompromised mice and demonstrating that only the primitive

HSC (CD34þCD38�) population can cause AML in mice.15 Interestingly, subsequent studies

show that the overexpression of AML-causing MLL mutants can transform not only primitive

HSCs but also myeloid progenitors that lack self-renewal capability.16 In contrast, the overex-

pression of CML-causing BCR-ABL modifies HSCs that possess inherent self-renewal capacity,

but it does not modify progenitor cells.17 While transplant of purified HSCs but not progenitors

recapitulates CLL in xenograft mice,18 different subpopulations have been shown to possess the

leukemia-initiating property in ALL.19 In sum, these findings highlight that LSCs primarily

originate from HSCs, but some LSCs can also be derived from more differentiated progenitors

depending on the leukemia subtype.

FIG. 2. Hierarchical organization of normal hematopoiesis and leukemic transformation. A conventional model of normal

hematopoiesis is shown on the left where different blood lineages are derived from hematopoietic stem cells (HSCs). HSCs

give rise to multipotent progenitors (MPPs), which lose self-renewal capability. MPPs differentiate into common myeloid

progenitors (CMPs) and common lymphoid progenitors (CLPs). CLPs produce lymphoid cells [T-cells, B-cells, and

Natural Killer (NK)-cells]. CMPs further differentiate into megakaryocyte-erythroid progenitors (MEPs) and granulocyte-

monocyte progenitors (GMPs). GMPs produce granulocytes (gran.) and monocytes (mono.), while MEPs generate mega-

karyocytes (MKs) and erythroid progenitors (EryPs). Fragmentation of mature MKs under shear stress makes platelets,

while nucleation of EryPs leads to red blood cells (RBCs). Terminally differentiated cells subsequently egress the marrow

and are distributed throughout different organs. A recent example is highlighted where a newly discovered subset of HSCs

is exclusively differentiated into the MK lineage (HSC-MK).5 Leukemia stem cells (LSCs) are derived from the oncogenic

transformation of HSCs. However, the transformation of progenitors can also turn them into LSCs depending on oncogenic

mutations that define leukemia subtypes. An example is shown where BCR-ABL transforms HSCs but not progenitors to

generate LSCs in CML.17
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III. BONE MARROW MICROENVIRONMENTS: BIOMECHANICAL PERSPECTIVE

The bone marrow (BM) is the primary organ that maintains HSCs and supports hematopoie-

sis in adults. It is important to highlight that the BM consists of an incredible diversity of biome-

chanical cues (Fig. 3). In general, the inner marrow is softer (E¼ 0.2–25 kPa)20,21 than the osteoid

matrix (E¼ 40–100 kPa) deposited by osteoblasts lining the inner bone surface.22 Detailed analy-

ses of the BM in situ by atomic force microscopy (AFM) at the microscale confirm that the mar-

row is generally soft (E¼ 0.1 kPa), while the regions closer to the inner bone surface show differ-

ent stiffness values ranging from E¼ 2–100 kPa.23 It is also important to consider fluid mechanics

in the BM. Blood flows into the BM through periosteal arteries lining the periosteum and pene-

trates through the endosteum to form interior arterioles. Sinusoidal circulation begins with transi-

tion vessels stemming from arteriolar circulation to the sinusoids, an extensive venous network

distributed throughout the marrow. Thus, transition vessels and sinusoids represent the circulatory

regions where blood flow transitions from the high to low flow rate and shear stress. Sinusoidal

circulation consolidates into the central sinus, which eventually connects to systemic venous cir-

culation. While the overall marrow viscosity has been reported to be �100 mPas, the central

marrow regions are more viscous than other regions because of fluid transport and exchange

through large central vessels.21,24 Together, these studies indicate that the outer regions of the

BM may act more like elastic solids, while the central regions act more like viscoelastic solids.

In vivo studies have revealed cellular components in the BM that are required to maintain

HSC functions.25,26 Recent studies show that most HSCs are primarily localized in the vascular

niche near sinusoids and the central sinus, while some can be identified near arterioles.27 By

using conditional depletion of cells in situ, it was shown that leptin receptor positive (LepR)þ

mesenchymal stromal cells (MSCs) localized on sinusoids,28 and neuron-glial antigen 2 positive

(NG2)þ MSCs localized on arterioles29 are required for the maintenance of HSCs in the BM.

Since HSCs are abundant near sinusoids, LepRþ MSCs likely support self-renewing active

HSCs, while NG2þ MSCs likely support slowly cycling, dormant HSCs.30 Like conventional

MSCs, LepRþ MSCs are capable of differentiating into osteogenic and adipogenic lineages.31

FIG. 3. A schematic of the bone marrow microenvironment with key stromal cell components and biomechanical characteris-

tics. Tissue becomes softer and fluids more viscous when moving inward radially from the surface of the periosteum. Periosteal

arteries lining the surface of the periosteum impose high flow rates and shear stresses that decrease as blood moves through tran-

sition vessels followed by sinusoids and eventually the central sinus, leading to systemic venous circulation. In marrow, the oste-

oid and vascular niches promote different cellular phenotypes based on their mechanical attributes. Hematopoietic stem cells

(HSCs) are primarily located near sinusoidal vasculature. Mesenchymal stromal cells (MSCs) positive for leptin receptor

(LepRþ) are located at sinusoids and promote active self-renewal of active HSCs (aHSCs), while MSCs positive for neuron-glial

antigen 2 (Ng2þ) near arterioles support HSC dormancy (dHSCs). HSCs differentiate into hematopoietic lineages, which eventu-

ally exit the marrow through the central sinus. MSCs can differentiate into adipocytes (Adipo), which limit HSC proliferation,

and osteoblasts (OB), which help to maintain HSCs. Diseased and/or fibrotic regions of marrow, such as in primary myelofibro-

sis, show increased bone formation and enhanced deposition of collagen and infiltration of malignant cells (inset).
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Previous imaging and functional studies show that osteolineages likely maintain HSCs indi-

rectly and play more direct roles in regulating progenitors.27 In contrast, adipocytes are known

to limit the number of HSCs in vivo.32 These results highlight the importance of cellular com-

ponents from MSC lineages in regulating HSC functions.

Emerging studies show the contribution of biomechanical cues in regulating the number of

functional HSCs. In embryonic hematopoiesis, HSCs originate from endothelial cells that expe-

rience shear stress. Interestingly, fluid shear increases the number of embryonic HSCs33 by acti-

vating prostaglandin E2.34 Whether this insight applies to adult hematopoiesis remains unclear.

While the direct contribution of matrix proteins secreted by specific cell types in HSC mainte-

nance remains to be observed in vivo, high levels of fibrillar collagen and fibronectin are local-

ized at the endosteal surface, whereas basement membrane proteins are localized near the vas-

culature.35 Recent studies show that soft (E¼ 0.3 kPa) substrates maintain HSCs when they are

functionalized with tropoelastin or fibronectin,36,37 while stiff (E¼�40 kPa) fibronectin func-

tionalized substrates increase the proliferation of multipotent progenitors.38 Taken together,

these findings suggest biomechanical influences in the regulation of hematopoiesis.

IV. BIOPHYSICAL INTERACTIONS BETWEEN MALIGNANT BLOOD CELLS AND THE

EXTRACELLULAR MATRIX

How solid mechanical cues from the extracellular matrix impact the biology of hematopoi-

etic malignancies is now being studied by coupling biomaterial strategies with molecular biol-

ogy. With a number of subtypes documented based on genetic mutations, hematopoietic malig-

nancies can potentially serve as an important system to understand complex relationships

between cancer genotypes and their sensitivity to biophysical cues.

Malignant blood cells express several molecular components required to sense biophysical

cues presented by the matrix. On the cell membrane, some integrin receptors, most notably

a439 and b3,40 are known to be required for leukemia cell growth and drug resistance. While

hematopoietic lineages in general show less obvious focal adhesion kinase clustering compared

to non-hematopoietic cells upon adhesion, it is upregulated in some AML cells and is associ-

ated with higher cell motility and drug resistance.41 The A isoform of Myosin-II, which is a

principal motor protein in more differentiated hematopoietic cells,37 has been shown to be

required for leukemia cell engraftment by regulating transmigration.42 Small GTPases regulate

cytoskeletal rearrangements and are also known to play important roles in leukemia. In CML

harboring a BCR-ABL mutation, Rac becomes highly active in HSCs.43 Cdc42 is shown to reg-

ulate asymmetric division of AML cells and to be required for leukemia progression.44

Mutations in RhoA are shown to be common in adult T-cell leukemia/lymphoma and contribute

to its pathogenesis.45 In addition, nuclear components of mechanotransduction regulate leuke-

mia. For instance, while different leukemia cell lines express various levels of intermediate fila-

ments lamin A and C,46 their levels are generally low in granulocyte, monocyte, and lymphoid

lineages relative to lamin B.47 Recent evidence suggests that lamin B1 expression correlates

with overall survival in CLL as it is required to limit somatic hypermutations in B cells.48 Yes-

associated protein-1, a mechanosensitive transcription factor,49 is known to initiate apoptosis in

leukemia cells harboring DNA damage.50 Transcriptional coactivator megakaryoblastic leuke-

mia 1 binds to serum response factor, another well-known mechanosensitive transcription fac-

tor,51 and activates target genes that may contribute to leukemogenesis.52 It remains unclear

though how these components participate in the mechanosensing of blood cancer cells.

Solid tumors are often diagnosed by physical palpation, and some studies show that stiff

substrates facilitate the malignant phenotype, especially by promoting integrin clustering and

focal adhesion leading to enhanced cancer cell invasiveness.53–55 Since a number of compo-

nents relevant to mechanotransduction appear to be upregulated in blood cancer cells, this could

lead to a speculation that stiff substrates also facilitate malignancy of blood cancers. However,

generalizing the concept in mechanosensing of solid tumors to blood cancers is confounded by

a number of factors. First, some studies show that rigidification of tumor environments gener-

ally occurs at the periphery, while the core region of tumors actually becomes softer.56 Other
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previous studies demonstrate that a soft fibrin hydrogel actually increases the tumorigenic

potential of cancer cells, including those from ALL, compared to a stiffer counterpart.57,58 How

stiffness heterogeneity in tumor microenvironments is relevant to hematological malignancy

remains unknown and will need to be tested directly. Second, the intrinsic mechanosensing

machinery may be wired differently for hematopoietic cells in comparison to other cell types.

For instance, hematopoietic cells generally have larger nuclear to cytoplasmic volume ratios

than non-hematopoietic cells, which can potentially impact the distribution of mechanosensitive

factors in response to biophysical cues. In addition, lamin-A/C expression—which scales with

tissue stiffness59—is generally low in differentiated myeloid and lymphoid cells,47 and this

might influence their ability to relay external biophysical cues to the nuclei. Third, many

disease-causing mutations have been reported in blood cancers,60 and some of them can poten-

tially interact with the mechanosensing machinery.

Mutations in HSCs are sufficient to cause blood cancer in some healthy recipients, but the

disease outcome is also determined by the microenvironments of the recipients.61 It will be thus

important to elucidate how biophysical cues of the physiological BM may initially regulate genet-

ically transformed malignant blood cancer cells. A recent study demonstrates that some AML

cells, including those harboring a MLL-AF9 mutation, show a biphasic growth pattern as a func-

tion of matrix stiffness due to an autocrine inhibitory mechanism.62 The biphasic growth as a

function of matrix stiffness has also been observed in some lymphoma cells.63 Interestingly, this

kind of growth pattern is reminescent of early normal hematopoiesis where dormant HSCs rarely

proliferate, while active self-renewing HSCs are found near the softer perivascular niche, and dif-

ferentiated blood cells no longer undergo active proliferation as they exit the marrow into the

blood.64 Whether this observation is applicable to malignant hematopoiesis as a function of

matrix stiffness remains to be investigated.

Effects of matrix stiffness on drug resistance of cancer cells are becoming increasingly

understood. While some chemotherapeutic drugs were originally designed to block rapid pro-

liferation of cancer cells, increasing evidence suggests that drug sensitivity may not be a

function of cell proliferation in a number of cancers.65 This was demonstrated earlier in the

context of some solid tumors where cells proliferate faster on stiffer substrates but also show

increased drug resistance.66,67 In myeloid leukemia cells, there was also no general correla-

tion between the cell proliferation rate and drug potency as a function of matrix stiffness.62

Whether matrix stiffness regulates chemosensitivity appears to depend on molecular targets of

drugs and mutations that define leukemia subtypes. For instance, BCR-ABL and MLL-AF9
leukemia cells in softer matrices (E � 0.1 kPa) show increased resistance to a number of

drugs compared to stiffer (E¼ 0.3–3 kPa) matrices, including the drugs imatinib and cytara-

bine, which are used in the clinic.62 However, the same study shows that regardless of matrix

mechanics, drugs against the protein kinase B pathway suppress proliferation of MLL-AF9
cells, while those against the rapidly accelerated fibrosarcoma pathway suppress that of BCR-
ABL cells. Interestingly, these oncogenes play an active role in decoupling drug sensitivity

from matrix stiffness within specific signaling pathways. Therefore, generalizing the principle

of cancer “mechanopharmacology” requires a systematic understanding of how mutations

affect mechanosensing in cancer cells, which can be facilitated by incorporating hydrogels

with tunable mechanics into a high-throughput drug screening system.

As disease progresses, some chronic blood cancer patients show profound physical changes

in the marrow (Fig. 3). In particular, patients with primary myelofibrosis, a type of myeloprolif-

erative neoplasm, are known to exhibit extensive deposition of collagen fibrils. While the stiff-

ness of the fibrotic BM has not been formally measured, previous work on other organ systems

shows that fibrosis increases the stiffness of normal tissues about an order of magnitude.68 At

the later stages of BM fibrosis, some areas of BM turn into bone tissue. These overt changes in

the BM microenvironment likely limit blood formation in marrow as indicated by patchy hema-

topoiesis, and more blood cells are produced in other organs, such as the spleen.69 Lysyl oxi-

dase (LOX) is known to stabilize collagen fibrils by covalent crosslinking70 and contributes to

solid tumor progression by matrix stiffening.53 Interestingly, megakaryocytes derived from pri-

mary myelofibrosis patients show upregulated LOX expression, thereby facilitating collagen
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crosslinking.71 While direct effects of matrix mechanics on the progression of primary myelofi-

brosis remain unknown, biomaterial strategies, such as minimal matrix models of scars68 and

interpenetrating polymer networks,54 can potentially be used to recapitulate key matrix compo-

sitions of the pathological marrow and to vary substrate stiffness independently.

V. BIOPHYSICAL REGULATION OF IMMUNE CELLS WITH IMPLICATIONS IN CANCER

IMMUNOTHERAPY

Engineered chimeric antigen receptor-T cells are now clinically used to treat some leuke-

mias, including ALL, which were previously incurable by chemotherapy or bone marrow trans-

plantation alone.2 Inhibitors against immune checkpoint proteins re-activate dormant immune

cells so that they can physically interact with cancer cells to kill them.3 Cell-based immuno-

therapies require engineered immune cells to physically infiltrate microenvironments and reach

tumor cells after injection. Additionally, checkpoint inhibitors must maintain or restore physical

forces required for immune cells to form immunological synapses with antigen presenting cells

(APCs) or tumor cells. Both adoptive cell and checkpoint inhibitor immunotherapies need to

overcome resident immune cells that may be primed to promote tumor progression.

In general, immune cells possess the ability to physically deform and squeeze through

small pores in the matrix or cellular junctions, primarily because low expression of lamin-A

makes their nuclei more compliant.47 Increased stromal stiffening likely disrupts junctional

integrity of endothelial cells,72 and this can potentially facilitate the extravasation of molecules

and cells.72,73 However, tumor microenvironments increase interstitial pressure during growth,

and it is known that therapeutic nanoparticles or even antibodies do not readily enter tumors

unless collagen production in the stroma is reduced.74 Immune cells can migrate through pores

as small as �3 lm in diameter without requiring matrix degradation by metalloproteinases

(MMPs).75 Although immune cells are significantly deformable, their nuclear envelope may

rupture during deformation; consequently, the envelope must be repaired immediately to ensure

cell survival.76 Therefore, it is likely that adoptively transferred immune cells require matrix

remodeling to initially enter tumors from circulation. T-cells that are adherent to vascular cell

adhesion molecule 1 (VCAM-1) are shown to upregulate MMP-2 (gelatinase) and MMP-14

(membrane form) via a4 integrin, which may form molecular complexes during transmigration

to degrade the endothelial basement membrane.77 Whether changes in tumor stiffness influence

T-cells to degrade matrices remains unclear, but a recent study shows that other cell types such

as fibroblasts downregulate MMPs on stiff matrices.78 Therefore, physical barriers to enter

microenvironments of primary myelofibrosis or solid tumors can potentially impair sufficient

infiltration of engineered T-cells. Incorporating explicit strategies to improve the entry of engi-

neered immune cells into tumors will likely facilitate clinical translation of cell-based immuno-

therapy against chronic blood cancers and solid tumors.

For adaptive immune cells, it is clear that mechanical force plays an active role in regulat-

ing cell-cell interactions at immunological synapses.79 External force is known to directly acti-

vate the T-cell receptor (TCR)80 and the B-cell receptor (BCR).81 A study with dual micropi-

pette aspiration and a biomembrane force probe shows that force promotes catch-bond

formation between the TCR and the peptide major histocompatibility complex (pMHC) on

APCs in order for T-cells to discriminate between high-affinity and low-affinity antigens.82

Actin cytoskeleton assembly and myosin-II-mediated contractility are known to be crucial for

mechanosensing and mechanotransduction at immunological synapses.81,83 Interestingly, previ-

ous studies show that increasing substrate stiffness enhances the activation of T-cells84,85 and

B-cells.86,87 These studies raise the possibility that immune cells in soft tissues, such as the

softer core region of tumors, may be activated too weakly to initiate immune responses against

cancer cells.

The role of biophysical cues in regulating innate immune cells is beginning to be eluci-

dated, especially for macrophages. Tumor microenvironments can potentially commandeer mac-

rophage functions either by inhibiting phagocytosis or by polarizing them into a protective or

“M2-like” phenotype. Although matrix stiffening increases cortical tension within macrophages,
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which initially enhances phagocytosis,88 the concurrent engagement of signal regulatory protein

a (SIRPa) in macrophages to CD47 in target cells can deactivate myosin-II activity, thereby

eventually inhibiting phagocytosis.89 Furthermore, a recent study shows that matrix stiffness

increases cell surface expression of SIRPa in macrophages and that marrow-derived macro-

phages with SIRPa inhibition can effectively clear human tumor xenografts.90 Tumor-

associated macrophages not only are less phagocytic but also secrete soluble factors that can

suppress lymphocyte functions.91 Interestingly, forced elongation of macrophages by micropat-

terning leads to M2 polarization in vitro.92 Therefore, macrophages can potentially evolve into

an M2-like phenotype during migration where they must squeeze through the dense matrix in

the tumor stroma. After upregulation of SIRPa, lamin-A, and M2 markers as a result of mecha-

notransduction in the stiff matrix,90 macrophages may become less motile and start contributing

to cancer-promoting phenotypes.

VI. BIOPHYSICAL REGULATION OF STROMAL CELLS TO CONTROL FUNCTIONS OF

NEIGHBORING CELLS

Extensive work shows that stromal cells interface with malignant hematopoietic cells to

influence drug resistance of malignant hematopoietic cells93 and with normal hematopoietic

cells to regulate hematopoiesis25 and immunity.94 While mechanosensing of stromal cells has

been studied extensively in the context of their differentiation and migration,95,96 its signifi-

cance in the context of regulating functions of normal and malignant hematopoietic cells

remains largely unknown. However, emerging evidence suggests that physical forces regulate

the ability of stromal cells to influence their neighboring cells by controlling tissue architecture,

remodeling matrices, and secreting paracrine factors.

Lymph nodes become swollen during immune response to accommodate the migration of

dendritic cells (DCs) so that they can present antigens to T-cells for activation. Interestingly, a

recent study shows that DCs inhibit contractile forces in stroma-derived fibroblastic reticular

cells by binding to podoplanin.97 This process facilitates the expansion of lymph nodes, liberat-

ing T-cells to facilitate their interaction with DCs. This finding highlights an important role of

the contractile forces generated by stromal cells in organizing the architecture of lymph nodes

and subsequently in controlling the adaptive immune response.

Stromal cells can also impact neighboring cells by generating contractile forces to remodel

matrices. On stiff substrates, MSCs increase traction force during cell spreading and secretion

of matrix proteins through myosin-II.59,98 The deposition of the extracellular matrix by stromal

cells has been proposed as a key mechanism that promotes chemoresistance of AML cells.39 A

recent study shows that priming tumor tissues with Fasudil, an inhibitor of Rho-associated pro-

tein kinase (ROCK) used in the clinic, impairs the ability of stromal cells to remodel matrices,

decreases cancer cell invasion, and increases sensitivity to conventional chemotherapy.99

Coincidentally, an earlier study shows that reversine, a myosin-II inhibitor,100 is effective

against multiple myeloma cells in the presence but not in the absence of stromal cells.101 The

studies collectively suggest that contractile forces generated by stromal cells can maintain che-

moresistance in cancer by matrix remodeling.

Stromal cells can also regulate neighboring cells in a paracrine manner. A recent study

shows that vessel wall shear stress promotes induction of cyclooxygenase-2 in MSCs to sup-

press activated immune cells.102 Effects of matrix mechanics on the secretion of vascular endo-

thelial growth factor (VEGF) from stromal cells have been previously demonstrated.103–105 This

insight is potentially relevant to understanding the regulation of hematopoiesis as VEGF regu-

lates HSC survival.106 In addition, stromal cells can deform matrices by generating contractile

forces and release transforming growth factor-b1 (TGF-b1) deposited in the matrix;107 interest-

ingly, TGF-b1 is known to facilitate quiescence of HSCs.108 The results thus suggest that

matrix stiffness regulates the ability of MSCs to secrete paracrine factors that have been previ-

ously implicated in maintaining HSCs.
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VII. SCIENTIFIC FUTURE DIRECTIONS: THE ROLE OF MATRIX MECHANICS IN

INTERCELLULAR FORCES

The role of matrix mechanics in regulating intercellular forces was previously studied with

epithelial cells109 and endothelial cells72,73 but remains generally unknown in the context of

hematopoiesis, immunity, and hematopoietic malignancies. A framework can be envisioned to

evaluate intercellular forces as a function of matrix stiffness (Fig. 4). The cortical membrane

tension of a cell adhering to the matrix is initially increased as matrix stiffness increases.98 A

cell with higher cortical tension shows larger binding force between surface receptors and their

ligands as shown in T-cells.82 As the matrix stiffens further, however, some cytoskeletal pro-

teins can become polarized towards the side where the cell interacts with the matrix, as demon-

strated in MSCs110 and HSCs.37 Subsequently, cortical tension is decreased on the side of the

cell that interacts with another cell. These observations raise a possibility that intercellular

forces show a biphasic pattern as a function of matrix stiffness, depending on whether cells can

polarize contractile forces. This notion is supported by an observation that increasing stiffness

beyond E¼ 100 kPa starts to decrease T-cell activation.84 This framework may help to provide

information about an optimal substrate stiffness that can maximize the interaction force between

MSCs and HSCs via specific ligand-receptor pairs, such as stem cell factor and CD117, to facil-

itate the expansion of cord blood cells for HSC transplantation. Since a subset of MSCs

(Interleukin-7þVCAM-1þ) in the BM maintains memory CD4þ T-cells,111 it will also be inter-

esting to determine an optimal matrix stiffness where the maintenance of functional memory T-

cells is maximized. Importantly, this framework can be experimentally confirmed by combining

dual micropipette aspiration analysis and biomaterial strategies to fabricate microscale sub-

strates that can interact with cells at the single cell level, while intercellular forces can be mea-

sured simultaneously.

VIII. TRANSLATIONAL FUTURE DIRECTIONS: MECHANOTHERAPEUTICS OF

HEMATOLOGICAL MALIGNANCIES

Stromal cells are promising novel targets for blood cancer treatment112 since they can

potentially be modulated to control multiple cell types involved in cancer progression in an

integrated manner. Granulocyte-colony stimulating factor has already been used in the clinic to

mobilize HSCs from the BM into blood circulation by decreasing stromal-derived factor-1

(SDF-1)113 so that HSCs can be readily collected for transplantation. Blocking CXC-chemokine

receptor type 4 (CXCR4), which binds to SDF-1, is known to dislodge leukemia stem cells

(LSCs) from the BM stroma, which then become susceptible to chemotherapy.114,115 Since

receptor blocking can potentially influence both malignant and normal cells, novel insights

behind how they competitively interact with stromal cells, especially from a biophysical per-

spective, will be informative to devise strategies to eliminate malignant cells but to maintain

normal blood cells. In addition, the ability to deliver healthy stromal cells and to subsequently

control their biophysical interactions with blood cells in vivo can facilitate clinical translation

of biophysical perturbation strategies into the treatment of cancer.

Previous studies show that LSCs may be able to hijack the BM niche to decrease the

engraftment of normal HSCs.116 While some molecular components such as CXCR4 have been

implicated in this process, whether LSCs physically compete with HSCs for stromal cell influ-

ence remains unknown. While a number of cancer cell types are known to be softer than their

normal counterparts,117 other cancer cells, especially those that show metastatic and invasive

phenotypes, have been recently shown to be stiffer.118–120 It is important to note that as leuke-

mia cells are exposed to chemotherapy treatment, they become more rigid by nearly 100-

fold.121 Therefore, it can be hypothesized that chemotherapy-conditioned, rigid LSCs can polar-

ize cortical tension on stromal cells, which can then inhibit the interaction between HSCs and

stromal cells. Although blocking cell surface interactions may inhibit cell-cell adhesion and lib-

erate both LSCs and HSCs from the BM niche, inhibiting cellular contractility is known to nor-

malize cortical tension in cells that experience different mechanical loads while maintaining

cell adhesion.98,122 Therefore, it will be interesting to test whether inhibitors against cellular
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contractility can facilitate elimination of LSCs upon chemotherapy while keeping HSCs in the

BM niche [Fig. 5(a)].

The ability to encapsulate donor cells in engineered hydrogels at the single cell level has

great potential in facilitating the use of biophysical cues for cancer therapy because it is possi-

ble to precisely tune the local substrate mechanics presented to individual donor cells and to

control how fast the donor cells escape from the encapsulating materials to integrate with the

host.123 For example, in leukemia patients, graft-versus-host disease (GvHD) is a major compli-

cation of allogenic hematopoietic transplantation as a result of donor T-cells recognizing for-

eign cells and subsequently attacking host tissue.113 However, donor T-cells are required to

maximize the survival of patients because they can contribute to the elimination of residual

cancer cells by graft-versus-tumor (GvT) effects.124 MSCs have been tested clinically to mini-

mize GvHD after hematopoietic transplantation since they can suppress donor T-cell activa-

tion.125 However, since bone deposition remains persistent in some chronic blood cancers, such

as primary myelofibrosis after transplantation,126 there is a risk for donor MSCs to undergo

osteogenesis because of the potential mechanoactivation by the stiff interface, which can impair

their immunomodulatory functions.94 Delivering microgels with encapsulated MSCs to the BM

via intrabone injection has potential to enable the donor cells to communicate with the host

FIG. 4. Effects of matrix stiffness on intercellular forces. The cell (green) adhering to the soft matrix may experience

low cortical tension and hence interact weakly with the other cell (orange). As the matrix stiffness increases, cortical ten-

sion increases, thereby promoting cell-cell interaction. The sensitivity of this process is described by the parameter EA,

the matrix stiffness in which the cell-cell interaction force is half-maximal (a). When matrix stiffness increases beyond

the maximal point (EM), total cortical tension in the cell adhering the matrix may become saturated (b). However, corti-

cal tension may become polarized towards the side where the cell adheres to the matrix. This process can competitively

decrease cortical tension on the other side and decrease the cell-cell interaction force to a certain level with the half-

maximal stiffness, ED (c). This leads to a biphasic relationship between cell-cell and cell-matrix interaction forces. This

model may be generalizable where EA, EM, and ED depend on interacting cell types and the matrix. This model can

potentially serve as a basic unit to quantitatively understand more complex interactions that involve multiple cells and

matrix components.
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initially through paracrine secretions to alleviate GvHD while remaining physically isolated

from the pathological niche [Fig. 5(b)]. These microgels may be programmed to present a com-

bination of specific biophysical or biochemical cues to encapsulated donor MSCs so that GvT

effects may be preserved. Donor MSCs can also remodel the host matrix by secreting

MMPs,127 which may help to reduce bone deposition in myelofibrosis. After matrix remodeling,

MSCs can egress from the microgels and integrate with the BM so that they can contribute to

the long-term maintenance of transplanted HSCs.

IX. CONCLUSIONS

The hematopoietic system has served as an important clinical model to understand how

tumor microenvironments regulate malignancy and to provide information about cancer therapy.

Leveraging this system to understand cancer mechanobiology allows investigators to gain more

comprehensive understanding of how biophysical cues regulate the interplay of malignant cells,

hematopoietic cells, and stromal cells in cancer pathology and therapy. A wealth of information

for disease causing mutations, signaling pathways, and tumor heterogeneity in the fields of

FIG. 5. Hypothesized therapeutic strategies against blood cancers by leveraging insights into mechanobiology. (a) The

binding of LSCs to MSCs leads to chemoresistance. If the interaction force between LSCs and MSCs is strong, this can

polarize cortical tension on MSCs, leading to a weaker interaction between MSCs and HSCs, and hence impaired normal

hematopoiesis. Normalizing cortical tension by myosin-II inhibitors may help to equalize LSC-MSC and HSC-MSC bind-

ing forces, which can potentially render LSCs chemosensitive, while maintaining HSCs. (b) After allogeneic hematopoietic

transplantation in patients with primary myelofibrosis, donor MSCs (yellow) can be delivered via intrabone transplantation

after encapsulation in Arg-Gly-Asp (RGD)-modified alginate microgels (red, �3 lm thickness) using droplet microfluidics.

Donor MSCs in microgels can be initially shielded from the pathological host marrow with bone deposition to prevent

mechanoactivation, while secreting soluble factors to suppress GvHD. GvT may also be preserved depending on biophysi-

cal and biochemical cues from the microgels. Once the host matrix is remodeled by MMPs from donor MSCs, they can be

programmed to egress from the microgels and integrate with the host to maintain donor HSCs.
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hematology and oncology provides invaluable opportunities for understanding how these factors

influence or are influenced by biophysical factors. Novel approaches such as using small mole-

cule inhibitors targeting mechanosensing pathways and biomaterial strategies to modulate bio-

physical cues in vivo will facilitate the translation of the insights in cancer mechanobiology to

the clinic.
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